Publications

Displaying 301 - 400 of 1335
  • Filippi, P. (2015). Before Babel: The Evolutionary Roots of Human Language. In E. Velmezova, K. Kull, & S. J. Cowley (Eds.), Biosemiotic Perspectives on Language and Linguistics (pp. 191-204). Springer International Publishing. doi:10.1007/978-3-319-20663-9_10.

    Abstract

    The aim of the present work is to identify the evolutionary origins of the ability to speak and understand a natural language. I will adopt Botha’s “Windows Approach” (Language and Communication, 2006, 26, pp. 129–143) in order to justify the following two assumptions, which concern the evolutionary continuity between human language and animals’ communication systems: (a) despite the uniqueness of human language in sharing and conveying utterances with an open-ended structure, some isolated components of our linguistic competence are shared with non- human primates, grounding a line of evolutionary continuity; (b) the very first “linguistic” utterances were holistic, that is, whole bunches of sounds able to convey information despite their lack of modern syntax. I will address such suppositions through the comparative analysis of three constitutive features of human language: syntax, the semantic value of utterances, and the ability to attribute mental states to conspecifics, i.e. the theory of mind.
  • Filippi, P., Congdon, J. V., Hoang, J., Bowling, D. L., Reber, S. A., Pasukonis, A., Hoeschele, M., Ocklenburg, S., De Boer, B., Sturdy, C. B., Newen, A., & Güntürkün, O. (2017). Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proceedings of the Royal Society B: Biological Sciences, 284: 20170990. doi:10.1098/rspb.2017.0990.

    Abstract

    Writing over a century ago, Darwin hypothesized that vocal expression of emotion dates back to our earliest terrestrial ancestors. If this hypothesis is true, we should expect to find cross-species acoustic universals in emotional vocalizations. Studies suggest that acoustic attributes of aroused vocalizations are shared across many mammalian species, and that humans can use these attributes to infer emotional content. But do these acoustic attributes extend to non-mammalian vertebrates? In this study, we asked human participants to judge the emotional content of vocalizations of nine vertebrate species representing three different biological classes—Amphibia, Reptilia (non-aves and aves) and Mammalia. We found that humans are able to identify higher levels of arousal in vocalizations across all species. This result was consistent across different language groups (English, German and Mandarin native speakers), suggesting that this ability is biologically rooted in humans. Our findings indicate that humans use multiple acoustic parameters to infer relative arousal in vocalizations for each species, but mainly rely on fundamental frequency and spectral centre of gravity to identify higher arousal vocalizations across species. These results suggest that fundamental mechanisms of vocal emotional expression are shared among vertebrates and could represent a homologous signalling system.
  • Filippi, P., Gogoleva, S. S., Volodina, E. V., Volodin, I. A., & De Boer, B. (2017). Humans identify negative (but not positive) arousal in silver fox vocalizations: Implications for the adaptive value of interspecific eavesdropping. Current Zoology, 63(4), 445-456. doi:10.1093/cz/zox035.

    Abstract

    The ability to identify emotional arousal in heterospecific vocalizations may facilitate behaviors that increase survival opportunities. Crucially, this ability may orient inter-species interactions, particularly between humans and other species. Research shows that humans identify emotional arousal in vocalizations across multiple species, such as cats, dogs, and piglets. However, no previous study has addressed humans' ability to identify emotional arousal in silver foxes. Here, we adopted low-and high-arousal calls emitted by three strains of silver fox-Tame, Aggressive, and Unselected-in response to human approach. Tame and Aggressive foxes are genetically selected for friendly and attacking behaviors toward humans, respectively. Unselected foxes show aggressive and fearful behaviors toward humans. These three strains show similar levels of emotional arousal, but different levels of emotional valence in relation to humans. This emotional information is reflected in the acoustic features of the calls. Our data suggest that humans can identify high-arousal calls of Aggressive and Unselected foxes, but not of Tame foxes. Further analyses revealed that, although within each strain different acoustic parameters affect human accuracy in identifying high-arousal calls, spectral center of gravity, harmonic-to-noise ratio, and F0 best predict humans' ability to discriminate high-arousal calls across all strains. Furthermore, we identified in spectral center of gravity and F0 the best predictors for humans' absolute ratings of arousal in each call. Implications for research on the adaptive value of inter-specific eavesdropping are discussed.

    Additional information

    zox035_Supp.zip
  • Filippi, P., Ocklenburg, S., Bowling, D. L., Heege, L., Güntürkün, O., Newen, A., & de Boer, B. (2017). More than words (and faces): evidence for a Stroop effect of prosody in emotion word processing. Cognition & Emotion, 31(5), 879-891. doi:10.1080/02699931.2016.1177489.

    Abstract

    Humans typically combine linguistic and nonlinguistic information to comprehend emotions. We adopted an emotion identification Stroop task to investigate how different channels interact in emotion communication. In experiment 1, synonyms of “happy” and “sad” were spoken with happy and sad prosody. Participants had more difficulty ignoring prosody than ignoring verbal content. In experiment 2, synonyms of “happy” and “sad” were spoken with happy and sad prosody, while happy or sad faces were displayed. Accuracy was lower when two channels expressed an emotion that was incongruent with the channel participants had to focus on, compared with the cross-channel congruence condition. When participants were required to focus on verbal content, accuracy was significantly lower also when prosody was incongruent with verbal content and face. This suggests that prosody biases emotional verbal content processing, even when conflicting with verbal content and face simultaneously. Implications for multimodal communication and language evolution studies are discussed.
  • Filippi, P., Laaha, S., & Fitch, W. T. (2017). Utterance-final position and pitch marking aid word learning in school-age children. Royal Society Open Science, 4: 161035. doi:10.1098/rsos.161035.

    Abstract

    We investigated the effects of word order and prosody on word learning in school-age children. Third graders viewed photographs belonging to one of three semantic categories while hearing four-word nonsense utterances containing a target word. In the control condition, all words had the same pitch and, across trials, the position of the target word was varied systematically within each utterance. The only cue to word–meaning mapping was the co-occurrence of target words and referents. This cue was present in all conditions. In the Utterance-final condition, the target word always occurred in utterance-final position, and at the same fundamental frequency as all the other words of the utterance. In the Pitch peak condition, the position of the target word was varied systematically within each utterance across trials, and produced with pitch contrasts typical of infant-directed speech (IDS). In the Pitch peak + Utterance-final condition, the target word always occurred in utterance-final position, and was marked with a pitch contrast typical of IDS. Word learning occurred in all conditions except the control condition. Moreover, learning performance was significantly higher than that observed with simple co-occurrence (control condition) only for the Pitch peak + Utterance-final condition. We conclude that, for school-age children, the combination of words' utterance-final alignment and pitch enhancement boosts word learning.
  • Fink, B., Bläsing, B., Ravignani, A., & Shackelford, T. K. (2021). Evolution and functions of human dance. Evolution and Human Behavior, 42(4), 351-360. doi:10.1016/j.evolhumbehav.2021.01.003.

    Abstract

    Dance is ubiquitous among humans and has received attention from several disciplines. Ethnographic documentation suggests that dance has a signaling function in social interaction. It can influence mate preferences and facilitate social bonds. Research has provided insights into the proximate mechanisms of dance, individually or when dancing with partners or in groups. Here, we review dance research from an evolutionary perspective. We propose that human dance evolved from ordinary (non-communicative) movements to communicate socially relevant information accurately. The need for accurate social signaling may have accompanied increases in group size and population density. Because of its complexity in production and display, dance may have evolved as a vehicle for expressing social and cultural information. Mating-related qualities and motives may have been the predominant information derived from individual dance movements, whereas group dance offers the opportunity for the exchange of socially relevant content, for coordinating actions among group members, for signaling coalitional strength, and for stabilizing group structures. We conclude that, despite the cultural diversity in dance movements and contexts, the primary communicative functions of dance may be the same across societies.
  • Fisher, N., Hadley, L., Corps, R. E., & Pickering, M. (2021). The effects of dual-task interference in predicting turn-ends in speech and music. Brain Research, 1768: 147571. doi:10.1016/j.brainres.2021.147571.

    Abstract

    Determining when a partner’s spoken or musical turn will end requires well-honed predictive abilities. Evidence suggests that our motor systems are activated during perception of both speech and music, and it has been argued that motor simulation is used to predict turn-ends across domains. Here we used a dual-task interference paradigm to investigate whether motor simulation of our partner’s action underlies our ability to make accurate turn-end predictions in speech and in music. Furthermore, we explored how specific this simulation is to the action being predicted. We conducted two experiments, one investigating speech turn-ends, and one investigating music turn-ends. In each, 34 proficient pianists predicted turn-endings while (1) passively listening, (2) producing an effector-specific motor activity (mouth/hand movement), or (3) producing a task- and effector-specific motor activity (mouthing words/fingering a piano melody). In the speech experiment, any movement during speech perception disrupted predictions of spoken turn-ends, whether the movement was task-specific or not. In the music experiment, only task-specific movement (i.e., fingering a piano melody) disrupted predictions of musical turn-ends. These findings support the use of motor simulation to make turn-end predictions in both speech and music but suggest that the specificity of this simulation may differ between domains.
  • Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1, 289-310. doi:10.1146/annurev-linguist-030514-125024.

    Abstract

    Theories addressing the biological basis of language must be built on
    an appreciation of the ways that molecular and neurobiological substrates
    can contribute to aspects of human cognition. Here, we lay out
    the principles by which a genome could potentially encode the necessary
    information to produce a language-ready brain. We describe
    what genes are; how they are regulated; and how they affect the formation,
    function, and plasticity of neuronal circuits. At each step,
    we give examples of molecules implicated in pathways that are important
    for speech and language. Finally, we discuss technological advances
    in genomics that are revealing considerable genotypic variation in
    the human population, from rare mutations to common polymorphisms,
    with the potential to relate this variation to natural variability
    in speech and language skills. Moving forward, an interdisciplinary
    approach to the language sciences, integrating genetics, neurobiology,
    psychology, and linguistics, will be essential for a complete understanding
    of our unique human capacities.
  • Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic Bulletin & Review, 24(1), 34-40. doi: 10.3758/s13423-016-1112-8.

    Abstract

    The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.
  • Fisher, S. E., Ciccodicola, A., Tanaka, K., Curci, A., Desicato, S., D'urso, M., & Craig, I. W. (1997). Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics, 45, 340-347. doi:10.1006/geno.1997.4941.

    Abstract

    The human Xp11.23-p11.22 interval has been implicated in several inherited diseases including Wiskott-Aldrich syndrome; three forms of X-linked hypercalciuric nephrolithiaisis; and the eye disorders retinitis pigmentosa 2, congenital stationary night blindness, and Aland Island eye disease. In constructing YAC contigs spanning Xp11. 23-p11.22, we have previously shown that the region around the synaptophysin (SYP) gene is refractory to cloning in YACs, but highly stable in cosmids. Preliminary analysis of the latter suggested that this might reflect a high density of coding sequences and we therefore undertook the complete sequencing of a SYP-containing cosmid. Sequence data were extensively analyzed using computer programs such as CENSOR (to mask repeats), BLAST (for homology searches), and GRAIL and GENE-ID (to predict exons). This revealed the presence of 29 putative exons, organized into three genes, in addition to the 7 exons of the complete SYP coding region, all mapping within a 44-kb interval. Two genes are novel, one (CACNA1F) showing high homology to alpha1 subunits of calcium channels, the other (LMO6) encoding a product with significant similarity to LIM-domain proteins. RT-PCR and Northern blot studies confirmed that these loci are indeed transcribed. The third locus is the previously described, but not previously localized, A4 differentiation-dependent gene. Given that the intron-exon boundaries predicted by the analysis are consistent with previous information where available, we have been able to suggest the genomic organization of the novel genes with some confidence. The region has an elevated GC content (>53%), and we identified CpG islands associated with the 5' ends of SYP, A4, and LMO6. The order of loci was Xpter-A4-LMO6-SYP-CACNA1F-Xcen, with intergenic distances ranging from approximately 300 bp to approximately 5 kb. The density of transcribed sequences in this area (>80%) is comparable to that found in the highly gene-rich chromosomal band Xq28. Further studies may aid our understanding of the long-range organization surrounding such gene-enriched regions.
  • Fisher, S. E. (2015). Translating the genome in human neuroscience. In G. Marcus, & J. Freeman (Eds.), The future of the brain: Essays by the world's leading neuroscientists (pp. 149-159). Princeton, NJ: Princeton University Press.
  • Fisher, V. J. (2017). Dance as Embodied Analogy: Designing an Empirical Research Study. In M. Van Delft, J. Voets, Z. Gündüz, H. Koolen, & L. Wijers (Eds.), Danswetenschap in Nederland. Utrecht: Vereniging voor Dansonderzoek (VDO).
  • Fisher, V. J. (2021). Embodied songs: Insights into the nature of cross-modal meaning-making within sign language informed, embodied interpretations of vocal music. Frontiers in Psychology, 12: 624689. doi:10.3389/fpsyg.2021.624689.

