Publications

Displaying 301 - 400 of 582
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W., & Musan, R. (2009). Werden. In W. Eins, & F. Schmoë (Eds.), Wie wir sprechen und schreiben: Festschrift für Helmut Glück zum 60. Geburtstag (pp. 45-61). Wiesbaden: Harrassowitz Verlag.
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Koenig, A., Ringersma, J., & Trilsbeek, P. (2009). The Language Archiving Technology domain. In Z. Vetulani (Ed.), Human Language Technologies as a Challenge for Computer Science and Linguistics (pp. 295-299).

    Abstract

    The Max Planck Institute for Psycholinguistics (MPI) manages an archive of linguistic research data with a current size of almost 20 Terabytes. Apart from in-house researchers other projects also store their data in the archive, most notably the Documentation of Endangered Languages (DoBeS) projects. The archive is available online and can be accessed by anybody with Internet access. To be able to manage this large amount of data the MPI's technical group has developed a software suite called Language Archiving Technology (LAT) that on the one hand helps researchers and archive managers to manage the data and on the other hand helps users in enriching their primary data with additional layers. All the MPI software is Java-based and developed according to open source principles (GNU, 2007). All three major operating systems (Windows, Linux, MacOS) are supported and the software works similarly on all of them. As the archive is online, many of the tools, especially the ones for accessing the data, are browser based. Some of these browser-based tools make use of Adobe Flex to create nice-looking GUIs. The LAT suite is a complete set of management and enrichment tools, and given the interaction between the tools the result is a complete LAT software domain. Over the last 10 years, this domain has proven its functionality and use, and is being deployed to servers in other institutions. This deployment is an important step in getting the archived resources back to the members of the speech communities whose languages are documented. In the paper we give an overview of the tools of the LAT suite and we describe their functionality and role in the integrated process of archiving, management and enrichment of linguistic data.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • Krott, A., Schreuder, R., & Baayen, R. H. (2002). Analogical hierarchy: Exemplar-based modeling of linkers in Dutch noun-noun compounds. In R. Skousen (Ed.), Analogical modeling: An exemplar-based approach to language (pp. 181-206). Amsterdam: Benjamins.
  • Kuijpers, C., Van Donselaar, W., & Cutler, A. (2002). Perceptual effects of assimilation-induced violation of final devoicing in Dutch. In J. H. L. Hansen, & B. Pellum (Eds.), The 7th International Conference on Spoken Language Processing (pp. 1661-1664). Denver: ICSA.

    Abstract

    Voice assimilation in Dutch is an optional phonological rule which changes the surface forms of words and in doing so may violate the otherwise obligatory phonological rule of syllablefinal devoicing. We report two experiments examining the influence of voice assimilation on phoneme processing, in lexical compound words and in noun-verb phrases. Processing was not impaired in appropriate assimilation contexts across morpheme boundaries, but was impaired when devoicing was violated (a) in an inappropriate non-assimilatory) context, or (b) across a syntactic boundary.
  • Kuijpers, C., Van Donselaar, W., & Cutler, A. (1996). Phonological variation: Epenthesis and deletion of schwa in Dutch. In H. T. Bunnell (Ed.), Proceedings of the Fourth International Conference on Spoken Language Processing: Vol. 1 (pp. 94-97). New York: Institute of Electrical and Electronics Engineers.

    Abstract

    Two types of phonological variation in Dutch, resulting from optional rules, are schwa epenthesis and schwa deletion. In a lexical decision experiment it was investigated whether the phonological variants were processed similarly to the standard forms. It was found that the two types of variation patterned differently. Words with schwa epenthesis were processed faster and more accurately than the standard forms, whereas words with schwa deletion led to less fast and less accurate responses. The results are discussed in relation to the role of consonant-vowel alternations in speech processing and the perceptual integrity of onset clusters.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kuntay, A., & Ozyurek, A. (2002). Joint attention and the development of the use of demonstrative pronouns in Turkish. In B. Skarabela, S. Fish, & A. H. Do (Eds.), Proceedings of the 26th annual Boston University Conference on Language Development (pp. 336-347). Somerville, MA: Cascadilla Press.
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences.
  • Lausberg, H., & Sloetjes, H. (2009). NGCS/ELAN - Coding movement behaviour in psychotherapy [Meeting abstract]. PPmP - Psychotherapie · Psychosomatik · Medizinische Psychologie, 59: A113, 103.

