Publications

Displaying 301 - 400 of 878
  • Indefrey, P., Gruber, O., Brown, C. M., Hagoort, P., Posse, S., & Kleinschmidt, A. (1998). Lexicality and not syllable frequency determine lateralized premotor activation during the pronunciation of word-like stimuli: An fMRI study. NeuroImage, 7, S4.
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Ischebeck, A., Indefrey, P., Usui, N., Nose, I., Hellwig, F. M., & Taira, M. (2004). Reading in a regular orthography: An fMRI study investigating the role of visual familiarity. Journal of Cognitive Neuroscience, 16(5), 727-741. doi:10.1162/089892904970708.

    Abstract

    In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but visually dissimilar syllabaries allow the writing of, for example, foreign loanwords in two ways, only one of which is visually familiar. Familiarly written words, unfamiliarly written words, and pseudowords were presented in both Kana syllabaries (yielding six conditions in total) to participants during an fMRI measurement with a silent articulation task (Experiment 1) and a phonological lexical decision task (Experiment 2) using an event-related design. Consistent over two experimental tasks, the three different stimulus types (familiar, unfamiliar, and pseudoword) were found to activate selectively different brain regions previously associated with phonological encoding and word retrieval or meaning. Compatible with the predictions of the dual-route model for reading, pseudowords and visually unfamiliar words, which have to be read using phonological assembly, caused an increase in brain activity in left inferior frontal regions (BA 44/47), as compared to visually familiar words. Visually familiar and unfamiliar words were found to activate a range of areas associated with lexico-semantic processing more strongly than pseudowords, such as the left and right temporo-parietal region (BA 39/40), a region in the left middle/inferior temporal gyrus (BA 20/21), and the posterior cingulate (BA 31).
  • Jackson, C. N., Mormer, E., & Brehm, L. (2018). The production of subject-verb agreement among Swedish and Chinese second language speakers of English. Studies in Second Language Acquisition, 40(4), 907-921. doi: 10.1017/S0272263118000025.

    Abstract

    This study uses a sentence completion task with Swedish and Chinese L2 English speakers to investigate how L1 morphosyntax and L2 proficiency influence L2 English subject-verb agreement production. Chinese has limited nominal and verbal number morphology, while Swedish has robust noun phrase (NP) morphology but does not number-mark verbs. Results showed that like L1 English speakers, both L2 groups used grammatical and conceptual number to produce subject-verb agreement. However, only L1 Chinese speakers—and less-proficient speakers in both L2 groups—were similarly influenced by grammatical and conceptual number when producing the subject NP. These findings demonstrate how L2 proficiency, perhaps combined with cross-linguistic differences, influence L2 production and underscore that encoding of noun and verb number are not independent.
  • Jacobs, A. M., & Willems, R. M. (2018). The fictive brain: Neurocognitive correlates of engagement in literature. Review of General Psychology, 22(2), 147-160. doi:10.1037/gpr0000106.

    Abstract

    Fiction is vital to our being. Many people enjoy engaging with fiction every day. Here we focus on literary reading as 1 instance of fiction consumption from a cognitive neuroscience perspective. The brain processes which play a role in the mental construction of fiction worlds and the related engagement with fictional characters, remain largely unknown. The authors discuss the neurocognitive poetics model (Jacobs, 2015a) of literary reading specifying the likely neuronal correlates of several key processes in literary reading, namely inference and situation model building, immersion, mental simulation and imagery, figurative language and style, and the issue of distinguishing fact from fiction. An overview of recent work on these key processes is followed by a discussion of methodological challenges in studying the brain bases of fiction processing
  • Jadoul, Y., Thompson, B., & De Boer, B. (2018). Introducing Parselmouth: A Python interface to Praat. Journal of Phonetics, 71, 1-15. doi:10.1016/j.wocn.2018.07.001.

    Abstract

    This paper introduces Parselmouth, an open-source Python library that facilitates access to core functionality of Praat in Python, in an efficient and programmer-friendly way. We introduce and motivate the package, and present simple usage examples. Specifically, we focus on applications in data visualisation, file manipulation, audio manipulation, statistical analysis, and integration of Parselmouth into a Python-based experimental design for automated, in-the-loop manipulation of acoustic data. Parselmouth is available at https://github.com/YannickJadoul/Parselmouth.
  • Janse, E., & Klitsch, J. (2004). Auditieve perceptie bij gezonde sprekers en bij sprekers met verworven taalstoornissen. Afasiologie, 26(1), 2-6.
  • Janse, E. (2004). Word perception in fast speech: Artificially time-compressed vs. naturally produced fast speech. Speech Communication, 42, 155-173. doi:10.1016/j.specom.2003.07.001.