    Abstract

    Embodied song practices involve the transformation of songs from the acoustic modality into an embodied-visual form, to increase meaningful access for d/Deaf audiences. This goes beyond the translation of lyrics, by combining poetic sign language with other bodily movements to embody the para-linguistic expressive and musical features that enhance the message of a song. To date, the limited research into this phenomenon has focussed on linguistic features and interactions with rhythm. The relationship between bodily actions and music has not been probed beyond an assumed implication of conformance. However, as the primary objective is to communicate equivalent meanings, the ways that the acoustic and embodied-visual signals relate to each other should reveal something about underlying conceptual agreement. This paper draws together a range of pertinent theories from within a grounded cognition framework including semiotics, analogy mapping and cross-modal correspondences. These theories are applied to embodiment strategies used by prominent d/Deaf and hearing Dutch practitioners, to unpack the relationship between acoustic songs, their embodied representations, and their broader conceptual and affective meanings. This leads to the proposition that meaning primarily arises through shared patterns of internal relations across a range of amodal and cross-modal features with an emphasis on dynamic qualities. These analogous patterns can inform metaphorical interpretations and trigger shared emotional responses. This exploratory survey offers insights into the nature of cross-modal and embodied meaning-making, as a jumping-off point for further research.
  • Fisher, V. J. (2017). Unfurling the wings of flight: Clarifying ‘the what’ and ‘the why’ of mental imagery use in dance. Research in Dance Education, 18(3), 252-272. doi:10.1080/14647893.2017.1369508.

    Abstract

    This article provides clarification regarding ‘the what’ and ‘the why’ of mental imagery use in dance. It proposes that mental images are invoked across sensory modalities and often combine internal and external perspectives. The content of images ranges from ‘direct’ body oriented simulations along a continuum employing analogous mapping through ‘semi-direct’ literal similarities to abstract metaphors. The reasons for employing imagery are diverse and often overlapping, affecting physical, affective (psychological) and cognitive domains. This paper argues that when dance uses imagery, it is mapping aspects of the world to the body via analogy. Such mapping informs and changes our understanding of both our bodies and the world. In this way, mental imagery use in dance is fundamentally a process of embodied cognition
  • Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.

    Abstract

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions
  • Flecken, M., Carroll, M., Weimar, K., & Von Stutterheim, C. (2015). Driving along the road or heading for the village? Conceptual differences underlying motion event encoding in French, German, and French-German L2 users. Modern Language Journal, 99(S1), 100-122. doi:10.1111/j.1540-4781.2015.12181.x.

    Abstract

    The typological contrast between verb- and satellite-framed languages (Talmy, 1985) has set the basis for many empirical studies on L2 acquisition. The current analysis goes beyond this typology by looking in detail at the conceptualization of the path of motion in a motion event. We take as a starting point the cognitive salience of specific elements of motion events that are relevant when conceptualizing space. When expressing direction in French, specific spatial relations involving the entity in motion (its alignment and its distance toward a [potential] endpoint) are relevant, given a variety of path verbs in the lexicon expressing this information (e.g., se diriger vers, avancer to direct oneself toward,' to advance'). This is not the case in German (manner verbs in the lexicon mainly). In German, spatial information is packaged in adjuncts and particles and the path of motion is typically structured via features of the ground (entlanglaufen/fahren to walk/drive along') or endpoints (to walk/drive to/toward'). We investigate those fundamental differences in spatial conceptualization in French and German, as reflected in pre-articulatory patterns of attention allocation (measured with eye tracking) to moving entities and endpoints in motion scenes in an event description task. Our focus is on spatial conceptualization in an L2 (French L2 users of German), analyzing the extent to which these L2 users display target-like patterns or traces of L1 conceptualization transfer. Findings show that, in line with directional concepts expressed in verbs, L1 French speakers allocate more attention to entities in motion and endpoints, before utterance onset, than L1 German speakers do. The L2 German speakers pattern with L1 German speakers in the use of manner verbs, but they have not fully acquired the spatial concepts and means that structure the path of motion in the L2. This is reflected in pre-articulatory attention allocation patterns, according to which the L2 speakers pattern with native speakers of their L1 (French). The findings show a continued deep entrenchment of L1-based processing patterns and spatial frames of reference when speakers prepare for speech in an L2
  • Flecken, M., Gerwien, J., Carroll, M., & von Stutterheim, C. (2015). Analyzing gaze allocation during language planning: A cross-linguistic study on dynamic events. Language and Cognition, 7(1), 138-166. doi:10.1017/langcog.2014.20.

    Abstract

    Studies on gaze allocation during sentence production have recently begun to implement cross-linguistic analyses in the investigation of visual and linguistic processing. The underlying assumption is that the aspects of a scene that attract attention prior to articulation are, in part, linked to the specifi c linguistic system and means used for expression. The present study concerns naturalistic, dynamic scenes (video clips) showing causative events (agent acting on an object) and exploits grammatical diff erences in the domain of verbal aspect, and the way in which the status of an event (a specifi c vs. habitual instance of an event) is encoded in English and German. Fixations in agent and action areas of interest were timelocked to utterance onset, and we focused on the pre-articulatory time span to shed light on sentence planning processes, involving message generation and scene conceptualization.
  • Flecken, M., Walbert, K., & Dijkstra, T. (2015). ‘Right now, Sophie ∗swims in the pool?!’: Brain potentials of grammatical aspect processing. Frontiers in Psychology, 6: 1764. doi:10.3389/fpsyg.2015.01764.

    Abstract

    We investigated whether brain potentials of grammatical aspect processing resemble semantic or morpho-syntactic processing, or whether they instead are characterized by an entirely distinct pattern in the same individuals. We studied aspect from the perspective of agreement between the temporal information in the context (temporal adverbials, e.g., Right now) and a morpho-syntactic marker of grammatical aspect (e.g., progressive is swimming). Participants read questions providing a temporal context that was progressive (What is Sophie doing in the pool right now?) or habitual (What does Sophie do in the pool every Monday?). Following a lead-in sentence context such as Right now, Sophie…, we measured event-related brain potentials (ERPs) time-locked to verb phrases in four different conditions, e.g., (a) is swimming (control); (b) ∗is cooking (semantic violation); (c) ∗are swimming (morpho-syntactic violation); or (d)?swims (aspect mismatch); …in the pool.” The collected ERPs show typical N400 and P600 effects for semantics and morpho-syntax, while aspect processing elicited an Early Negativity (250–350 ms). The aspect-related Negativity was short-lived and had a central scalp distribution with an anterior onset. This differentiates it not only from the semantic N400 effect, but also from the typical LAN (Left Anterior Negativity), that is frequently reported for various types of agreement processing. Moreover, aspect processing did not show a clear P600 modulation. We argue that the specific context for each item in this experiment provided a trigger for agreement checking with temporal information encoded on the verb, i.e., morphological aspect marking. The aspect-related Negativity obtained for aspect agreement mismatches reflects a violated expectation concerning verbal inflection (in the example above, the expected verb phrase was Sophie is X-ing rather than Sophie X-s in condition d). The absence of an additional P600 for aspect processing suggests that the mismatch did not require additional reintegration or processing costs. This is consistent with participants’ post hoc grammaticality judgements of the same sentences, which overall show a high acceptability of aspect mismatch sentences.

    Additional information

    data sheet 1.docx
  • Flecken, M., Athanasopoulos, P., Kuipers, J. R., & Thierry, G. (2015). On the road to somewhere: Brain potentials reflect language effects on motion event perception. Cognition, 141, 41-51. doi:10.1016/j.cognition.2015.04.006.

    Abstract

    Recent studies have identified neural correlates of language effects on perception in static domains of experience such as colour and objects. The generalization of such effects to dynamic domains like motion events remains elusive. Here, we focus on grammatical differences between languages relevant for the description of motion events and their impact on visual scene perception. Two groups of native speakers of German or English were presented with animated videos featuring a dot travelling along a trajectory towards a geometrical shape (endpoint). English is a language with grammatical aspect in which attention is drawn to trajectory and endpoint of motion events equally. German, in contrast, is a non-aspect language which highlights endpoints. We tested the comparative perceptual saliency of trajectory and endpoint of motion events by presenting motion event animations (primes) followed by a picture symbolising the event (target): In 75% of trials, the animation was followed by a mismatching picture (both trajectory and endpoint were different); in 10% of trials, only the trajectory depicted in the picture matched the prime; in 10% of trials, only the endpoint matched the prime; and in 5% of trials both trajectory and endpoint were matching, which was the condition requiring a response from the participant. In Experiment 1 we recorded event-related brain potentials elicited by the picture in native speakers of German and native speakers of English. German participants exhibited a larger P3 wave in the endpoint match than the trajectory match condition, whereas English speakers showed no P3 amplitude difference between conditions. In Experiment 2 participants performed a behavioural motion matching task using the same stimuli as those used in Experiment 1. German and English participants did not differ in response times showing that motion event verbalisation cannot readily account for the difference in P3 amplitude found in the first experiment. We argue that, even in a non-verbal context, the grammatical properties of the native language and associated sentence-level patterns of event encoding influence motion event perception, such that attention is automatically drawn towards aspects highlighted by the grammar.
  • Floyd, S. (2015). Other-initiated repair in Cha’palaa. Open linguistics, 1(1), 467-489. doi:10.1515/opli-2015-0014.

    Abstract

    This article describes the interactional patterns and linguistic structures associated with otherinitiated repair, as observed in a corpus of video-recorded conversation in the Cha’palaa (a Barbacoan language spoken in north-western Ecuador). Special attention is given to the relation of repair formats to the morphosyntactic and intonational systems of the language. It examines the distinctive falling intonation observed with interjections and content question formats and the pattern of a held mid-high tone observed in polarity questions, as well as the function of Cha’palaa grammatical features such as the case marking system, the nominal classifiers and the verb classification system as formats for repair initiation. It considers a selection of examples from a video corpus to illustrate a broad range of sequence types of opened and restricted other-initiated repair, noting that Cha’palaa had the highest relative rate of open repair in the cross-linguistic sample. It also considers the extension of OIR to other practices such as news uptake and disagreement in the Cha’palaa corpus.
  • Floyd, S. (2017). Requesting as a means for negotiating distributed agency. In N. J. Enfield, & P. Kockelman (Eds.), Distributed Agency (pp. 67-78). Oxford: Oxford University Press.
  • Floyd, S. (2015). Transparência semântica e o ‘calque’ cultural no noroeste amazônico [Portuguese transl. of Semantic transparency and cultural calquing in the Northwest Amazon, 2013]. Wamon: Revista dos alunos do PpGas/UFAM, 1(1), 95-117. Retrieved from http://www.periodicos.ufam.edu.br/index.php/wamon/article/view/946.

    Abstract

    The ethnographic literature has described the northwest Amazon as an area of shared culture across linguistic groups. This paper illustrates how a principle of semantic transparency across languages is a key means of establishing elements of a common regional culture through practices like the calquing of ethnonyms and toponyms so that they are semantically, but not phonologically, equivalent across languages. It places the northwest Amazon in a general discussion of cross-linguistic naming practices in South America and considers the extent to which a preference for semantic transparency can be linked to cases of widespread cultural “calquing”. It also addresses the principle of semantic transparency beyond specific referential phrases and into larger discourse structures. It concludes that an attention to semiotic practices in multilingual settings can provide new and more complex ways of thinking about the idea of shared culture
  • Forkel, S. J. (2015). Heinrich Sachs (1863–1928). Journal of Neurology, 262, 498-500. doi:10.1007/s00415-014-7517-2.

    Abstract

    The nineteenth century witnessed some of the greatest neuroanatomists of all times. Amongst them is the largely forgotten Heinrich Sachs, a student of Carl Wernicke in Breslau.
  • Forkel, S. J., Mahmood, S., Vergani, F., & Catani, M. (2015). The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs. Cortex, 62, 182-202. doi:10.1016/j.cortex.2014.10.023.

    Abstract

    This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work.
  • Frances, C., Navarra-Barindelli, E., & Martin, C. D. (2021). Inhibitory and facilitatory effects of phonological and orthographic similarity on L2 word recognition across modalities in bilinguals. Scientific Reports, 11: 12812. doi:10.1038/s41598-021-92259-z.