    Abstract

    Individual and interactive movement behaviour (non-verbal behaviour / communication) specifically reflects implicit processes in psychotherapy [1,4,11]. However, thus far, the registration of movement behaviour has been a methodological challenge. We will present a coding system combined with an annotation tool for the analysis of movement behaviour during psychotherapy interviews [9]. The NGCS coding system enables to classify body movements based on their kinetic features alone [5,7]. The theoretical assumption behind the NGCS is that its main kinetic and functional movement categories are differentially associated with specific psychological functions and thus, have different neurobiological correlates [5-8]. ELAN is a multimodal annotation tool for digital video media [2,3,12]. The NGCS / ELAN template enables to link any movie to the same coding system and to have different raters independently work on the same file. The potential of movement behaviour analysis as an objective tool for psychotherapy research and for supervision in the psychosomatic practice is discussed by giving examples of the NGCS/ELAN analyses of psychotherapy sessions. While the quality of kinetic turn-taking and the therapistrsquor;s (implicit) adoption of the patientrsquor;s movements may predict therapy outcome, changes in the patientrsquor;s movement behaviour pattern may indicate changes in cognitive concepts and emotional states and thus, may help to identify therapeutically relevant processes [10].
  • Lei, L., Raviv, L., & Alday, P. M. (2020). Using spatial visualizations and real-world social networks to understand language evolution and change. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 252-254). Nijmegen: The Evolution of Language Conferences.
  • Lenkiewicz, P., Pereira, M., Freire, M. M., & Fernandes, J. (2009). A new 3D image segmentation method for parallel architectures. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo [ICME 2009] June 28 – July 3, 2009, New York (pp. 1813-1816).

    Abstract

    This paper presents a novel model for 3D image segmentation and reconstruction. It has been designed with the aim to be implemented over a computer cluster or a multi-core platform. The required features include a nearly absolute independence between the processes participating in the segmentation task and providing amount of work as equal as possible for all the participants. As a result, it is avoid many drawbacks often encountered when performing a parallelization of an algorithm that was constructed to operate in a sequential manner. Furthermore, the proposed algorithm based on the new segmentation model is efficient and shows a very good, nearly linear performance growth along with the growing number of processing units.
  • Lenkiewicz, P., Pereira, M., Freire, M., & Fernandes, J. (2008). Accelerating 3D medical image segmentation with high performance computing. In Proceedings of the IEEE International Workshops on Image Processing Theory, Tools and Applications - IPT (pp. 1-8).

    Abstract

    Digital processing of medical images has helped physicians and patients during past years by allowing examination and diagnosis on a very precise level. Nowadays possibly the biggest deal of support it can offer for modern healthcare is the use of high performance computing architectures to treat the huge amounts of data that can be collected by modern acquisition devices. This paper presents a parallel processing implementation of an image segmentation algorithm that operates on a computer cluster equipped with 10 processing units. Thanks to well-organized distribution of the workload we manage to significantly shorten the execution time of the developed algorithm and reach a performance gain very close to linear.
  • Lenkiewicz, P., Pereira, M., Freire, M., & Fernandes, J. (2009). The dynamic topology changes model for unsupervised image segmentation. In Proceedings of the 11th IEEE International Workshop on Multimedia Signal Processing (MMSP'09) (pp. 1-5).

    Abstract

    Deformable models are a popular family of image segmentation techniques, which has been gaining significant focus in the last two decades, serving both for real-world applications as well as the base for research work. One of the features that the deformable models offer and that is considered a much desired one, is the ability to change their topology during the segmentation process. Using this characteristic it is possible to perform segmentation of objects with discontinuities in their bodies or to detect an undefined number of objects in the scene. In this paper we present our model for handling the topology changes in image segmentation methods based on the Active Volumes solution. The said model is capable of performing the changes in the structure of objects while the segmentation progresses, what makes it efficient and suitable for implementations over powerful execution environment, like multi-core architectures or computer clusters.
  • Lenkiewicz, P., Pereira, M., Freire, M., & Fernandes, J. (2009). The whole mesh Deformation Model for 2D and 3D image segmentation. In Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) (pp. 4045-4048).