    Abstract

    Natural fast speech differs from normal-rate speech with respect to its temporal pattern. Previous results showed that word intelligibility of heavily artificially time-compressed speech could not be improved by making its temporal pattern more similar to that of natural fast speech. This might have been due to the extrapolation of timing rules for natural fast speech to rates that are much faster than can be attained by human speakers. The present study investigates whether, at a speech rate that human speakers can attain, artificially time-compressed speech is easier to process if its timing pattern is similar to that of naturally produced fast speech. Our first experiment suggests, however, that word processing speed was slowed down, relative to linear compression. In a second experiment, word processing of artificially time-compressed speech was compared with processing of naturally produced fast speech. Even when naturally produced fast speech is perfectly intelligible, its less careful articulation, combined with the changed timing pattern, slows down processing, relative to linearly time-compressed speech. Furthermore, listeners preferred artificially time-compressed speech over naturally produced fast speech. These results suggest that linearly time-compressed speech has both a temporal and a segmental advantage over natural fast speech.
  • Janse, E., Nooteboom, S. G., & Quené, H. (2003). Word-level intelligibility of time-compressed speech: Prosodic and segmental factors. Speech Communication, 41, 287-301. doi:10.1016/S0167-6393(02)00130-9.

    Abstract

    In this study we investigate whether speakers, in line with the predictions of the Hyper- and Hypospeech theory, speed up most during the least informative parts and less during the more informative parts, when they are asked to speak faster. We expected listeners to benefit from these changes in timing, and our main goal was to find out whether making the temporal organisation of artificially time-compressed speech more like that of natural fast speech would improve intelligibility over linear time compression. Our production study showed that speakers reduce unstressed syllables more than stressed syllables, thereby making the prosodic pattern more pronounced. We extrapolated fast speech timing to even faster rates because we expected that the more salient prosodic pattern could be exploited in difficult listening situations. However, at very fast speech rates, applying fast speech timing worsens intelligibility. We argue that the non-uniform way of speeding up may not be due to an underlying communicative principle, but may result from speakers’ inability to speed up otherwise. As both prosodic and segmental information contribute to word recognition, we conclude that extrapolating fast speech timing to extremely fast rates distorts this balance between prosodic and segmental information.
  • Jansma, B. M., & Schiller, N. O. (2004). Monitoring syllable boundaries during speech production. Brain and Language, 90(1-3), 311-317. doi:10.1016/S0093-934X(03)00443-7.

    Abstract

    This study investigated the encoding of syllable boundary information during speech production in Dutch. Based on Levelt's model of phonological encoding, we hypothesized segments and syllable boundaries to be encoded in an incremental way. In a selfmonitoring experiment, decisions about the syllable affiliation (first or second syllable) of a pre-specified consonant, which was the third phoneme in a word, were required (e.g., ka.No canoe vs. kaN.sel pulpit ; capital letters indicate pivotal consonants, dots mark syllable boundaries). First syllable responses were faster than second syllable responses, indicating the incremental nature of segmental encoding and syllabification during speech production planning. The results of the experiment are discussed in the context of Levelt 's model of phonological encoding.
  • Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.

    Abstract

    Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Janssen, R., Moisik, S. R., & Dediu, D. (2018). Modelling human hard palate shape with Bézier curves. PLoS One, 13(2): e0191557. doi:10.1371/journal.pone.0191557.

    Abstract

    People vary at most levels, from the molecular to the cognitive, and the shape of the hard palate (the bony roof of the mouth) is no exception. The patterns of variation in the hard palate are important for the forensic sciences and (palaeo)anthropology, and might also play a role in speech production, both in pathological cases and normal variation. Here we describe a method based on Bézier curves, whose main aim is to generate possible shapes of the hard palate in humans for use in computer simulations of speech production and language evolution. Moreover, our method can also capture existing patterns of variation using few and easy-to-interpret parameters, and fits actual data obtained from MRI traces very well with as little as two or three free parameters. When compared to the widely-used Principal Component Analysis (PCA), our method fits actual data slightly worse for the same number of degrees of freedom. However, it is much better at generating new shapes without requiring a calibration sample, its parameters have clearer interpretations, and their ranges are grounded in geometrical considerations. © 2018 Janssen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Janzen, G., & Van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7(6), 673-677. doi:10.1038/nn1257.