    Abstract

    Language perception studies on bilinguals often show that words that share form and meaning across languages (cognates) are easier to process than words that share only meaning. This facilitatory phenomenon is known as the cognate effect. Most previous studies have shown this effect visually, whereas the auditory modality as well as the interplay between type of similarity and modality remain largely unexplored. In this study, highly proficient late Spanish–English bilinguals carried out a lexical decision task in their second language, both visually and auditorily. Words had high or low phonological and orthographic similarity, fully crossed. We also included orthographically identical words (perfect cognates). Our results suggest that similarity in the same modality (i.e., orthographic similarity in the visual modality and phonological similarity in the auditory modality) leads to improved signal detection, whereas similarity across modalities hinders it. We provide support for the idea that perfect cognates are a special category within cognates. Results suggest a need for a conceptual and practical separation between types of similarity in cognate studies. The theoretical implication is that the representations of items are active in both modalities of the non-target language during language processing, which needs to be incorporated to our current processing models.

    Additional information

    supplementary information
  • Frances, C., Navarra-Barindelli, E., & Martin, C. D. (2021). Inhibitory and facilitatory effects of phonological and orthographic similarity on L2 word recognition across modalities in bilinguals. Scientific Reports, 11: 12812. doi:10.1038/s41598-021-92259-z.

    Abstract

    Language perception studies on bilinguals often show that words that share form and meaning across
    languages (cognates) are easier to process than words that share only meaning. This facilitatory
    phenomenon is known as the cognate effect. Most previous studies have shown this effect visually,
    whereas the auditory modality as well as the interplay between type of similarity and modality
    remain largely unexplored. In this study, highly proficient late Spanish–English bilinguals carried out
    a lexical decision task in their second language, both visually and auditorily. Words had high or low
    phonological and orthographic similarity, fully crossed. We also included orthographically identical
    words (perfect cognates). Our results suggest that similarity in the same modality (i.e., orthographic
    similarity in the visual modality and phonological similarity in the auditory modality) leads to
    improved signal detection, whereas similarity across modalities hinders it. We provide support for
    the idea that perfect cognates are a special category within cognates. Results suggest a need for a
    conceptual and practical separation between types of similarity in cognate studies. The theoretical
    implication is that the representations of items are active in both modalities of the non‑target
    language during language processing, which needs to be incorporated to our current processing
    models.
  • Frances, C. (2021). Semantic richness, semantic context, and language learning. PhD Thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Donostia.

    Abstract

    As knowing a foreign language becomes a necessity in the modern world, a large portion of
    the population is faced with the challenge of learning a language in a classroom. This, in turn,
    presents a unique set of difficulties. Acquiring a language with limited and artificial exposure makes
    learning new information and vocabulary particularly difficult. The purpose of this thesis is to help us
    understand how we can compensate—at least partially—for these difficulties by presenting
    information in a way that aids learning. In particular, I focused on variables that affect semantic
    richness—meaning the amount and variability of information associated with a word. Some factors
    that affect semantic richness are intrinsic to the word and others pertain to that word’s relationship
    with other items and information. This latter group depends on the context around the to-be-
    learned items rather than the words themselves. These variables are easier to manipulate than
    intrinsic qualities, making them more accessible tools for teaching and understanding learning. I
    focused on two factors: emotionality of the surrounding semantic context and contextual diversity.
    Publication 1 (Frances, de Bruin, et al., 2020b) focused on content learning in a foreign
    language and whether the emotionality—positive or neutral—of the semantic context surrounding
    key information aided its learning. This built on prior research that showed a reduction in
    emotionality in a foreign language. Participants were taught information embedded in either
    positive or neutral semantic contexts in either their native or foreign language. When they were
    then tested on these embedded facts, participants’ performance decreased in the foreign language.
    But, more importantly, they remembered better the information from the positive than the neutral
    semantic contexts.
    In Publication 2 (Frances, de Bruin, et al., 2020a), I focused on how emotionality affected
    vocabulary learning. I taught participants the names of novel items described either in positive or
    neutral terms in either their native or foreign language. Participants were then asked to recall and
    recognize the object's name—when cued with its image. The effects of language varied with the
    difficulty of the task—appearing in recall but not recognition tasks. Most importantly, learning the
    words in a positive context improved learning, particularly of the association between the image of
    the object and its name.
    In Publication 3 (Frances, Martin, et al., 2020), I explored the effects of contextual
    diversity—namely, the number of texts a word appears in—on native and foreign language word
    learning. Participants read several texts that had novel pseudowords. The total number of
    encounters with the novel words was held constant, but they appeared in 1, 2, 4, or 8 texts in either
    their native or foreign language. Increasing contextual diversity—i.e., the number of texts a word
    appeared in—improved recall and recognition, as well as the ability to match the word with its
    meaning. Using a foreign language only affected performance when participants had to quickly
    identify the meaning of the word.
    Overall, I found that the tested contextual factors related to semantic richness—i.e.,
    emotionality of the semantic context and contextual diversity—can be manipulated to improve
    learning in a foreign language. Using positive emotionality not only improved learning in the foreign
    language, but it did so to the same extent as in the native language. On a theoretical level, this
    suggests that the reduction in emotionality in a foreign language is not ubiquitous and might relate
    to the way in which that language as learned.
    The third article shows an experimental manipulation of contextual diversity and how this
    can affect learning of a lexical item, even if the amount of information known about the item is kept
    constant. As in the case of emotionality, the effects of contextual diversity were also the same
    between languages. Although deducing words from context is dependent on vocabulary size, this
    does not seem to hinder the benefits of contextual diversity in the foreign language.
    Finally, as a whole, the articles contained in this compendium provide evidence that some
    aspects of semantic richness can be manipulated contextually to improve learning and memory. In
    addition, the effects of these factors seem to be independent of language status—meaning, native
    or foreign—when learning new content. This suggests that learning in a foreign and a native
    language is not as different as I initially hypothesized, allowing us to take advantage of native
    language learning tools in the foreign language, as well.
  • Francisco, A. A., Groen, M. A., Jesse, A., & McQueen, J. M. (2017). Beyond the usual cognitive suspects: The importance of speechreading and audiovisual temporal sensitivity in reading ability. Learning and Individual Differences, 54, 60-72. doi:10.1016/j.lindif.2017.01.003.

    Abstract

    The aim of this study was to clarify whether audiovisual processing accounted for variance in reading and reading-related abilities, beyond the effect of a set of measures typically associated with individual differences in both reading and audiovisual processing. Testing adults with and without a diagnosis of dyslexia, we showed that—across all participants, and after accounting for variance in cognitive abilities—audiovisual temporal sensitivity contributed uniquely to variance in reading errors. This is consistent with previous studies demonstrating an audiovisual deficit in dyslexia. Additionally, we showed that speechreading (identification of speech based on visual cues from the talking face alone) was a unique contributor to variance in phonological awareness in dyslexic readers only: those who scored higher on speechreading, scored lower on phonological awareness. This suggests a greater reliance on visual speech as a compensatory mechanism when processing auditory speech is problematic. A secondary aim of this study was to better understand the nature of dyslexia. The finding that a sub-group of dyslexic readers scored low on phonological awareness and high on speechreading is consistent with a hybrid perspective of dyslexia: There are multiple possible pathways to reading impairment, which may translate into multiple profiles of dyslexia.
  • Francisco, A. A., Jesse, A., Groen, M. A., & McQueen, J. M. (2017). A general audiovisual temporal processing deficit in adult readers with dyslexia. Journal of Speech, Language, and Hearing Research, 60, 144-158. doi:10.1044/2016_JSLHR-H-15-0375.

    Abstract

    Purpose: Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. Method: We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of audiovisual speech and nonspeech stimuli, their time window of audiovisual integration for speech (using incongruent /aCa/ syllables), and their audiovisual perception of phonetic categories. Results: Adult readers with dyslexia showed less sensitivity to audiovisual simultaneity than typical readers for both speech and nonspeech events. We found no differences between readers with dyslexia and typical readers in the temporal window of integration for audiovisual speech or in the audiovisual perception of phonetic categories. Conclusions: The results suggest an audiovisual temporal deficit in dyslexia that is not specific to speech-related events. But the differences found for audiovisual temporal sensitivity did not translate into a deficit in audiovisual speech perception. Hence, there seems to be a hiatus between simultaneity judgment and perception, suggesting a multisensory system that uses different mechanisms across tasks. Alternatively, it is possible that the audiovisual deficit in dyslexia is only observable when explicit judgments about audiovisual simultaneity are required
  • Francken, J. C., Meijs, E. L., Ridderinkhof, O. M., Hagoort, P., de Lange, F. P., & van Gaal, S. (2015). Manipulating word awareness dissociates feed-forward from feedback models of language-perception interactions. Neuroscience of consciousness, 1. doi:10.1093/nc/niv003.

    Abstract

    Previous studies suggest that linguistic material can modulate visual perception, but it is unclear at which level of processing these interactions occur. Here we aim to dissociate between two competing models of language–perception interactions: a feed-forward and a feedback model. We capitalized on the fact that the models make different predictions on the role of feedback. We presented unmasked (aware) or masked (unaware) words implying motion (e.g. “rise,” “fall”), directly preceding an upward or downward visual motion stimulus. Crucially, masking leaves intact feed-forward information processing from low- to high-level regions, whereas it abolishes subsequent feedback. Under this condition, participants remained faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. This suggests that language–perception interactions are driven by the feed-forward convergence of linguistic and perceptual information at higher-level conceptual and decision stages.
  • Francken, J. C., Meijs, E. L., Hagoort, P., van Gaal, S., & de Lange, F. P. (2015). Exploring the automaticity of language-perception interactions: Effects of attention and awareness. Scientific Reports, 5: 17725. doi:10.1038/srep17725.

    Abstract

    Previous studies have shown that language can modulate visual perception, by biasing and/
    or enhancing perceptual performance. However, it is still debated where in the brain visual and
    linguistic information are integrated, and whether the effects of language on perception are
    automatic and persist even in the absence of awareness of the linguistic material. Here, we aimed
    to explore the automaticity of language-perception interactions and the neural loci of these
    interactions in an fMRI study. Participants engaged in a visual motion discrimination task (upward
    or downward moving dots). Before each trial, a word prime was briefly presented that implied
    upward or downward motion (e.g., “rise”, “fall”). These word primes strongly influenced behavior:
    congruent motion words sped up reaction times and improved performance relative to incongruent
    motion words. Neural congruency effects were only observed in the left middle temporal gyrus,
    showing higher activity for congruent compared to incongruent conditions. This suggests that higherlevel
    conceptual areas rather than sensory areas are the locus of language-perception interactions.
    When motion words were rendered unaware by means of masking, they still affected visual motion
    perception, suggesting that language-perception interactions may rely on automatic feed-forward
    integration of perceptual and semantic material in language areas of the brain.
  • Francken, J. C., Kok, P., Hagoort, P., & De Lange, F. P. (2015). The behavioral and neural effects of language on motion perception. Journal of Cognitive Neuroscience, 27(1), 175-184. doi:10.1162/jocn_a_00682.

    Abstract

    Perception does not function as an isolated module but is tightly linked with other cognitive functions. Several studies have demonstrated an influence of language on motion perception, but it remains debated at which level of processing this modulation takes place. Some studies argue for an interaction in perceptual areas, but it is also possible that the interaction is mediated by "language areas" that integrate linguistic and visual information. Here, we investigated whether language-perception interactions were specific to the language-dominant left hemisphere by comparing the effects of language on visual material presented in the right (RVF) and left visual fields (LVF). Furthermore, we determined the neural locus of the interaction using fMRI. Participants performed a visual motion detection task. On each trial, the visual motion stimulus was presented in either the LVF or in the RVF, preceded by a centrally presented word (e.g., "rise"). The word could be congruent, incongruent, or neutral with regard to the direction of the visual motion stimulus that was presented subsequently. Participants were faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. Interestingly, the speed benefit was present only for motion stimuli that were presented in the RVF. We observed a neural counterpart of the behavioral facilitation effects in the left middle temporal gyrus, an area involved in semantic processing of verbal material. Together, our results suggest that semantic information about motion retrieved in language regions may automatically modulate perceptual decisions about motion.
  • Francks, C. (2015). Exploring human brain lateralization with molecular genetics and genomics. Annals of the New York Academy of Sciences, 1359, 1-13. doi:10.1111/nyas.12770.