    Abstract

    In this paper we present a novel approach for image segmentation using Active Nets and Active Volumes. Those solutions are based on the Deformable Models, with slight difference in the method for describing the shapes of interests - instead of using a contour or a surface they represented the segmented objects with a mesh structure, which allows to describe not only the surface of the objects but also to model their interiors. This is obtained by dividing the nodes of the mesh in two categories, namely internal and external ones, which will be responsible for two different tasks. In our new approach we propose to negate this separation and use only one type of nodes. Using that assumption we manage to significantly shorten the time of segmentation while maintaining its quality.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (2002). Phonological encoding in speech production: Comments on Jurafsky et al., Schiller et al., and van Heuven & Haan. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology VII (pp. 87-99). Berlin: Mouton de Gruyter.
  • Levelt, W. J. M. (1996). Preface. In W. J. M. Levelt (Ed.), Advanced psycholinguistics: A bressanone perspective for Giovanni B. Flores d'Arcais (pp. VII-IX). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Levelt, W. J. M. (1996). Foreword. In T. Dijkstra, & K. De Smedt (Eds.), Computational psycholinguistics (pp. ix-xi). London: Taylor & Francis.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (1996). Linguistic intuitions and beyond. In W. J. M. Levelt (Ed.), Advanced psycholinguistics: A Bressanone retrospective for Giovanni B. Floris d'Arcais (pp. 31-35). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levelt, W. J. M. (1996). Perspective taking and ellipsis in spatial descriptions. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 77-107). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020
  • Levelt, W. J. M. (2008). What has become of formal grammars in linguistics and psycholinguistics? [Postscript]. In Formal Grammars in linguistics and psycholinguistics (pp. 1-17). Amsterdam: John Benjamins.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C. (2002). Appendix to the 2002 Supplement, version 1, for the “Manual” for the field season 2001. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 62-64). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (1996). Frames of reference and Molyneux's question: Cross-linguistic evidence. In P. Bloom, M. Peterson, L. Nadel, & M. Garrett (Eds.), Language and space (pp. 109-169). Cambridge, MA: MIT press.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2002). Landscape terms and place names in Yélî Dnye, the language of Rossel Island, PNG. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1996). Introduction to part II. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 133-144). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1996). Relativity in spatial conception and description. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 177-202). Cambridge University Press.
  • Levinson, S. C., & Majid, A. (2008). Preface and priorities. In A. Majid (Ed.), Field manual volume 11 (pp. iii-iv). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2008). Time and space questionnaire. In A. Majid (Ed.), Field Manual Volume 11 (pp. 42-49). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492955.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C., & Senft, G. (1996). Zur Semantik der Verben INTRARE und EXIRE in verschieden Sprachen. In Jahrbuch der Max-Planck-Gesellschaft 1996 (pp. 340-344). München: Generalverwaltung der Max-Planck-Gesellschaft München.
  • Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In K. Evang, L. Kallmeyer, R. Ehren, S. Petitjean, E. Seyffarth, & D. Seddah (Eds.), Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories (pp. 70-78). Düsseldorf, Germany: Association for Computational Linguistics. doi:10.18653/v1/2020.tlt-1.7.

    Abstract

    Languages differ in the degree of semantic flexibility of their syntactic roles. For example, Eng-
    lish and Indonesian are considered more flexible with regard to the semantics of subjects,
    whereas German and Japanese are less flexible. In Hawkins’ classification, more flexible lan-
    guages are said to have a loose fit, and less flexible ones are those that have a tight fit. This
    classification has been based on manual inspection of example sentences. The present paper
    proposes a new, quantitative approach to deriving the measures of looseness and tightness from
    corpora. We use corpora of online news from the Leipzig Corpora Collection in thirty typolog-
    ically and genealogically diverse languages and parse them syntactically with the help of the
    Universal Dependencies annotation software. Next, we compute Mutual Information scores for
    each language using the matrices of lexical lemmas and four syntactic dependencies (intransi-
    tive subjects, transitive subject, objects and obliques). The new approach allows us not only to
    reproduce the results of previous investigations, but also to extend the typology to new lan-
    guages. We also demonstrate that verb-final languages tend to have a tighter relationship be-
    tween lexemes and syntactic roles, which helps language users to recognize thematic roles early
    during comprehension.

    Additional information

    full text via ACL website
  • Liu, S., & Zhang, Y. (2019). Why some verbs are harder to learn than others – A micro-level analysis of everyday learning contexts for early verb learning. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2173-2178). Montreal, QB: Cognitive Science Society.

    Abstract

    Verb learning is important for young children. While most
    previous research has focused on linguistic and conceptual
    challenges in early verb learning (e.g. Gentner, 1982, 2006),
    the present paper examined early verb learning at the
    attentional level and quantified the input for early verb learning
    by measuring verb-action co-occurrence statistics in parent-
    child interaction from the learner’s perspective. To do so, we
    used head-mounted eye tracking to record fine-grained
    multimodal behaviors during parent-infant joint play, and
    analyzed parent speech, parent and infant action, and infant
    attention at the moments when parents produced verb labels.
    Our results show great variability across different action verbs,
    in terms of frequency of verb utterances, frequency of
    corresponding actions related to verb meanings, and infants’
    attention to verbs and actions, which provide new insights on
    why some verbs are harder to learn than others.
  • Lucas, C., Griffiths, T., Xu, F., & Fawcett, C. (2008). A rational model of preference learning and choice prediction by children. In D. Koller, Y. Bengio, D. Schuurmans, L. Bottou, & A. Culotta (Eds.), Advances in Neural Information Processing Systems.