    Abstract

    As people find their way through their environment, objects at navigationally relevant locations can serve as crucial landmarks. The parahippocampal gyrus has previously been shown to be involved in object and scene recognition. In the present study, we investigated the neural representation of navigationally relevant locations. Healthy human adults viewed a route through a virtual museum with objects placed at intersections (decision points) or at simple turns (non-decision points). Event-related functional magnetic resonance imaging (fMRI) data were acquired during subsequent recognition of the objects in isolation. Neural activity in the parahippocampal gyrus reflected the navigational relevance of an object's location in the museum. Parahippocampal responses were selectively increased for objects that occurred at decision points, independent of attentional demands. This increase occurred for forgotten as well as remembered objects, showing implicit retrieval of navigational information. The automatic storage of relevant object location in the parahippocampal gyrus provides a part of the neural mechanism underlying successful navigation.
  • Jescheniak, J. D., Levelt, W. J. M., & Meyer, A. S. (2003). Specific word frequency is not all that counts in speech production: Comments on Caramazza, Costa, et al. (2001) and new experimental data. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29(3), 432-438. doi:10.1037/0278-7393.29.3.432.

    Abstract

    A. Caramazza, A. Costa, M. Miozzo, and Y. Bi(2001) reported a series of experiments demonstrating that the ease of producing a word depends only on the frequency of that specific word but not on the frequency of a homophone twin. A. Caramazza, A. Costa, et al. concluded that homophones have separate word form representations and that the absence of frequency-inheritance effects for homophones undermines an important argument in support of 2-stage models of lexical access, which assume that syntactic (lemma) representations mediate between conceptual and phonological representations. The authors of this article evaluate the empirical basis of this conclusion, report 2 experiments demonstrating a frequency-inheritance effect, and discuss other recent evidence. It is concluded that homophones share a common word form and that the distinction between lemmas and word forms should be upheld.
  • Johnson, E. K., Bruggeman, L., & Cutler, A. (2018). Abstraction and the (misnamed) language familiarity effect. Cognitive Science, 42, 633-645. doi:10.1111/cogs.12520.

    Abstract

    Talkers are recognized more accurately if they are speaking the listeners’ native language rather than an unfamiliar language. This “language familiarity effect” has been shown not to depend upon comprehension and must instead involve language sound patterns. We further examine the level of sound-pattern processing involved, by comparing talker recognition in foreign languages versus two varieties of English, by (a) English speakers of one variety, (b) English speakers of the other variety, and (c) non-native listeners (more familiar with one of the varieties). All listener groups performed better with native than foreign speech, but no effect of language variety appeared: Native listeners discriminated talkers equally well in each, with the native variety never outdoing the other variety, and non-native listeners discriminated talkers equally poorly in each, irrespective of the variety's familiarity. The results suggest that this talker recognition effect rests not on simple familiarity, but on an abstract level of phonological processing
  • Johnson, E. K., Jusczyk, P. W., Cutler, A., & Norris, D. (2003). Lexical viability constraints on speech segmentation by infants. Cognitive Psychology, 46(1), 65-97. doi:10.1016/S0010-0285(02)00507-8.