    Abstract

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic–developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions.
  • Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., Hamlin, J. K., Hannon, E. E., Kline, M., Levelt, C., Lew-Williams, C., Nazzi, T., Panneton, R., Rabagliati, H., Soderstrom, M., Sullivan, J., Waxman, S., & Yurovsky, D. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. Infancy, 22(4), 421-435. doi:10.1111/infa.12182.

    Abstract

    The ideal of scientific progress is that we accumulate measurements and integrate these into theory, but recent discussion of replicability issues has cast doubt on whether psychological research conforms to this model. Developmental research—especially with infant participants—also has discipline-specific replicability challenges, including small samples and limited measurement methods. Inspired by collaborative replication efforts in cognitive and social psychology, we describe a proposal for assessing and promoting replicability in infancy research: large-scale, multi-laboratory replication efforts aiming for a more precise understanding of key developmental phenomena. The ManyBabies project, our instantiation of this proposal, will not only help us estimate how robust and replicable these phenomena are, but also gain new theoretical insights into how they vary across ages, linguistic communities, and measurement methods. This project has the potential for a variety of positive outcomes, including less-biased estimates of theoretically important effects, estimates of variability that can be used for later study planning, and a series of best-practices blueprints for future infancy research.
  • Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. doi:10.1080/23273798.2017.1323109.

    Abstract

    We investigate the effects of two types of relationship between the words of a sentence or text – predictability and semantic similarity – by reanalysing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data from studies in which participants comprehend naturalistic stimuli. Each content word's predictability given previous words is quantified by a probabilistic language model, and semantic similarity to previous words is quantified by a distributional semantics model. Brain activity time-locked to each word is regressed on the two model-derived measures. Results show that predictability and semantic similarity have near identical N400 effects but are dissociated in the fMRI data, with word predictability related to activity in, among others, the visual word-form area, and semantic similarity related to activity in areas associated with the semantic network. This indicates that both predictability and similarity play a role during natural language comprehension and modulate distinct cortical regions.
  • Franken, M. K., McQueen, J. M., Hagoort, P., & Acheson, D. J. (2015). Assessing the link between speech perception and production through individual differences. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow: the University of Glasgow.

    Abstract

    This study aims to test a prediction of recent
    theoretical frameworks in speech motor control: if speech production targets are specified in auditory
    terms, people with better auditory acuity should have more precise speech targets.
    To investigate this, we had participants perform speech perception and production tasks in a counterbalanced order. To assess speech perception acuity, we used an adaptive speech discrimination
    task. To assess variability in speech production, participants performed a pseudo-word reading task; formant values were measured for each recording.
    We predicted that speech production variability to correlate inversely with discrimination performance.
    The results suggest that people do vary in their production and perceptual abilities, and that better discriminators have more distinctive vowel production targets, confirming our prediction. This
    study highlights the importance of individual
    differences in the study of speech motor control, and sheds light on speech production-perception interaction.
  • Franken, M. K., Eisner, F., Schoffelen, J.-M., Acheson, D. J., Hagoort, P., & McQueen, J. M. (2017). Audiovisual recalibration of vowel categories. In Proceedings of Interspeech 2017 (pp. 655-658). doi:10.21437/Interspeech.2017-122.

    Abstract

    One of the most daunting tasks of a listener is to map a
    continuous auditory stream onto known speech sound
    categories and lexical items. A major issue with this mapping
    problem is the variability in the acoustic realizations of sound
    categories, both within and across speakers. Past research has
    suggested listeners may use visual information (e.g., lipreading)
    to calibrate these speech categories to the current
    speaker. Previous studies have focused on audiovisual
    recalibration of consonant categories. The present study
    explores whether vowel categorization, which is known to show
    less sharply defined category boundaries, also benefit from
    visual cues.
    Participants were exposed to videos of a speaker
    pronouncing one out of two vowels, paired with audio that was
    ambiguous between the two vowels. After exposure, it was
    found that participants had recalibrated their vowel categories.
    In addition, individual variability in audiovisual recalibration is
    discussed. It is suggested that listeners’ category sharpness may
    be related to the weight they assign to visual information in
    audiovisual speech perception. Specifically, listeners with less
    sharp categories assign more weight to visual information
    during audiovisual speech recognition.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.

    Abstract

    An important part of understanding speech motor control consists of capturing the
    interaction between speech production and speech perception. This study tests a
    prediction of theoretical frameworks that have tried to account for these interactions: if
    speech production targets are specified in auditory terms, individuals with better
    auditory acuity should have more precise speech targets, evidenced by decreased
    within-phoneme variability and increased between-phoneme distance. A study was
    carried out consisting of perception and production tasks in counterbalanced order.
    Auditory acuity was assessed using an adaptive speech discrimination task, while
    production variability was determined using a pseudo-word reading task. Analyses of
    the production data were carried out to quantify average within-phoneme variability as
    well as average between-phoneme contrasts. Results show that individuals not only
    vary in their production and perceptual abilities, but that better discriminators have
    more distinctive vowel production targets (that is, targets with less within-phoneme
    variability and greater between-phoneme distances), confirming the initial hypothesis.
    This association between speech production and perception did not depend on local
    phoneme density in vowel space. This study suggests that better auditory acuity leads
    to more precise speech production targets, which may be a consequence of auditory
    feedback affecting speech production over time.
  • Franken, M. K., Hagoort, P., & Acheson, D. J. (2015). Modulations of the auditory M100 in an Imitation Task. Brain and Language, 142, 18-23. doi:10.1016/j.bandl.2015.01.001.

    Abstract

    Models of speech production explain event-related suppression of the auditory cortical
    response as reflecting a comparison between auditory predictions and feedback. The present MEG
    study was designed to test two predictions from this framework: 1) whether the reduced auditory
    response varies as a function of the mismatch between prediction and feedback; 2) whether individual
    variation in this response is predictive of speech-motor adaptation.
    Participants alternated between online imitation and listening tasks. In the imitation task, participants
    began each trial producing the same vowel (/e/) and subsequently listened to and imitated auditorilypresented
    vowels varying in acoustic distance from /e/.
    Results replicated suppression, with a smaller M100 during speaking than listening. Although we did
    not find unequivocal support for the first prediction, participants with less M100 suppression were
    better at the imitation task. These results are consistent with the enhancement of M100 serving as an
    error signal to drive subsequent speech-motor adaptation.
  • Frazier, T., Embacher, R., Tilot, A. K., Koenig, K., Mester, J., & Eng, C. (2015). Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Molecular Psychiatry., 20, 1132-1138. doi:10.1038/mp.2014.125.

    Abstract

    PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Ptenm3m4 murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.
  • Frega, M., van Gestel, S. H. C., Linda, K., Van der Raadt, J., Keller, J., Van Rhijn, J. R., Schubert, D., Albers, C. A., & Kasri, N. N. (2017). Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. Journal of Visualized Experiments, e45900. doi:10.3791/54900.

    Abstract

    Neurons derived from human induced Pluripotent Stem Cells (hiPSCs) provide a promising new tool for studying neurological disorders. In the past decade, many protocols for differentiating hiPSCs into neurons have been developed. However, these protocols are often slow with high variability, low reproducibility, and low efficiency. In addition, the neurons obtained with these protocols are often immature and lack adequate functional activity both at the single-cell and network levels unless the neurons are cultured for several months. Partially due to these limitations, the functional properties of hiPSC-derived neuronal networks are still not well characterized. Here, we adapt a recently published protocol that describes production of human neurons from hiPSCs by forced expression of the transcription factor neurogenin-212. This protocol is rapid (yielding mature neurons within 3 weeks) and efficient, with nearly 100% conversion efficiency of transduced cells (>95% of DAPI-positive cells are MAP2 positive). Furthermore, the protocol yields a homogeneous population of excitatory neurons that would allow the investigation of cell-type specific contributions to neurological disorders. We modified the original protocol by generating stably transduced hiPSC cells, giving us explicit control over the total number of neurons. These cells are then used to generate hiPSC-derived neuronal networks on micro-electrode arrays. In this way, the spontaneous electrophysiological activity of hiPSC-derived neuronal networks can be measured and characterized, while retaining interexperimental consistency in terms of cell density. The presented protocol is broadly applicable, especially for mechanistic and pharmacological studies on human neuronal networks.

    Additional information

    video component of this article
  • Friederici, A. D., & Levelt, W. J. M. (1986). Cognitive processes of spatial coordinate assignment: On weighting perceptual cues. Naturwissenschaften, 73, 455-458.
  • Friedrich, P., Forkel, S. J., Amiez, C., Balsters, J. H., Coulon, O., Fan, L., Goulas, A., Hadj-Bouziane, F., Hecht, E. E., Heuer, K., Jiang, T., Latzman, R. D., Liu, X., Loh, K. K., Patil, K. R., Lopez-Persem, A., Procyk, E., Sallet, J., Toro, R., Vickery, S. Friedrich, P., Forkel, S. J., Amiez, C., Balsters, J. H., Coulon, O., Fan, L., Goulas, A., Hadj-Bouziane, F., Hecht, E. E., Heuer, K., Jiang, T., Latzman, R. D., Liu, X., Loh, K. K., Patil, K. R., Lopez-Persem, A., Procyk, E., Sallet, J., Toro, R., Vickery, S., Weis, S., Wilson, C., Xu, T., Zerbi, V., Eickoff, S. B., Margulies, D., Mars, R., & Thiebaut de Schotten, M. (2021). Imaging evolution of the primate brain: The next frontier? NeuroImage, 228: 117685. doi:10.1016/j.neuroimage.2020.117685.

    Abstract

    Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
  • Frost, R. L. A., Monaghan, P., & Tatsumi, T. (2017). Domain-general mechanisms for speech segmentation: The role of duration information in language learning. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 466-476. doi:10.1037/xhp0000325.

    Abstract

    Speech segmentation is supported by multiple sources of information that may either inform language processing specifically, or serve learning more broadly. The Iambic/Trochaic Law (ITL), where increased duration indicates the end of a group and increased emphasis indicates the beginning of a group, has been proposed as a domain-general mechanism that also applies to language. However, language background has been suggested to modulate use of the ITL, meaning that these perceptual grouping preferences may instead be a consequence of language exposure. To distinguish between these accounts, we exposed native-English and native-Japanese listeners to sequences of speech (Experiment 1) and nonspeech stimuli (Experiment 2), and examined segmentation using a 2AFC task. Duration was manipulated over 3 conditions: sequences contained either an initial-item duration increase, or a final-item duration increase, or items of uniform duration. In Experiment 1, language background did not affect the use of duration as a cue for segmenting speech in a structured artificial language. In Experiment 2, the same results were found for grouping structured sequences of visual shapes. The results are consistent with proposals that duration information draws upon a domain-general mechanism that can apply to the special case of language acquisition
  • Frost, R. L. A., & Casillas, M. (2021). Investigating statistical learning of nonadjacent dependencies: Running statistical learning tasks in non-WEIRD populations. In SAGE Research Methods Cases. doi:10.4135/9781529759181.

    Abstract

    Language acquisition is complex. However, one thing that has been suggested to help learning is the way that information is distributed throughout language; co-occurrences among particular items (e.g., syllables and words) have been shown to help learners discover the words that a language contains and figure out how those words are used. Humans’ ability to draw on this information—“statistical learning”—has been demonstrated across a broad range of studies. However, evidence from non-WEIRD (Western, Educated, Industrialized, Rich, and Democratic) societies is critically lacking, which limits theorizing on the universality of this skill. We extended work on statistical language learning to a new, non-WEIRD linguistic population: speakers of Yélî Dnye, who live on a remote island off mainland Papua New Guinea (Rossel Island). We performed a replication of an existing statistical learning study, training adults on an artificial language with statistically defined words, then examining what they had learnt using a two-alternative forced-choice test. Crucially, we implemented several key amendments to the original study to ensure the replication was suitable for remote field-site testing with speakers of Yélî Dnye. We made critical changes to the stimuli and materials (to test speakers of Yélî Dnye, rather than English), the instructions (we re-worked these significantly, and added practice tasks to optimize participants’ understanding), and the study format (shifting from a lab-based to a portable tablet-based setup). We discuss the requirement for acute sensitivity to linguistic, cultural, and environmental factors when adapting studies to test new populations.

  • Frost, R. L. A., & Monaghan, P. (2017). Sleep-driven computations in speech processing. PLoS One, 12(1): e0169538. doi:10.1371/journal.pone.0169538.

    Abstract

    Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting—on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously—with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.

    Additional information

    Data available
  • Fusaroli, R., Tylén, K., Garly, K., Steensig, J., Christiansen, M. H., & Dingemanse, M. (2017). Measures and mechanisms of common ground: Backchannels, conversational repair, and interactive alignment in free and task-oriented social interactions. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 2055-2060). Austin, TX: Cognitive Science Society.