    Abstract

    Young children demonstrate the ability to make inferences about the preferences of other agents based on their choices. However, there exists no overarching account of what children are doing when they learn about preferences or how they use that knowledge. We use a rational model of preference learning, drawing on ideas from economics and computer science, to explain the behavior of children in several recent experiments. Specifically, we show how a simple econometric model can be extended to capture two- to four-year-olds’ use of statistical information in inferring preferences, and their generalization of these preferences.
  • MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.

    Abstract

    Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech
    (IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
  • Magyari, L., & De Ruiter, J. P. (2008). Timing in conversation: The anticipation of turn endings. In J. Ginzburg, P. Healey, & Y. Sato (Eds.), Proceedings of the 12th Workshop on the Semantics and Pragmatics Dialogue (pp. 139-146). London: King's college.

    Abstract

    We examined how communicators can switch between speaker and listener role with such accurate timing. During conversations, the majority of role transitions happens with a gap or overlap of only a few hundred milliseconds. This suggests that listeners can predict when the turn of the current speaker is going to end. Our hypothesis is that listeners know when a turn ends because they know how it ends. Anticipating the last words of a turn can help the next speaker in predicting when the turn will end, and also in anticipating the content of the turn, so that an appropriate response can be prepared in advance. We used the stimuli material of an earlier experiment (De Ruiter, Mitterer & Enfield, 2006), in which subjects were listening to turns from natural conversations and had to press a button exactly when the turn they were listening to ended. In the present experiment, we investigated if the subjects can complete those turns when only an initial fragment of the turn is presented to them. We found that the subjects made better predictions about the last words of those turns that had more accurate responses in the earlier button press experiment.
  • Magyari, L. (2008). A mentális lexikon modelljei és a magyar nyelv (Models of mental lexicon and the Hungarian language). In J. Gervain, & C. Pléh (Eds.), A láthatatlan nyelv (Invisible Language). Budapest: Gondolat Kiadó.
  • Mai, F., Galke, L., & Scherp, A. (2019). CBOW is not all you need: Combining CBOW with the compositional matrix space model. In Proceedings of the Seventh International Conference on Learning Representations (ICLR 2019). OpenReview.net.

    Abstract

    Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of capturing the word order. The reason is that the computation of CBOW's word embeddings is commutative, i.e., embeddings of XYZ and ZYX are the same. In order to address this shortcoming, we propose a
    learning algorithm for the Continuous Matrix Space Model, which we call Continual Multiplication of Words (CMOW). Our algorithm is an adaptation of word2vec, so that it can be trained on large quantities of unlabeled text. We empirically show that CMOW better captures linguistic properties, but it is inferior to CBOW in memorizing word content. Motivated by these findings, we propose a hybrid model that combines the strengths of CBOW and CMOW. Our results show that the hybrid CBOW-CMOW-model retains CBOW's strong ability to memorize word content while at the same time substantially improving its ability to encode other linguistic information by 8%. As a result, the hybrid also performs better on 8 out of 11 supervised downstream tasks with an average improvement of 1.2%.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and
    Dutch. On a suprasegmental level, stressed syllables tend to be
    longer and more acoustically salient than unstressed syllables;
    segmentally, vowels in unstressed syllables are often reduced.
    The frequency of unreduced unstressed syllables (where only
    the suprasegmental cues indicate lack of stress) however,
    differs across the languages. The present studies test whether
    listener behaviour is affected by these vocabulary differences,
    by investigating German listeners’ use of suprasegmental cues
    to lexical stress in German and English word recognition. In a
    forced-choice identification task, German listeners correctly
    assigned single-syllable fragments (e.g., Kon-) to one of two
    words differing in stress (KONto, konZEPT). Thus, German
    listeners can exploit suprasegmental information for
    identifying words. German listeners also performed above
    chance in a similar task in English (with, e.g., DIver, diVERT),
    i.e., their sensitivity to these cues also transferred to a nonnative
    language. An English listener group, in contrast, failed
    in the English fragment task. These findings mirror vocabulary
    patterns: German has more words with unreduced unstressed
    syllables than English does.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2008). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 11 (pp. 37-41). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492960.