    Abstract

    The Possible Word Constraint limits the number of lexical candidates considered in speech recognition by stipulating that input should be parsed into a string of lexically viable chunks. For instance, an isolated single consonant is not a feasible word candidate. Any segmentation containing such a chunk is disfavored. Five experiments using the head-turn preference procedure investigated whether, like adults, 12-month-olds observe this constraint in word recognition. In Experiments 1 and 2, infants were familiarized with target words (e.g., rush), then tested on lists of nonsense items containing these words in “possible” (e.g., “niprush” [nip + rush]) or “impossible” positions (e.g., “prush” [p + rush]). The infants listened significantly longer to targets in “possible” versus “impossible” contexts when targets occurred at the end of nonsense items (rush in “prush”), but not when they occurred at the beginning (tan in “tance”). In Experiments 3 and 4, 12-month-olds were similarly familiarized with target words, but test items were real words in sentential contexts (win in “wind” versus “window”). The infants listened significantly longer to words in the “possible” condition regardless of target location. Experiment 5 with targets at the beginning of isolated real words (e.g., win in “wind”) replicated Experiment 2 in showing no evidence of viability effects in beginning position. Taken together, the findings suggest that, in situations in which 12-month-olds are required to rely on their word segmentation abilities, they give evidence of observing lexical viability constraints in the way that they parse fluent speech.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Systematiek en dynamiek bij de verwerving van Finietheid. Toegepaste Taalwetenschap in Artikelen, 71, 9-22.

    Abstract

    In early Dutch learner varieties, there is no evidence of finiteness being a functional category. There is no V2nd: no correlation between inflectional morphology and movement. Initially, learners express the illocutive function of finiteness through the use of illocutive markers, with the non-use of an illocutive marker expressing the default illocutive function of assertion. Illocutive markers are functioning as adjuncts with scope over the predicate. Illocutive markers become re-analysed as functional elements.The driving force is the acquisition of the auxiliary verbs that occur with past participles. It leads to a reanalysis of illocutive markers as two separate elements: an auxiliary verb and a scope adverb. The (modal) auxiliary carries illocutive function. Lexical verb-argument structure (including the external argument) occurs within the domain of the auxiliary verb. The predicate as the focus constituent occurs within the domain of a scope adverb. This reanalysis establishes a position for the external argument within the domain of AUX. The acquisition of AUX causes the acquisition of a (hierarchical) structure with a complement as a constituent which represents an underlying verb-argument structure, a predicate as the domain of elements that are in focus, and an external (specifier) position as a landing site for elements with topic function.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kalashnikova, M., Escudero, P., & Kidd, E. (2018). The development of fast-mapping and novel word retention strategies in monolingual and bilingual infants. Developmental Science, 21(6): e12674. doi:10.1111/desc.12674.

    Abstract

    The mutual exclusivity (ME) assumption is proposed to facilitate early word learning by guiding infants to map novel words to novel referents. This study assessed the emergence and use of ME to both disambiguate and retain the meanings of novel words across development in 18‐month‐old monolingual and bilingual children (Experiment 1; N = 58), and in a sub‐group of these children again at 24 months of age (Experiment 2: N = 32). Both monolinguals and bilinguals employed ME to select the referent of a novel label to a similar extent at 18 and 24 months. At 18 months, there were also no differences in novel word retention between the two language‐background groups. However, at 24 months, only monolinguals showed the ability to retain these label–object mappings. These findings indicate that the development of the ME assumption as a reliable word‐learning strategy is shaped by children's individual language exposure and experience with language use.

    Files private

    Request files
  • Kanero, J., Geçkin, V., Oranç, C., Mamus, E., Küntay, A. C., & Göksun, T. (2018). Social robots for early language learning: Current evidence and future directions. Child Development Perspectives, 12(3), 146-151. doi:10.1111/cdep.12277.

    Abstract

    In this article, we review research on child–robot interaction (CRI) to discuss how social robots can be used to scaffold language learning in young children. First we provide reasons why robots can be useful for teaching first and second languages to children. Then we review studies on CRI that used robots to help children learn vocabulary and produce language. The studies vary in first and second languages and demographics of the learners (typically developing children and children with hearing and communication impairments). We conclude that, although social robots are useful for teaching language to children, evidence suggests that robots are not as effective as human teachers. However, this conclusion is not definitive because robots that tutor students in language have not been evaluated rigorously and technology is advancing rapidly. We suggest that CRI offers an opportunity for research and list possible directions for that work.
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., & Harbusch, K. (2018). A competitive mechanism selecting verb-second versus verb-final word order in causative and argumentative clauses of spoken Dutch: A corpus-linguistic study. Language Sciences, 69, 30-42. doi:10.1016/j.langsci.2018.05.005.