    Abstract

    A crucial aspect of everyday conversational interactions is our ability to establish and maintain common ground. Understanding the relevant mechanisms involved in such social coordination remains an important challenge for cognitive science. While common ground is often discussed in very general terms, different contexts of interaction are likely to afford different coordination mechanisms. In this paper, we investigate the presence and relation of three mechanisms of social coordination – backchannels, interactive alignment and conversational repair – across free and task-oriented conversations. We find significant differences: task-oriented conversations involve higher presence of repair – restricted offers in particular – and backchannel, as well as a reduced level of lexical and syntactic alignment. We find that restricted repair is associated with lexical alignment and open repair with backchannels. Our findings highlight the need to explicitly assess several mechanisms at once and to investigate diverse activities to understand their role and relations.
  • Fusaroli, R., Perlman, M., Mislove, A., Paxton, A., Matlock, T., & Dale, R. (2015). Timescales of massive human entrainment. PLoS One, 10: e0122742. doi:10.1371/journal.pone.0122742.

    Abstract

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.
  • Galizia, E. C., Myers, C. T., Leu, C., De Kovel, C. G. F., Afrikanova, T., Cordero-Maldonado, M. L., Martins, T. G., Jacmin, M., Drury, S., Chinthapalli, V. K., Muhle, H., Pendziwiat, M., Sander, T., Ruppert, A. K., Moller, R. S., Thiele, H., Krause, R., Schubert, J., Lehesjoki, A. E., Nurnberg, P. and 28 moreGalizia, E. C., Myers, C. T., Leu, C., De Kovel, C. G. F., Afrikanova, T., Cordero-Maldonado, M. L., Martins, T. G., Jacmin, M., Drury, S., Chinthapalli, V. K., Muhle, H., Pendziwiat, M., Sander, T., Ruppert, A. K., Moller, R. S., Thiele, H., Krause, R., Schubert, J., Lehesjoki, A. E., Nurnberg, P., Lerche, H., Palotie, A., Coppola, A., Striano, S., Del Gaudio, L., Boustred, C., Schneider, A. L., Lench, N., Jocic-Jakubi, B., Covanis, A., Capovilla, G., Veggiotti, P., Piccioli, M., Parisi, P., Cantonetti, L., Sadleir, L. G., Mullen, S. A., Berkovic, S. F., Stephani, U., Helbig, I., Crawford, A. D., Esguerra, C. V., Trenite, D., Koeleman, B. P. C., Mefford, H. C., Scheffer, I. E., Sisodiya, S. M., & EURO Epinomics CoGIE Consortium (2015). CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain, 138(5), 1198-1207. doi:10.1093%2Fbrain%2Fawv052.

    Abstract

    Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2·17 × 10−5). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3·50 × 10−4). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.
  • Galke, L., Franke, B., Zielke, T., & Scherp, A. (2021). Lifelong learning of graph neural networks for open-world node classification. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE. doi:10.1109/IJCNN52387.2021.9533412.

    Abstract

    Graph neural networks (GNNs) have emerged as the standard method for numerous tasks on graph-structured data such as node classification. However, real-world graphs are often evolving over time and even new classes may arise. We model these challenges as an instance of lifelong learning, in which a learner faces a sequence of tasks and may take over knowledge acquired in past tasks. Such knowledge may be stored explicitly as historic data or implicitly within model parameters. In this work, we systematically analyze the influence of implicit and explicit knowledge. Therefore, we present an incremental training method for lifelong learning on graphs and introduce a new measure based on k-neighborhood time differences to address variances in the historic data. We apply our training method to five representative GNN architectures and evaluate them on three new lifelong node classification datasets. Our results show that no more than 50% of the GNN's receptive field is necessary to retain at least 95% accuracy compared to training over the complete history of the graph data. Furthermore, our experiments confirm that implicit knowledge becomes more important when fewer explicit knowledge is available.
  • Galke, L., Seidlmayer, E., Lüdemann, G., Langnickel, L., Melnychuk, T., Förstner, K. U., Tochtermann, K., & Schultz, C. (2021). COVID-19++: A citation-aware Covid-19 dataset for the analysis of research dynamics. In Y. Chen, H. Ludwig, Y. Tu, U. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, & C. Ordonez (Eds.), Proceedings of the 2021 IEEE International Conference on Big Data (pp. 4350-4355). Piscataway, NJ: IEEE.

    Abstract

    COVID-19 research datasets are crucial for analyzing research dynamics. Most collections of COVID-19 research items do not to include cited works and do not have annotations
    from a controlled vocabulary. Starting with ZB MED KE data on COVID-19, which comprises CORD-19, we assemble a new dataset that includes cited work and MeSH annotations for all records. Furthermore, we conduct experiments on the analysis of research dynamics, in which we investigate predicting links in a co-annotation graph created on the basis of the new dataset. Surprisingly, we find that simple heuristic methods are better at
    predicting future links than more sophisticated approaches such as graph neural networks.
  • Galke, L., Mai, F., Schelten, A., Brunch, D., & Scherp, A. (2017). Using titles vs. full-text as source for automated semantic document annotation. In O. Corcho, K. Janowicz, G. Rizz, I. Tiddi, & D. Garijo (Eds.), Proceedings of the 9th International Conference on Knowledge Capture (K-CAP 2017). New York: ACM.

    Abstract

    We conduct the first systematic comparison of automated semantic
    annotation based on either the full-text or only on the title metadata
    of documents. Apart from the prominent text classification baselines
    kNN and SVM, we also compare recent techniques of Learning
    to Rank and neural networks and revisit the traditional methods
    logistic regression, Rocchio, and Naive Bayes. Across three of our
    four datasets, the performance of the classifications using only titles
    reaches over 90% of the quality compared to the performance when
    using the full-text.
  • Galke, L., Saleh, A., & Scherp, A. (2017). Word embeddings for practical information retrieval. In M. Eibl, & M. Gaedke (Eds.), INFORMATIK 2017 (pp. 2155-2167). Bonn: Gesellschaft für Informatik. doi:10.18420/in2017_215.

    Abstract

    We assess the suitability of word embeddings for practical information retrieval scenarios. Thus, we assume that users issue ad-hoc short queries where we return the first twenty retrieved documents after applying a boolean matching operation between the query and the documents. We compare the performance of several techniques that leverage word embeddings in the retrieval models to compute the similarity between the query and the documents, namely word centroid similarity, paragraph vectors, Word Mover’s distance, as well as our novel inverse document frequency (IDF) re-weighted word centroid similarity. We evaluate the performance using the ranking metrics mean average precision, mean reciprocal rank, and normalized discounted cumulative gain. Additionally, we inspect the retrieval models’ sensitivity to document length by using either only the title or the full-text of the documents for the retrieval task. We conclude that word centroid similarity is the best competitor to state-of-the-art retrieval models. It can be further improved by re-weighting the word frequencies with IDF before aggregating the respective word vectors of the embedding. The proposed cosine similarity of IDF re-weighted word vectors is competitive to the TF-IDF baseline and even outperforms it in case of the news domain with a relative percentage of 15%.
  • Galucio, A. V., Meira, S., Birchall, J., Moore, D., Gabas Junior, N., Drude, S., Storto, L., Picanço, G., & Rodrigues, C. R. (2015). Genealogical relations and lexical distances within the Tupian linguistic family. Boletim do Museu Paraense Emilio Goeldi:Ciencias Humanas, 10, 229-274. doi:10.1590/1981-81222015000200004.

    Abstract

    In this paper we present the first results of the application of computational methods, inspired by the ideas in McMahon & McMahon (2005), to a dataset collected from languages of every branch of the Tupian family (including all living non-Tupí-Guaraní languages) in order to produce a classification of the family based on lexical distance. We used both a Swadesh list (with historically stabler terms) and a list of animal and plant names for results comparison. In addition, we also selected more (HiHi) and less (LoLo) stable terms from the Swadesh list to form sublists for indepedent treatment. We compared the resulting NeighborNet networks and neighbor-joining cladograms and drew conclusions about their significance for the current understanding of the classification of Tupian languages. One important result is the lack of support for the currently discussed idea of an Eastern-Western division within Tupí
  • Garcia, R., Garrido Rodriguez, G., & Kidd, E. (2021). Developmental effects in the online use of morphosyntactic cues in sentence processing: Evidence from Tagalog. Cognition, 216: 104859. doi:10.1016/j.cognition.2021.104859.

    Abstract

    Children must necessarily process their input in order to learn it, yet the architecture of the developing parsing system and how it interfaces with acquisition is unclear. In the current paper we report experimental and corpus data investigating adult and children's use of morphosyntactic cues for making incremental online predictions of thematic roles in Tagalog, a verb-initial symmetrical voice language of the Philippines. In Study 1, Tagalog-speaking adults completed a visual world eye-tracking experiment in which they viewed pictures of causative actions that were described by transitive sentences manipulated for voice and word order. The pattern of results showed that adults process agent and patient voice differently, predicting the upcoming noun in the patient voice but not in the agent voice, consistent with the observation of a patient voice preference in adult sentence production. In Study 2, our analysis of a corpus of child-directed speech showed that children heard more patient voice- than agent voice-marked verbs. In Study 3, 5-, 7-, and 9-year-old children completed a similar eye-tracking task as used in Study 1. The overall pattern of results suggested that, like the adults in Study 1, children process agent and patient voice differently in a manner that reflects the input distributions, with children developing towards the adult state across early childhood. The results are most consistent with theoretical accounts that identify a key role for input distributions in acquisition and language processing

    Additional information

    1-s2.0-S001002772100278X-mmc1.docx
  • Gascoyne, D. M., Spearman, H., Lyne, L., Puliyadi, R., Perez-Alcantara, M., Coulton, L., Fisher, S. E., Croucher, P. I., & Banham, A. H. (2015). The forkhead transcription factor FOXP2 is required for regulation of p21 WAF1/CIP1 in 143B osteosarcoma cell growth arrest. PLoS One, 10(6): e0128513. doi:10.1371/journal.pone.0128513.

    Abstract

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology
  • Gaspard III, J. C., Bauer, G. B., Mann, D. A., Boerner, K., Denum, L., Frances, C., & Reep, R. L. (2017). Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology. Journal of Comparative Physiology, 203, 111-120. doi:10.1007/s00359-016-1142-8.