    Abstract

    This Field Manual entry has been superceded by the 2009 version:
    https://doi.org/10.17617/2.883570

    Files private

    Request files
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Majid, A. (2008). Focal colours. In A. Majid (Ed.), Field Manual Volume 11 (pp. 8-10). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492958.

    Abstract

    In this task we aim to find what the best exemplars or “focal colours” of each basic colour term is in our field languages. This is an important part of the evidence we need in order to understand the colour data collected using 'The Language of Vision I: Colour'. This task consists of an experiment where participants pick out the best exemplar for the colour terms in their language. The goal is to establish language specific focal colours.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Mamus, E., Rissman, L., Majid, A., & Ozyurek, A. (2019). Effects of blindfolding on verbal and gestural expression of path in auditory motion events. In A. K. Goel, C. M. Seifert, & C. C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2275-2281). Montreal, QB: Cognitive Science Society.

    Abstract

    Studies have claimed that blind people’s spatial representations are different from sighted people, and blind people display superior auditory processing. Due to the nature of auditory and haptic information, it has been proposed that blind people have spatial representations that are more sequential than sighted people. Even the temporary loss of sight—such as through blindfolding—can affect spatial representations, but not much research has been done on this topic. We compared blindfolded and sighted people’s linguistic spatial expressions and non-linguistic localization accuracy to test how blindfolding affects the representation of path in auditory motion events. We found that blindfolded people were as good as sighted people when localizing simple sounds, but they outperformed sighted people when localizing auditory motion events. Blindfolded people’s path related speech also included more sequential, and less holistic elements. Our results indicate that even temporary loss of sight influences spatial representations of auditory motion events
  • Marcoux, K., & Ernestus, M. (2019). Differences between native and non-native Lombard speech in terms of pitch range. In M. Ochmann, M. Vorländer, & J. Fels (Eds.), Proceedings of the ICA 2019 and EAA Euroregio. 23rd International Congress on Acoustics, integrating 4th EAA Euroregio 2019 (pp. 5713-5720). Berlin: Deutsche Gesellschaft für Akustik.

    Abstract

    Lombard speech, speech produced in noise, is acoustically different from speech produced in quiet (plain speech) in several ways, including having a higher and wider F0 range (pitch). Extensive research on native Lombard speech does not consider that non-natives experience a higher cognitive load while producing
    speech and that the native language may influence the non-native speech. We investigated pitch range in plain and Lombard speech in native and non-natives.
    Dutch and American-English speakers read contrastive question-answer pairs in quiet and in noise in English, while the Dutch also read Dutch sentence pairs. We found that Lombard speech is characterized by a wider pitch range than plain speech, for all speakers (native English, non-native English, and native Dutch).
    This shows that non-natives also widen their pitch range in Lombard speech. In sentences with early-focus, we see the same increase in pitch range when going from plain to Lombard speech in native and non-native English, but a smaller increase in native Dutch. In sentences with late-focus, we see the biggest increase for the native English, followed by non-native English and then native Dutch. Together these results indicate an effect of the native language on non-native Lombard speech.
  • Marcoux, K., & Ernestus, M. (2019). Pitch in native and non-native Lombard speech. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 2019) (pp. 2605-2609). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Lombard speech, speech produced in noise, is
    typically produced with a higher fundamental
    frequency (F0, pitch) compared to speech in quiet. This paper examined the potential differences in native and non-native Lombard speech by analyzing median pitch in sentences with early- or late-focus produced in quiet and noise. We found an increase in pitch in late-focus sentences in noise for Dutch speakers in both English and Dutch, and for American-English speakers in English. These results
    show that non-native speakers produce Lombard speech, despite their higher cognitive load. For the early-focus sentences, we found a difference between the Dutch and the American-English speakers. Whereas the Dutch showed an increased F0 in noise
    in English and Dutch, the American-English speakers did not in English. Together, these results suggest that some acoustic characteristics of Lombard speech, such as pitch, may be language-specific, potentially
    resulting in the native language influencing the non-native Lombard speech.
  • Martin, A., & Van Turennout, M. (2002). Searching for the neural correlates of object priming. In L. R. Squire, & D. L. Schacter (Eds.), The Neuropsychology of Memory (pp. 239-247). New York: Guilford Press.
  • Matsuo, A., & Duffield, N. (2002). Assessing the generality of knowledge about English ellipsis in SLA. In J. Costa, & M. J. Freitas (Eds.), Proceedings of the GALA 2001 Conference on Language Acquisition (pp. 49-53). Lisboa: Associacao Portuguesa de Linguistica.
  • Matsuo, A., & Duffield, N. (2002). Finiteness and parallelism: Assessing the generality of knowledge about English ellipsis in SLA. In B. Skarabela, S. Fish, & A.-H.-J. Do (Eds.), Proceedings of the 26th Boston University Conference on Language Development (pp. 197-207). Somerville, Massachusetts: Cascadilla Press.
  • Mauner, G., Koenig, J.-P., Melinger, A., & Bienvenue, B. (2002). The lexical source of unexpressed participants and their role in sentence and discourse understanding. In P. Merlo, & S. Stevenson (Eds.), The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues (pp. 233-254). Amsterdam: John Benjamins.
  • McDonough, J., Lehnert-LeHouillier, H., & Bardhan, N. P. (2009). The perception of nasalized vowels in American English: An investigation of on-line use of vowel nasalization in lexical access. In Nasal 2009.

