Publications

Displaying 201 - 215 of 215
  • Takashima, A., & Bakker, I. (2017). Memory consolidation. In H.-J. Schmid (Ed.), Entrenchment and the Psychology of Language Learning: How We Reorganize and Adapt Linguistic Knowledge (pp. 177-200). Berlin: De Gruyter Mouton.
  • Terrill, A. (1998). Biri. München: Lincom Europa.

    Abstract

    This work presents a salvage grammar of the Biri language of Eastern Central Queensland, a Pama-Nyungan language belonging to the large Maric subgroup. As the language is no longer used, the grammatical description is based on old written sources and on recordings made by linguists in the 1960s and 1970s. Biri is in many ways typical of the Pama-Nyungan languages of Southern Queensland. It has split case marking systems, marking nouns according to an ergative/absolutive system and pronouns according to a nominative/accusative system. Unusually for its area, Biri also has bound pronouns on its verb, cross-referencing the person, number and case of core participants. As far as it is possible, the grammatical discussion is ‘theory neutral’. The first four chapters deal with the phonology, morphology, and syntax of the language. The last two chapters contain a substantial discussion of Biri’s place in the Pama-Nyungan family. In chapter 6 the numerous dialects of the Biri language are discussed. In chapter 7 the close linguistic relationship between Biri and the surrounding languages is examined.
  • Terrill, A. (2002). Dharumbal: The language of Rockhampton, Australia. Canberra: Pacific Linguistics.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Troncarelli, M. C., & Drude, S. (2002). Awytyza Ti'ingku. Livro para alfabetização na língua aweti: Awytyza Ti’ingku. Alphabetisierungs‐Fibel der Awetí‐Sprache. São Paulo: Instituto Sócio-Ambiental.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Gijn, R., Hammarström, H., Van de Kerke, S., Krasnoukhova, O., & Muysken, P. (2017). Linguistic Areas, Linguistic Convergence and River Systems in South America. In R. Hickey (Ed.), The Cambridge Handbook of Areal Linguistics (pp. 964-996). Cambridge: Cambridge University Press. doi:10.1017/9781107279872.034.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Wittenburg, P., Broeder, D., Offenga, F., & Willems, D. (2002). Metadata set and tools for multimedia/multimodal language resources. In M. Maybury (Ed.), Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002). Workshop on Multimodel Resources and Multimodel Systems Evaluation. (pp. 9-13). Paris: European Language Resources Association.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I. (2002). Klassifikatoren in der Niederländischen Gebärdensprache (NGT). In H. Leuniger, & K. Wempe (Eds.), Gebärdensprachlinguistik 2000. Theorie und Anwendung. Vorträge vom Symposium "Gebärdensprachforschung im deutschsprachigem Raum", Frankfurt a.M., 11.-13. Juni 1999 (pp. 113-126). Hamburg: Signum Verlag.

Share this page