    Abstract

    Manatees live in shallow, frequently turbid
    waters. The sensory means by which they navigate in these
    conditions are unknown. Poor visual acuity, lack of echo-
    location, and modest chemosensation suggest that other
    modalities play an important role. Rich innervation of sen-
    sory hairs that cover the entire body and enlarged soma-
    tosensory areas of the brain suggest that tactile senses are
    good candidates. Previous tests of detection of underwater
    vibratory stimuli indicated that they use passive movement
    of the hairs to detect particle displacements in the vicinity
    of a micron or less for frequencies from 10 to 150 Hz. In
    the current study, hydrodynamic stimuli were created by
    a sinusoidally oscillating sphere that generated a dipole
    field at frequencies from 5 to 150 Hz. Go/no-go tests of
    manatee postcranial mechanoreception of hydrodynamic
    stimuli indicated excellent sensitivity but about an order of
    magnitude less than the facial region. When the vibrissae
    were trimmed, detection thresholds were elevated, suggest-
    ing that the vibrissae were an important means by which
    detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90%
    correct at all frequencies tested. We hypothesize that mana-
    tees utilize vibrissae as a three-dimensional array to detect
    and localize low-frequency hydrodynamic stimuli
  • Gau, R., Noble, S., Heuer, K., Bottenhorn, K. L., Bilgin, I. P., Yang, Y.-F., Huntenburg, J. M., Bayer, J. M., Bethlehem, R. A., Rhoads, S. A., Vogelbacher, C., Borghesani, V., Levitis, E., Wang, H.-T., Van Den Bossche, S., Kobeleva, X., Legarreta, J. H., Guay, S., Atay, S. M., Varoquaux, G. P. Gau, R., Noble, S., Heuer, K., Bottenhorn, K. L., Bilgin, I. P., Yang, Y.-F., Huntenburg, J. M., Bayer, J. M., Bethlehem, R. A., Rhoads, S. A., Vogelbacher, C., Borghesani, V., Levitis, E., Wang, H.-T., Van Den Bossche, S., Kobeleva, X., Legarreta, J. H., Guay, S., Atay, S. M., Varoquaux, G. P., Huijser, D. C., Sandström, M. S., Herholz, P., Nastase, S. A., Badhwar, A., Dumas, G., Schwab, S., Moia, S., Dayan, M., Bassil, Y., Brooks, P. P., Mancini, M., Shine, J. M., O’Connor, D., Xie, X., Poggiali, D., Friedrich, P., Heinsfeld, A. S., Riedl, L., Toro, R., Caballero-Gaudes, C., Eklund, A., Garner, K. G., Nolan, C. R., Demeter, D. V., Barrios, F. A., Merchant, J. S., McDevitt, E. A., Oostenveld, R., Craddock, R. C., Rokem, A., Doyle, A., Ghosh, S. S., Nikolaidis, A., Stanley, O. W., Uruñuela, E., Anousheh, N., Arnatkeviciute, A., Auzias, G., Bachar, D., Bannier, E., Basanisi, R., Basavaraj, A., Bedini, M., Bellec, P., Benn, R. A., Berluti, K., Bollmann, S., Bollmann, S., Bradley, C., Brown, J., Buchweitz, A., Callahan, P., Chan, M. Y., Chandio, B. Q., Cheng, T., Chopra, S., Chung, A. W., Close, T. G., Combrisson, E., Cona, G., Constable, R. T., Cury, C., Dadi, K., Damasceno, P. F., Das, S., De Vico Fallani, F., DeStasio, K., Dickie, E. W., Dorfschmidt, L., Duff, E. P., DuPre, E., Dziura, S., Esper, N. B., Esteban, O., Fadnavis, S., Flandin, G., Flannery, J. E., Flournoy, J., Forkel, S. J., Franco, A. R., Ganesan, S., Gao, S., García Alanis, J. C., Garyfallidis, E., Glatard, T., Glerean, E., Gonzalez-Castillo, J., Gould van Praag, C. D., Greene, A. S., Gupta, G., Hahn, C. A., Halchenko, Y. O., Handwerker, D., Hartmann, T. S., Hayot-Sasson, V., Heunis, S., Hoffstaedter, F., Hohmann, D. M., Horien, C., Ioanas, H.-I., Iordan, A., Jiang, C., Joseph, M., Kai, J., Karakuzu, A., Kennedy, D. N., Keshavan, A., Khan, A. R., Kiar, G., Klink, P. C., Koppelmans, V., Koudoro, S., Laird, A. R., Langs, G., Laws, M., Licandro, R., Liew, S.-L., Lipic, T., Litinas, K., Lurie, D. J., Lussier, D., Madan, C. R., Mais, L.-T., Mansour L, S., Manzano-Patron, J., Maoutsa, D., Marcon, M., Margulies, D. S., Marinato, G., Marinazzo, D., Markiewicz, C. J., Maumet, C., Meneguzzi, F., Meunier, D., Milham, M. P., Mills, K. L., Momi, D., Moreau, C. A., Motala, A., Moxon-Emre, I., Nichols, T. E., Nielson, D. M., Nilsonne, G., Novello, L., O’Brien, C., Olafson, E., Oliver, L. D., Onofrey, J. A., Orchard, E. R., Oudyk, K., Park, P. J., Parsapoor, M., Pasquini, L., Peltier, S., Pernet, C. R., Pienaar, R., Pinheiro-Chagas, P., Poline, J.-B., Qiu, A., Quendera, T., Rice, L. C., Rocha-Hidalgo, J., Rutherford, S., Scharinger, M., Scheinost, D., Shariq, D., Shaw, T. B., Siless, V., Simmonite, M., Sirmpilatze, N., Spence, H., Sprenger, J., Stajduhar, A., Szinte, M., Takerkart, S., Tam, A., Tejavibulya, L., Thiebaut de Schotten, M., Thome, I., Tomaz da Silva, L., Traut, N., Uddin, L. Q., Vallesi, A., VanMeter, J. W., Vijayakumar, N., di Oleggio Castello, M. V., Vohryzek, J., Vukojević, J., Whitaker, K. J., Whitmore, L., Wideman, S., Witt, S. T., Xie, H., Xu, T., Yan, C.-G., Yeh, F.-C., Yeo, B. T., & Zuo, X.-N. (2021). Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 109(11), 1769-1775. doi:10.1016/j.neuron.2021.04.001.

    Abstract

    Social factors play a crucial role in the advancement of science. New findings are discussed and theories emerge through social interactions, which usually take place within local research groups and at academic events such as conferences, seminars, or workshops. This system tends to amplify the voices of a select subset of the community—especially more established researchers—thus limiting opportunities for the larger community to contribute and connect. Brainhack (https://brainhack.org/) events (or Brainhacks for short) complement these formats in neuroscience with decentralized 2- to 5-day gatherings, in which participants from diverse backgrounds and career stages collaborate and learn from each other in an informal setting. The Brainhack format was introduced in a previous publication (Cameron Craddock et al., 2016; Figures 1A and 1B). It is inspired by the hackathon model (see glossary in Table 1), which originated in software development and has gained traction in science as a way to bring people together for collaborative work and educational courses. Unlike many hackathons, Brainhacks welcome participants from all disciplines and with any level of experience—from those who have never written a line of code to software developers and expert neuroscientists. Brainhacks additionally replace the sometimes-competitive context of traditional hackathons with a purely collaborative one and also feature informal dissemination of ongoing research through unconferences.

    Additional information

    supplementary information
  • Gebre, B. G. (2015). Machine learning for gesture recognition from videos. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Geipel, I., Lattenkamp, E. Z., Dixon, M. M., Wiegrebe, L., & Page, R. A. (2021). Hearing sensitivity: An underlying mechanism for niche differentiation in gleaning bats. Proceedings of the National Academy of Sciences of the United States of America, 118: e2024943118. doi:10.1073/pnas.2024943118.

    Abstract

    Tropical ecosystems are known for high species diversity. Adaptations permitting niche differentiation enable species to coexist. Historically, research focused primarily on morphological and behavioral adaptations for foraging, roosting, and other basic ecological factors. Another important factor, however, is differences in sensory capabilities. So far, studies mainly have focused on the output of behavioral strategies of predators and their prey preference. Understanding the coexistence of different foraging strategies, however, requires understanding underlying cognitive and neural mechanisms. In this study, we investigate hearing in bats and how it shapes bat species coexistence. We present the hearing thresholds and echolocation calls of 12 different gleaning bats from the ecologically diverse Phyllostomid family. We measured their auditory brainstem responses to assess their hearing sensitivity. The audiograms of these species had similar overall shapes but differed substantially for frequencies below 9 kHz and in the frequency range of their echolocation calls. Our results suggest that differences among bats in hearing abilities contribute to the diversity in foraging strategies of gleaning bats. We argue that differences in auditory sensitivity could be important mechanisms shaping diversity in sensory niches and coexistence of species.
  • Genetics of Personality Consortium (2015). Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry, 72(7), 642-650. doi:10.1001/jamapsychiatry.2015.0554.

    Abstract

    Importance 
    Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63 000 participants (including MDD cases).Objectives
    To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD.Design, Setting, and Participants
    Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63 661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014.Main Outcomes and Measures
    Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts.Results
    A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10−9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10−8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10−12 <} P {<} .05) and MDD (4.02 × 10−9 {<} P {< .05) in the 2 other cohorts.Conclusions and Relevance
    This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with bipolar disorder and schizophrenia in previous studies. In addition, the study shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism.

    Files private

    Request files
  • Gerwien, J., & Flecken, M. (2015). There is no prime for time: the missing link between form and concept of progressive aspect in L2 production. International Journal of Bilingual Education and Bilingualism, 18(5), 561-587. doi:10.1080/13670050.2015.1027144.

    Abstract

    The acquisition of linguistic structures that require perspective-taking at the level of message generation is challenging. We investigate use of progressive aspect in L2 event encoding, using a sentence priming paradigm. We focus on Dutch, in which use of progressive aspect is optional. The progressive consists of a prepositional phrase (‘aan het,’ at-the), plus a verbal infinitive. We ask, to what extent L2 speakers, in comparison to native speakers, show priming effects in relation to form (prepositional phrase) or conceptual (progressive aspect) prime sentences. In native Dutch speakers we find a priming effect for the ‘progressive prime,’ compared to a ‘neutral prime’ (aspectually neutral event description). In L2 speakers this effect was absent. For the form prime, no priming effects were obtained in native speakers, rather, we find evidence for a partial blocking effect in L2 speakers. Results suggest that the strength of the link between concept and form of progressive aspect differs in native and L2 speakers. Specific factors contributed to the L2 findings, e.g., level of L2 proficiency and degree of L2 exposure. We conclude that (1) the conceptual basis of grammatical aspect can be primed in native speakers, and (2) in L2 speakers, access to conceptual information is less automatized.

    Files private

    Request files
  • Geurts, B., & Rubio-Fernández, P. (2015). Pragmatics and processing. Ratio: an international journal of analytic philosophy, 28(4), 446-469. doi:10.1111/rati.12113.

    Abstract

    Gricean pragmatics has often been criticised for being implausible from a psychological point of view. This line of criticism is never backed up by empirical evidence, but more importantly, it ignores the fact that Grice never meant to advance a processing theory, in the first place. Taking our lead from Marr (1982), we distinguish between two levels of explanation: at the W-level, we are concerned with what agents do and why; at the H-level, we ask how agents do whatever it is they do. Whereas pragmatics is pitched at the W-level, processing theories are at the H-level. This is not to say that pragmatics has no implications for psychology at all, but it is to say that its implications are less direct than is often supposed.
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.

    Abstract

    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  • Gialluisi, A. (2015). Investigating the genetic basis of reading and language skills. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.

    Abstract

    Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.

    Additional information

    mmc1.docx
  • Gilbers, S., Fuller, C., Gilbers, D., Broersma, M., Goudbeek, M., Free, R., & Başkent, D. (2015). Normal-hearing listeners' and cochlear implant users' perception of pitch cues in emotional speech. i-Perception, 6(5), 1-19. doi:0.1177/0301006615599139.

    Abstract

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study's aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings' pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners' and 20 CI users' emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor's emotions worse than the other actors'. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker's deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 370: 20140092. doi:10.1098/rstb.2014.0092.

    Abstract

    Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes.
  • Gisladottir, R. S., Chwilla, D., & Levinson, S. C. (2015). Conversation electrified: ERP correlates of speech act recognition in underspecified utterances. PLoS One, 10(3): e0120068. doi:10.1371/journal.pone.0120068.

    Abstract

    The ability to recognize speech acts (verbal actions) in conversation is critical for everyday interaction. However, utterances are often underspecified for the speech act they perform, requiring listeners to rely on the context to recognize the action. The goal of this study was to investigate the time-course of auditory speech act recognition in action-underspecified utterances and explore how sequential context (the prior action) impacts this process. We hypothesized that speech acts are recognized early in the utterance to allow for quick transitions between turns in conversation. Event-related potentials (ERPs) were recorded while participants listened to spoken dialogues and performed an action categorization task. The dialogues contained target utterances that each of which could deliver three distinct speech acts depending on the prior turn. The targets were identical across conditions, but differed in the type of speech act performed and how it fit into the larger action sequence. The ERP results show an early effect of action type, reflected by frontal positivities as early as 200 ms after target utterance onset. This indicates that speech act recognition begins early in the turn when the utterance has only been partially processed. Providing further support for early speech act recognition, actions in highly constraining contexts did not elicit an ERP effect to the utterance-final word. We take this to show that listeners can recognize the action before the final word through predictions at the speech act level. However, additional processing based on the complete utterance is required in more complex actions, as reflected by a posterior negativity at the final word when the speech act is in a less constraining context and a new action sequence is initiated. These findings demonstrate that sentence comprehension in conversational contexts crucially involves recognition of verbal action which begins as soon as it can.
  • Gisladottir, R. S. (2015). Conversation electrified: The electrophysiology of spoken speech act recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gisladottir, R. S. (2015). Other-initiated repair in Icelandic. Open Linguistics, 1(1), 309-328. doi:10.1515/opli-2015-0004.

    Abstract

    The ability to repair problems with hearing or understanding in conversation is critical for successful communication. This article describes the linguistic practices of other-initiated repair (OIR) in Icelandic through quantitative and qualitative analysis of a corpus of video-recorded conversations. The study draws on the conceptual distinctions developed in the comparative project on repair described in the introduction to this issue. The main aim is to give an overview of the formats for OIR in Icelandic and the type of repair practices engendered by them. The use of repair initiations in social actions not aimed at solving comprehension problems is also briefly discussed. In particular, the interjection ha has a rich usage extending beyond open other-initiation of repair. By describing the linguistic machinery for other-initiated repair in Icelandic, this study contributes to the typology of conversational structure and to the still nascent field of Icelandic social interaction studies.
  • Goldin-Meadow, S., Namboodiripad, S., Mylander, C., Ozyurek, A., & Sancar, B. (2015). The resilience of structure built around the predicate: Homesign gesture systems in Turkish and American deaf children. Journal of Cognition and Development, 16, 55-80. doi:10.1080/15248372.2013.803970.