    Abstract

    The goal of the presented study was to investigate the use of coarticulatory vowel nasalization in lexical access by native speakers of American English. In particular, we compare the use of coart culatory place of articulation cues to that of coarticulatory vowel nasalization. Previous research on lexical access has shown that listeners use cues to the place of articulation of a postvocalic stop in the preceding vowel. However, vowel nasalization as cue to an upcoming nasal consonant has been argued to be a more complex phenomenon. In order to establish whether coarticulatory vowel nasalization aides in the process of lexical access in the same way as place of articulation cues do, we conducted two perception experiments: an off-line 2AFC discrimination task and an on-line eyetracking study using the visual world paradigm. The results of our study suggest that listeners are indeed able to use vowel nasalization in similar ways to place of articulation information, and that both types of cues aide in lexical access.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences.
  • Merkx, D., Frank, S., & Ernestus, M. (2019). Language learning using speech to image retrieval. In Proceedings of Interspeech 2019 (pp. 1841-1845). doi:10.21437/Interspeech.2019-3067.

    Abstract

    Humans learn language by interaction with their environment and listening to other humans. It should also be possible for computational models to learn language directly from speech but so far most approaches require text. We improve on existing neural network approaches to create visually grounded embeddings for spoken utterances. Using a combination of a multi-layer GRU, importance sampling, cyclic learning rates, ensembling and vectorial self-attention our results show a remarkable increase in image-caption retrieval performance over previous work. Furthermore, we investigate which layers in the model learn to recognise words in the input. We find that deeper network layers are better at encoding word presence, although the final layer has slightly lower performance. This shows that our visually grounded sentence encoder learns to recognise words from the input even though it is not explicitly trained for word recognition.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.
  • Mitterer, H. (2008). How are words reduced in spontaneous speech? In A. Botonis (Ed.), Proceedings of ISCA Tutorial and Research Workshop On Experimental Linguistics (pp. 165-168). Athens: University of Athens.

    Abstract

    Words are reduced in spontaneous speech. If reductions are constrained by functional (i.e., perception and production) constraints, they should not be arbitrary. This hypothesis was tested by examing the pronunciations of high- to mid-frequency words in a Dutch and a German spontaneous speech corpus. In logistic-regression models the "reduction likelihood" of a phoneme was predicted by fixed-effect predictors such as position within the word, word length, word frequency, and stress, as well as random effects such as phoneme identity and word. The models for Dutch and German show many communalities. This is in line with the assumption that similar functional constraints influence reductions in both languages.
  • Moisik, S. R., Zhi Yun, D. P., & Dediu, D. (2019). Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 864-868). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    The anterior lordosis of the cervical spine is thought
    to contribute to pitch (fo) production by influencing
    cricoid rotation as a function of larynx height. This
    study examines the matter of inter-individual
    variation in cervical spine shape and whether this has
    an influence on how fo is produced along increasing
    or decreasing scales, using the ArtiVarK dataset,
    which contains real-time MRI pitch production data.
    We find that the cervical spine actively participates in
    fo production, but the amount of displacement
    depends on individual shape. In general, anterior
    spine motion (tending toward cervical lordosis)
    occurs for low fo, while posterior movement (tending
    towards cervical kyphosis) occurs for high fo.
  • Mudd, K., Lutzenberger, H., De Vos, C., Fikkert, P., Crasborn, O., & De Boer, B. (2020). How does social structure shape language variation? A case study of the Kata Kolok lexicon. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 302-304). Nijmegen: The Evolution of Language Conferences.
  • Musgrave, S., & Cutfield, S. (2009). Language documentation and an Australian National Corpus. In M. Haugh, K. Burridge, J. Mulder, & P. Peters (Eds.), Selected proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus: Mustering Languages (pp. 10-18). Somerville: Cascadilla Proceedings Project.