    Abstract

    Deaf children whose hearing losses prevent them from accessing spoken language and whose hearing parents have not exposed them to sign language develop gesture systems, called homesigns, which have many of the properties of natural language—the so-called resilient properties of language. We explored the resilience of structure built around the predicate—in particular, how manner and path are mapped onto the verb—in homesign systems developed by deaf children in Turkey and the United States. We also asked whether the Turkish homesigners exhibit sentence-level structures previously identified as resilient in American and Chinese homesigners. We found that the Turkish and American deaf children used not only the same production probability and ordering patterns to indicate who does what to whom, but also used the same segmentation and conflation patterns to package manner and path. The gestures that the hearing parents produced did not, for the most part, display the patterns found in the children's gestures. Although cospeech gesture may provide the building blocks for homesign, it does not provide the blueprint for these resilient properties of language.
  • Goncharova, M. V., Klenova, A. V., & Bragina, E. V. (2015). Development of cues to individuality and sex in calls of three crane species: when is it good to be recognizable? Journal of Ethology, 33, 165-175. doi:10.1007/s10164-015-0428-6.

    Abstract

    Vocal individuality provides a method of personalization for multiple avian species. However, expression of individual vocal features depends on necessity of recognition. Here we focused on chick vocalizations of demoiselle, Siberian and red-crowned cranes that differ by their body size, developmental rates and some ecological traits. Cranes are territorial during summer, but gather in
    large flocks during autumn and winter. Nevertheless, parents keep feeding their chicks, even on winter grounds, despite the potential of confusing their own and alien
    chicks. Here we aimed to compare expression of individuality and sex in calls of three crane species between solitary and gregarious periods of a chick’s life, and between species. We found significant individual patterns of
    acoustic variables in the calls of all three species both before and after fledging. However, only red-crowned crane chicks increased expression of individuality significantly after the fledging. Also, we found that chicks of all three species significantly increased occurrence of nonlinear phenomena, i.e., irregular oscillations of soundproducing membranes (biphonations, sidebands, and deterministic chaos), in their calls after fledging. Non-linear phenomena can be a way of increasing the potential for
    individual recognition as well as avoiding habituation of parents to their chicks’ calls. The older chicks are, the less
    their parents feed them, and chicks benefit from keeping the permanent attention.

    Files private

    Request files
  • Goodhew, S. C., & Kidd, E. (2017). Language use statistics and prototypical grapheme colours predict synaesthetes' and non-synaesthetes' word-colour associations. Acta Psychologica, 173, 73-86. doi:10.1016/j.actpsy.2016.12.008.

    Abstract

    Synaesthesia is the neuropsychological phenomenon in which individuals experience unusual sensory associations, such as experiencing particular colours in response to particular words. While it was once thought the particular pairings between stimuli were arbitrary and idiosyncratic to particular synaesthetes, there is now growing evidence for a systematic psycholinguistic basis to the associations. Here we sought to assess the explanatory value of quantifiable lexical association measures (via latent semantic analysis; LSA) in the pairings observed between words and colours in synaesthesia. To test this, we had synaesthetes report the particular colours they experienced in response to given concept words, and found that language association between the concept and colour words provided highly reliable predictors of the reported pairings. These results provide convergent evidence for a psycholinguistic basis to synaesthesia, but in a novel way, showing that exposure to particular patterns of associations in language can predict the formation of particular synaesthetic lexical-colour associations. Consistent with previous research, the prototypical synaesthetic colour for the first letter of the word also played a role in shaping the colour for the whole word, and this effect also interacted with language association, such that the effect of the colour for the first letter was stronger as the association between the concept word and the colour word in language increased. Moreover, when a group of non-synaesthetes were asked what colours they associated with the concept words, they produced very similar reports to the synaesthetes that were predicted by both language association and prototypical synaesthetic colour for the first letter of the word. This points to a shared linguistic experience generating the associations for both groups.
  • Gordon, R. L., Ravignani, A., Hyland Bruno, J., Robinson, C. M., Scartozzi, A., Embalabala, R., Niarchou, M., 23andMe Research Team, Cox, N. J., & Creanza, N. (2021). Linking the genomic signatures of human beat synchronization and learned song in birds. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200329. doi:10.1098/rstb.2020.0329.

    Abstract

    The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed.

    Additional information

    analysis scripts and variables
  • Goriot, C., Unsworth, S., Van Hout, R. W. N. M., Broersma, M., & McQueen, J. M. (2021). Differences in phonological awareness performance: Are there positive or negative effects of bilingual experience? Linguistic Approaches to Bilingualism, 11(3), 425-460. doi:10.1075/lab.18082.gor.

    Abstract

    Children who have knowledge of two languages may show better phonological awareness than their monolingual peers (e.g. Bruck & Genesee, 1995). It remains unclear how much bilingual experience is needed for such advantages to appear, and whether differences in language or cognitive skills alter the relation between bilingualism and phonological awareness. These questions were investigated in this cross-sectional study. Participants (n = 294; 4–7 year-olds, in the first three grades of primary school) were Dutch-speaking pupils attending mainstream monolingual Dutch primary schools or early-English schools providing English lessons from grade 1, and simultaneous Dutch-English bilinguals. We investigated phonological awareness (rhyming, phoneme blending, onset phoneme identification, and phoneme deletion) and its relation to age, Dutch vocabulary, English vocabulary, working memory and short-term memory, and the balance between Dutch and English vocabulary. Small significant (α < .05) effects of bilingualism were found on onset phoneme identification and phoneme deletion, but post-hoc comparisons revealed no robust pairwise differences between the groups. Furthermore, effects of bilingualism sometimes disappeared when differences in language or memory skills were taken into account. Learning two languages simultaneously is not beneficial to – and importantly, also not detrimental to – phonological awareness.

    Files private

    Request files
  • Goriot, C., Van Hout, R., Broersma, M., Lobo, V., McQueen, J. M., & Unsworth, S. (2021). Using the peabody picture vocabulary test in L2 children and adolescents: Effects of L1. International Journal of Bilingual Education and Bilingualism, 24(4), 546-568. doi:10.1080/13670050.2018.1494131.

    Abstract

    This study investigated to what extent the Peabody Picture Vocabulary Test
    (PPVT-4) is a reliable tool for measuring vocabulary knowledge of English as
    a second language (L2), and to what extent L1 characteristics affect test
    outcomes. The PPVT-4 was administered to Dutch pupils in six different
    age groups (4-15 years old) who were or were not following an English
    educational programme at school. Our first finding was that the PPVT-4
    was not a reliable measure for pupils who were correct on maximally 24
    items, but it was reliable for pupils who performed better. Second, both
    primary-school and secondary-school pupils performed better on items
    for which the phonological similarity between the English word and its
    Dutch translation was higher. Third, young unexperienced L2 learners’
    scores were predicted by Dutch lexical frequency, while older more
    experienced pupils’ scores were predicted by English frequency. These
    findings indicate that the PPVT may be inappropriate for use with L2
    learners with limited L2 proficiency. Furthermore, comparisons of PPVT
    scores across learners with different L1s are confounded by effects of L1
    frequency and L1-L2 similarity. The PPVT-4 is however a suitable measure
    to compare more proficient L2 learners who have the same L1.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2017). Auditory and phonetic category formation. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (2nd revised ed.) (pp. 687-708). Amsterdam: Elsevier.
  • De Graaf, T. A., Duecker, F., Stankevich, Y., Ten Oever, S., & Sack, A. T. (2017). Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs. Brain Stimulation, 10(4), 828-835. doi:10.1016/j.brs.2017.04.127.

    Abstract

    Background: Voluntarily opening or closing our eyes results in fundamentally different input patterns and expectancies. Yet it remains unclear how our brains and visual systems adapt to these ocular states.
    Objective/Hypothesis: We here used transcranial magnetic stimulation (TMS) to probe the excitability of the human visual system with eyes open or closed, in the complete absence of visual inputs.
    Methods: Combining Bayesian staircase procedures with computer control of TMS pulse intensity allowed interleaved determination of phosphene thresholds (PT) in both conditions. We measured parieto-occipital EEG baseline activity in several stages to track oscillatory power in the alpha (8-12 Hz) frequency-band, which has previously been shown to be inversely related to phosphene perception.
    Results: Since closing the eyes generally increases alpha power, one might have expected a decrease in excitability (higher PT). While we confirmed a rise in alpha power with eyes closed, visual excitability was actually increased (PT was lower) with eyes closed.
    Conclusions: This suggests that, aside from oscillatory alpha power, additional neuronal mechanisms influence the excitability of early visual cortex. One of these may involve a more internally oriented mode of brain operation, engaged by closing the eyes. In this state, visual cortex may be more susceptible to top-down inputs, to facilitate for example multisensory integration or imagery/working memory, although alternative explanations remain possible. (C) 2017 Elsevier Inc. All rights reserved.

    Additional information

    Supplementary data
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • Graham, S. A., Deriziotis, P., & Fisher, S. E. (2015). Insights into the genetic foundations of human communication. Neuropsychology Review, 25(1), 3-26. doi:10.1007/s11065-014-9277-2.

    Abstract

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior
  • Graham, S. A., & Fisher, S. E. (2015). Understanding language from a genomic perspective. Annual Review of Genetics, 49, 131-160. doi:10.1146/annurev-genet-120213-092236.

    Abstract

    Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.

    Files private

    Request files
  • Greenfield, M. D., Honing, H., Kotz, S. A., & Ravignani, A. (Eds.). (2021). Synchrony and rhythm interaction: From the brain to behavioural ecology [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Greenfield, M. D., Honing, H., Kotz, S. A., & Ravignani, A. (2021). Synchrony and rhythm interaction: From the brain to behavioural ecology. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200324. doi:10.1098/rstb.2020.0324.

    Abstract

    This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short—from several seconds down to a fraction of a second—periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production.
  • Greenfield, P. M., Slobin, D., Cole, M., Gardner, H., Sylva, K., Levelt, W. J. M., Lucariello, J., Kay, A., Amsterdam, A., & Shore, B. (2017). Remembering Jerome Bruner: A series of tributes to Jerome “Jerry” Bruner, who died in 2016 at the age of 100, reflects the seminal contributions that led him to be known as a co-founder of the cognitive revolution. Observer, 30(2). Retrieved from http://www.psychologicalscience.org/observer/remembering-jerome-bruner.

    Abstract

    Jerome Seymour “Jerry” Bruner was born on October 1, 1915, in New York City. He began his academic career as psychology professor at Harvard University; he ended it as University Professor Emeritus at New York University (NYU) Law School. What happened at both ends and in between is the subject of the richly variegated remembrances that follow. On June 5, 2016, Bruner died in his Greenwich Village loft at age 100. He leaves behind his beloved partner Eleanor Fox, who was also his distinguished colleague at NYU Law School; his son Whitley; his daughter Jenny; and three grandchildren.

    Bruner’s interdisciplinarity and internationalism are seen in the remarkable variety of disciplines and geographical locations represented in the following tributes. The reader will find developmental psychology, anthropology, computer science, psycholinguistics, cognitive psychology, cultural psychology, education, and law represented; geographically speaking, the writers are located in the United States, Canada, the United Kingdom, and the Netherlands. The memories that follow are arranged in roughly chronological order according to when the writers had their first contact with Jerry Bruner.
  • Greenhill, S. J., Wu, C.-H., Hua, X., Dunn, M., Levinson, S. C., & Gray, R. D. (2017). Evolutionary dynamics of language systems. Proceedings of the National Academy of Sciences of the United States of America, 114(42), E8822-E8829. doi:10.1073/pnas.1700388114.

    Abstract

    Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000–10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.
  • De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Friard, O., Giacoma, C., Ravignani, A., & Gamba, M. (2021). Categorical rhythms in a singing primate. Current Biology, 31, R1363-R1380. doi:10.1016/j.cub.2021.09.032.