    Abstract

    Corpus linguistics and language documentation are usually considered separate subdisciplines within linguistics, having developed from different traditions and often operating on different scales, but the authors will suggest that there are commonalities to the two: both aim to represent language use in a community, and both are concerned with managing digital data. The authors propose that the development of the Australian National Corpus (AusNC) be guided by the experience of language documentation in the management of multimodal digital data and its annotation, and in ethical issues pertaining to making the data accessible. This would allow an AusNC that is distributed, multimodal, and multilingual, with holdings of text, audio, and video data distributed across multiple institutions; and including Indigenous, sign, and migrant community languages. An audit of language material held by Australian institutions and individuals is necessary to gauge the diversity and volume of possible content, and to inform common technical standards.
  • Narasimhan, B., & Brown, P. (2009). Getting the inside story: Learning to talk about containment in Tzeltal and Hindi. In V. C. Mueller-Gathercole (Ed.), Routes to language: Studies in honor of Melissa Bowerman (pp. 97-132). New York: Psychology Press.

    Abstract

    The present study examines young children's uses of semantically specific and general relational containment terms (e.g. in, enter) in Hindi and Tzeltal, and the extent to which their usage patterns are influenced by input frequency. We hypothesize that if children have a preference for relational terms that are semantically specific, this will be reflected in early acquisition of more semantically specific expressions and underextension of semantically general ones, regardless of the distributional patterns of use of these terms in the input. Our findings however show a strong role for input frequency in guiding children's patterns of use of containment terms in the two languages. Yet language-specific lexicalization patterns play a role as well, since object-specific containment verbs are used as early as the semantically general 'enter' verb by children acquiring Tzeltal.
  • Nijveld, A., Ten Bosch, L., & Ernestus, M. (2019). ERP signal analysis with temporal resolution using a time window bank. In Proceedings of Interspeech 2019 (pp. 1208-1212). doi:10.21437/Interspeech.2019-2729.

    Abstract

    In order to study the cognitive processes underlying speech comprehension, neuro-physiological measures (e.g., EEG and MEG), or behavioural measures (e.g., reaction times and response accuracy) can be applied. Compared to behavioural measures, EEG signals can provide a more fine-grained and complementary view of the processes that take place during the unfolding of an auditory stimulus.

    EEG signals are often analysed after having chosen specific time windows, which are usually based on the temporal structure of ERP components expected to be sensitive to the experimental manipulation. However, as the timing of ERP components may vary between experiments, trials, and participants, such a-priori defined analysis time windows may significantly hamper the exploratory power of the analysis of components of interest. In this paper, we explore a wide-window analysis method applied to EEG signals collected in an auditory repetition priming experiment.

    This approach is based on a bank of temporal filters arranged along the time axis in combination with linear mixed effects modelling. Crucially, it permits a temporal decomposition of effects in a single comprehensive statistical model which captures the entire EEG trace.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Oostdijk, N., Goedertier, W., Van Eynde, F., Boves, L., Martens, J.-P., Moortgat, M., & Baayen, R. H. (2002). Experiences from the Spoken Dutch Corpus Project. In Third international conference on language resources and evaluation (pp. 340-347). Paris: European Language Resources Association.
  • Ozturk, O., & Papafragou, A. (2008). Acquisition of evidentiality and source monitoring. In H. Chan, H. Jacob, & E. Kapia (Eds.), Proceedings from the 32nd Annual Boston University Conference on Language Development [BUCLD 32] (pp. 368-377). Somerville, Mass.: Cascadilla Press.
  • Ozyurek, A. (1998). An analysis of the basic meaning of Turkish demonstratives in face-to-face conversational interaction. In S. Santi, I. Guaitella, C. Cave, & G. Konopczynski (Eds.), Oralite et gestualite: Communication multimodale, interaction: actes du colloque ORAGE 98 (pp. 609-614). Paris: L'Harmattan.
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Ozyurek, A. (2002). Speech-gesture relationship across languages and in second language learners: Implications for spatial thinking and speaking. In B. Skarabela, S. Fish, & A. H. Do (Eds.), Proceedings of the 26th annual Boston University Conference on Language Development (pp. 500-509). Somerville, MA: Cascadilla Press.
  • Pacheco, A., Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Profiling dislexic children: Phonology and visual naming skills. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 40). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Paplu, S. H., Mishra, C., & Berns, K. (2020). Pseudo-randomization in automating robot behaviour during human-robot interaction. In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 1-6). Institute of Electrical and Electronics Engineers. doi:10.1109/ICDL-EpiRob48136.2020.9278115.

    Abstract

    Automating robot behavior in a specific situation is an active area of research. There are several approaches available in the literature of robotics to cater for the automatic behavior of a robot. However, when it comes to humanoids or human-robot interaction in general, the area has been less explored. In this paper, a pseudo-randomization approach has been introduced to automatize the gestures and facial expressions of an interactive humanoid robot called ROBIN based on its mental state. A significant number of gestures and facial expressions have been implemented to allow the robot more options to perform a relevant action or reaction based on visual stimuli. There is a display of noticeable differences in the behaviour of the robot for the same stimuli perceived from an interaction partner. This slight autonomous behavioural change in the robot clearly shows a notion of automation in behaviour. The results from experimental scenarios and human-centered evaluation of the system help validate the approach.

    Files private

    Request files
  • Parhammer*, S. I., Ebersberg*, M., Tippmann*, J., Stärk*, K., Opitz, A., Hinger, B., & Rossi, S. (2019). The influence of distraction on speech processing: How selective is selective attention? In Proceedings of Interspeech 2019 (pp. 3093-3097). doi:10.21437/Interspeech.2019-2699.

    Abstract

    -* indicates shared first authorship -
    The present study investigated the effects of selective attention on the processing of morphosyntactic errors in unattended parts of speech. Two groups of German native (L1) speakers participated in the present study. Participants listened to sentences in which irregular verbs were manipulated in three different conditions (correct, incorrect but attested ablaut pattern, incorrect and crosslinguistically unattested ablaut pattern). In order to track fast dynamic neural reactions to the stimuli, electroencephalography was used. After each sentence, participants in Experiment 1 performed a semantic judgement task, which deliberately distracted the participants from the syntactic manipulations and directed their attention to the semantic content of the sentence. In Experiment 2, participants carried out a syntactic judgement task, which put their attention on the critical stimuli. The use of two different attentional tasks allowed for investigating the impact of selective attention on speech processing and whether morphosyntactic processing steps are performed automatically. In Experiment 2, the incorrect attested condition elicited a larger N400 component compared to the correct condition, whereas in Experiment 1 no differences between conditions were found. These results suggest that the processing of morphosyntactic violations in irregular verbs is not entirely automatic but seems to be strongly affected by selective attention.
  • Pederson, E., & Wilkins, D. (1996). A cross-linguistic questionnaire on 'demonstratives'. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 1-11). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003259.

    Abstract

    Demonstrative terms (e.g., this and that) are key items in understanding how a language constructs and interprets spatial relationships. This in-depth questionnaire explores how demonstratives (and similar spatial deixis forms) function in the research language, covering such topics as their morphology and syntax, semantic dimensions, and co-occurring gesture practices. Questionnaire responses should ideally be based on natural, situated discourse as well as elicitation with consultants.
  • Pederson, E., & Senft, G. (1996). Route descriptions: interactive games with Eric's maze task. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 15-17). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003287.

    Abstract

    What are the preferred ways to describe spatial relationships in different linguistic and cultural groups, and how does this interact with non-linguistic spatial awareness? This game was devised as an interactive supplement to several items that collect information on the encoding and understanding of spatial relationships, especially as relevant to “route descriptions”. This is a director-matcher task, where one consultant has access to stimulus materials that shows a “target” situation, and directs another consultant (who cannot see the target) to recreate this arrangement.
  • Perniss, P. M., & Ozyurek, A. (2008). Representations of action, motion and location in sign space: A comparison of German (DGS) and Turkish (TID) sign language narratives. In J. Quer (Ed.), Signs of the time: Selected papers from TISLR 8 (pp. 353-376). Seedorf: Signum Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions in Kata Kolok (Bali). In Possessive and existential constructions in sign languages. Nijmegen: Ishara Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions: Introduction and overview. In Possessive and existential constructions in sign languages (pp. 1-31). Nijmegen: Ishara Press.
  • Petersson, K. M. (2008). On cognition, structured sequence processing, and adaptive dynamical systems. American Institute of Physics Conference Proceedings, 1060(1), 195-200.

    Abstract

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.
  • Petersson, K. M. (2002). Brain physiology. In R. Behn, & C. Veranda (Eds.), Proceedings of The 4th Southern European School of the European Physical Society - Physics in Medicine (pp. 37-38). Montreux: ESF.

Share this page