    Abstract

    What are the origins of musical rhythm? One approach to the biology and evolution of music consists in finding common musical traits across species. These similarities allow biomusicologists to infer when and how musical traits appeared in our species1
    . A parallel approach to the biology and evolution of music focuses on finding statistical universals in human music2
    . These include rhythmic features that appear above chance across musical cultures. One such universal is the production of categorical rhythms3
    , defined as those where temporal intervals between note onsets are distributed categorically rather than uniformly2
    ,4
    ,5
    . Prominent rhythm categories include those with intervals related by small integer ratios, such as 1:1 (isochrony) and 1:2, which translates as some notes being twice as long as their adjacent ones. In humans, universals are often defined in relation to the beat, a top-down cognitive process of inferring a temporal regularity from a complex musical scene1
    . Without assuming the presence of the beat in other animals, one can still investigate its downstream products, namely rhythmic categories with small integer ratios detected in recorded signals. Here we combine the comparative and statistical universals approaches, testing the hypothesis that rhythmic categories and small integer ratios should appear in species showing coordinated group singing3
    . We find that a lemur species displays, in its coordinated songs, the isochronous and 1:2 rhythm categories seen in human music, showing that such categories are not, among mammals, unique to humans3

    Additional information

    supplemental information
  • Grieco-Calub, T. M., Ward, K. M., & Brehm, L. (2017). Multitasking During Degraded Speech Recognition in School-Age Children. Trends in hearing, 21, 1-14. doi:10.1177/2331216516686786.

    Abstract

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unpro- cessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.
  • De Groot, F., Huettig, F., & Olivers, C. N. L. (2017). Language-induced visual and semantic biases in visual search are subject to task requirements. Visual Cognition, 25, 225-240. doi:10.1080/13506285.2017.1324934.

    Abstract

    Visual attention is biased by both visual and semantic representations activated by words. We investigated to what extent language-induced visual and semantic biases are subject to task demands. Participants memorized a spoken word for a verbal recognition task, and performed a visual search task during the retention period. Crucially, while the word had to be remembered in all conditions, it was either relevant for the search (as it also indicated the target) or irrelevant (as it only served the memory test afterwards). On critical trials, displays contained objects that were visually or semantically related to the memorized word. When the word was relevant for the search, eye movement biases towards visually related objects arose earlier and more strongly than biases towards semantically related objects. When the word was irrelevant, there was still evidence for visual and semantic biases, but these biases were substantially weaker, and similar in strength and temporal dynamics, without a visual advantage. We conclude that language-induced attentional biases are subject to task requirements.
  • Grünloh, T., & Liszkowski, U. (2015). Prelinguistic vocalizations distinguish pointing acts. Journal of Child Language, 42(6), 1312-1336. doi:10.1017/S0305000914000816.

    Abstract

    The current study investigated whether point-accompanying characteristics, like vocalizations and hand shape, differentiate infants' underlying motives of prelinguistic pointing. We elicited imperative (requestive) and declarative (expressive and informative) pointing acts in experimentally controlled situations, and analyzed accompanying characteristics. Experiment 1 revealed that prosodic characteristics of point-accompanying vocalizations distinguished requestive from both expressive and informative pointing acts, with little differences between the latter two. In addition, requestive points were more often realized with the whole hand than the index finger, while this was the opposite for expressive and informative acts. Experiment 2 replicated Experiment 1, revealing distinct prosodic characteristics for requestive pointing also when the referent was distal and when it had an index-finger shape. Findings reveal that beyond the social context, point-accompanying vocalizations give clues to infants' underlying intentions when pointing.
  • Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., Hagoort, P., Fernandez, G., Buitelaar, J., van Bokhoven, H., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.

    Abstract

    The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.
  • Guadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T. and 141 moreGuadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T., Blangero, J., Bokde, A. L., Boedhoe, P. S., Bose, A., Brem, S., Brodaty, H., Bromberg, U., Brooks, S., Büchel, C., Buitelaar, J., Calhoun, V. D., Cannon, D. M., Cattrell, A., Cheng, Y., Conrod, P. J., Conzelmann, A., Corvin, A., Crespo-Facorro, B., Crivello, F., Dannlowski, U., De Zubicaray, G. I., De Zwarte, S. M., Deary, I. J., Desrivières, S., Doan, N. T., Donohoe, G., Dørum, E. S., Ehrlich, S., Espeseth, T., Fernández, G., Flor, H., Fouche, J.-P., Frouin, V., Fukunaga, M., Gallinat, J., Garavan, H., Gill, M., Suarez, A. G., Gowland, P., Grabe, H. J., Grotegerd, D., Gruber, O., Hagenaars, S., Hashimoto, R., Hauser, T. U., Heinz, A., Hibar, D. P., Hoekstra, P. J., Hoogman, M., Howells, F. M., Hu, H., Hulshoff Pol, H. E.., Huyser, C., Ittermann, B., Jahanshad, N., Jönsson, E. G., Jurk, S., Kahn, R. S., Kelly, S., Kraemer, B., Kugel, H., Kwon, J. S., Lemaitre, H., Lesch, K.-P., Lochner, C., Luciano, M., Marquand, A. F., Martin, N. G., Martínez-Zalacaín, I., Martinot, J.-L., Mataix-Cols, D., Mather, K., McDonald, C., McMahon, K. L., Medland, S. E., Menchón, J. M., Morris, D. W., Mothersill, O., Maniega, S. M., Mwangi, B., Nakamae, T., Nakao, T., Narayanaswaamy, J. C., Nees, F., Nordvik, J. E., Onnink, A. M. H., Opel, N., Ophoff, R., Martinot, M.-L.-P., Orfanos, D. P., Pauli, P., Paus, T., Poustka, L., Reddy, J. Y., Renteria, M. E., Roiz-Santiáñez, R., Roos, A., Royle, N. A., Sachdev, P., Sánchez-Juan, P., Schmaal, L., Schumann, G., Shumskaya, E., Smolka, M. N., Soares, J. C., Soriano-Mas, C., Stein, D. J., Strike, L. T., Toro, R., Turner, J. A., Tzourio-Mazoyer, N., Uhlmann, A., Valdés Hernández, M., Van den Heuvel, O. A., Van der Meer, D., Van Haren, N. E.., Veltman, D. J., Venkatasubramanian, G., Vetter, N. C., Vuletic, D., Walitza, S., Walter, H., Walton, E., Wang, Z., Wardlaw, J., Wen, W., Westlye, L. T., Whelan, R., Wittfeld, K., Wolfers, T., Wright, M. J., Xu, J., Xu, X., Yun, J.-Y., Zhao, J., Franke, B., Thompson, P. M., Glahn, D. C., Mazoyer, B., Fisher, S. E., & Francks, C. (2017). Human subcortical asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 11(5), 1497-1514. doi:10.1007/s11682-016-9629-z.

    Abstract

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

    Additional information

    11682_2016_9629_MOESM1_ESM.pdf
  • Guadalupe, T. (2017). The biology of variation in anatomical brain asymmetries. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gubian, M., Torreira, F., & Boves, L. (2015). Using functional data analysis for investigating multidimensional dynamic phonetic contrasts. Journal of Phonetics, 49, 16-40. doi:10.1016/j.wocn.2014.10.001.

    Abstract

    The study of phonetic contrasts and related phenomena, e.g. inter- and intra-speaker variability, often requires to analyse data in the form of measured time series, like f0 contours and formant trajectories. As a consequence, the investigator has to find suitable ways to reduce the raw and abundant numerical information contained in a bundle of time series into a small but sufficient set of numerical descriptors of their shape. This approach requires one to decide in advance which dynamic traits to include in the analysis and which not. For example, a rising pitch gesture may be represented by its duration and slope, hence reducing it to a straight segment, or by a richer coding specifying also whether (and how much) the rising contour is concave or convex, the latter being irrelevant in some context but crucial in others. Decisions become even more complex when a phenomenon is described by a multidimensional time series, e.g. by the first two formants. In this paper we introduce a methodology based on Functional Data Analysis (FDA) that allows the investigator to delegate most of the decisions involved in the quantitative description of multidimensional time series to the data themselves. FDA produces a data-driven parametrisation of the main shape traits present in the data that is visually interpretable, in the same way as slopes or peak heights are. These output parameters are numbers that are amenable to ordinary statistical analysis, e.g. linear (mixed effects) models. FDA is also able to capture correlations among different dimensions of a time series, e.g. between formants F1 and F2. We present FDA by means of an extended case study on diphthong – hiatus distinction in Spanish, a contrast that involves duration, formant trajectories and pitch contours.
  • Le Guen, O., Samland, J., Friedrich, T., Hanus, D., & Brown, P. (2015). Making sense of (exceptional) causal relations. A cross-cultural and cross-linguistic study. Frontiers in Psychology, 6: 1645. doi:10.3389/fpsyg.2015.01645.

    Abstract

    In order to make sense of the world, humans tend to see causation almost everywhere. Although most causal relations may seem straightforward, they are not always construed in the same way cross-culturally. In this study, we investigate concepts of ‘chance’, ‘coincidence’ or ‘randomness’ that refer to assumed relations between intention, action, and outcome in situations, and we ask how people from different cultures make sense of such non-law-like connections. Based on a framework proposed by Alicke (2000), we administered a task that aims to be a neutral tool for investigating causal construals cross-culturally and cross-linguistically. Members of four different cultural groups, rural Mayan Yucatec and Tseltal speakers from Mexico and urban students from Mexico and Germany, were presented with a set of scenarios involving various types of causal and non-causal relations and were asked to explain the described events. Three links varied as to whether they were present or not in the scenarios: Intention to Action, Action to Outcome, and Intention to Outcome. Our results show that causality is recognized in all four cultural groups. However, how causality and especially non-law-like causality are interpreted depends on the type of links, the cultural background and the language used. In all three groups, Action to Outcome is the decisive link for recognizing causality. Despite the fact that the two Mayan groups share similar cultural backgrounds, they display different ideologies regarding concepts of non-law causality. The data suggests that the concept of ‘chance’ is not universal, but seems to be an explanation that only some cultural groups draw on to make sense of specific situations. Of particular importance is the existence of linguistic concepts in each language that trigger ideas of causality in the responses from each cultural group

    Additional information

    LeGuen_etal_2015sup.docx
  • Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789-802. doi:10.1177/1745691620970585.

    Abstract

    Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.
  • Guest, O., & Love, B. C. (2017). What the success of brain imaging implies about the neural code. eLife, 6: e21397. doi:10.7554/eLife.21397.

    Abstract

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
  • Guggenheim, J. A., St Pourcain, B., McMahon, G., Timpson, N. J., Evans, D. M., & Williams, C. (2015). Assumption-free estimation of the genetic contribution to refractive error across childhood. Molecular Vision, 21, 621-632. Retrieved from http://www.molvis.org/molvis/v21/621.

    Abstract

    Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75–90%, families 15–70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias.
    Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404).
    The variance in refractive error explained by the SNPs (“SNP heritability”) was stable over childhood: Across age 7–15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8–9 years old.
    Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in larger samples and inclusion of interaction effects is expected to raise this figure toward twin- and family-based heritability estimates. The same SNPs influenced refractive error across much of childhood. Notwithstanding the strong evidence of association between time outdoors and myopia, and time reading and myopia, less than 1% of the variance in myopia at age 15 was explained by crude measures of these two risk factors, indicating that their effects may be limited, at least when averaged over the whole population.
  • Gupta, C. N., Calhoun, V. D., Rachkonda, S., Chen, J., Patel, V., Liu, J., Segall, J., Franke, B., Zwiers, M. P., Arias-Vasquez, A., Buitelaar, J., Fisher, S. E., Fernández, G., van Erp, T. G. M., Potkin, S., Ford, J., Matalon, D., McEwen, S., Lee, H. J., Mueller, B. A. and 16 moreGupta, C. N., Calhoun, V. D., Rachkonda, S., Chen, J., Patel, V., Liu, J., Segall, J., Franke, B., Zwiers, M. P., Arias-Vasquez, A., Buitelaar, J., Fisher, S. E., Fernández, G., van Erp, T. G. M., Potkin, S., Ford, J., Matalon, D., McEwen, S., Lee, H. J., Mueller, B. A., Greve, D. N., Andreassen, O., Agartz, I., Gollub, R. L., Sponheim, S. R., Ehrlich, S., Wang, L., Pearlson, G., Glahn, D. S., Sprooten, E., Mayer, A. R., Stephen, J., Jung, R. E., Canive, J., Bustillo, J., & Turner, J. A. (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophrenia Bulletin, 41(5), 1133-1142. doi:10.1093/schbul/sbu177.

    Abstract

    Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects.
  • Hagoort, P. (2017). It is the facts, stupid. In J. Brockman, F. Van der Wa, & H. Corver (Eds.), Wetenschappelijke parels: het belangrijkste wetenschappelijke nieuws volgens 193 'briljante geesten'. Amsterdam: Maven Press.

Share this page