    Abstract

    In Dutch and German, the canonical order of subject, object(s) and finite verb is ‘verb-second’ (V2) in main but ‘verb-final’ (VF) in subordinate clauses. This occasionally leads to the production of noncanonical word orders. Familiar examples are causative and argumentative clauses introduced by a subordinating conjunction (Du. omdat, Ger. weil ‘because’): the omdat/weil-V2 phenomenon. Such clauses may also be introduced by coordinating conjunctions (Du. want, Ger. denn), which license V2 exclusively. However, want/denn-VF structures are unknown. We present the results of a corpus study on the incidence of omdat-V2 in spoken Dutch, and compare them to published data on weil-V2 in spoken German. Basic findings: omdat-V2 is much less frequent than weil-V2 (ratio almost 1:8); and the frequency relations between coordinating and subordinating conjunctions are opposite (want >> omdat; denn << weil). We propose that conjunction selection and V2/VF selection proceed partly independently, and sometimes miscommunicate—e.g. yielding omdat/weil paired with V2. Want/denn-VF pairs do not occur because want/denn clauses are planned as autonomous sentences, which take V2 by default. We sketch a simple feedforward neural network with two layers of nodes (representing conjunctions and word orders, respectively) that can simulate the observed data pattern through inhibition-based competition of the alternative choices within the node layers.
  • Kempen, G. (1979). A study of syntactic bookkeeping during sentence production. In H. Ueckert, & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 361-368). Bern: Hans Huber.

    Abstract

    It is an important feature of the human sentence production system that semantic and syntactic processes may overlap in time and do not proceed strictly serially. That is, the process of building the syntactic form of an utterance does not always wait until the complete semantic content for that utterance has been decided upon. On the contrary, speakers will often start pronouncing the first words of a sentence while still working on further details of its semantic content. An important advantage is memory economy. Semantic and syntactic fragments do not have to occupy working memory until complete semantic and syntactic structures for an utterance have been computed. Instead, each semantic and syntactic fragment is processed as soon as possible and is kept in working memory for a minimum period of time. This raises the question of how the sentence production system can maintain syntactic coherence across syntactic fragments. Presumably there are processes of "syntactic bookkeeping" which (1) store in working memory those syntactic properties of a fragmentary sentence which are needed to eliminate ungrammatical continuations, and (2) check whether a prospective continuation is indeed compatible with the sentence constructed so far. In reaction time experiments where subjects described, under time pressure, simple static pictures of an action performed by an actor, the second aspect of syntactic bookkeeping could be demonstrated. This evidence is used for modelling bookkeeping processes as part of a computational sentence generator which aims at simulating the syntactic operations people carry out during spontaneous speech.
  • Kempen, G. (1966). Een informatietheoretische reïnterpretatie van het probleem der autonome geheugenveranderingen. Gawein: Tijdschrift voor psychologie, 15, 9-26.
  • Kempen, G. (1998). Comparing and explaining the trajectories of first and second language acquisition: In search of the right mix of psychological and linguistic factors [Commentory]. Bilingualism: Language and Cognition, 1, 29-30. doi:10.1017/S1366728998000066.

    Abstract

    When you compare the behavior of two different age groups which are trying to master the same sensori-motor or cognitive skill, you are likely to discover varying learning routes: different stages, different intervals between stages, or even different orderings of stages. Such heterogeneous learning trajectories may be caused by at least six different types of factors: (1) Initial state: the kinds and levels of skills the learners have available at the onset of the learning episode. (2) Learning mechanisms: rule-based, inductive, connectionist, parameter setting, and so on. (3) Input and feedback characteristics: learning stimuli, information about success and failure. (4) Information processing mechanisms: capacity limitations, attentional biases, response preferences. (5) Energetic variables: motivation, emotional reactions. (6) Final state: the fine-structure of kinds and levels of subskills at the end of the learning episode. This applies to language acquisition as well. First and second language learners probably differ on all six factors. Nevertheless, the debate between advocates and opponents of the Fundamental Difference Hypothesis concerning L1 and L2 acquisition have looked almost exclusively at the first two factors. Those who believe that L1 learners have access to Universal Grammar whereas L2 learners rely on language processing strategies, postulate different learning mechanisms (UG parameter setting in L1, more general inductive strategies in L2 learning). Pienemann opposes this view and, based on his Processability Theory, argues that L1 and L2 learners start out from different initial states: they come to the grammar learning task with different structural hypotheses (SOV versus SVO as basic word order of German).
  • Kempen, G. (1985). Artificiële intelligentie: Bouw, benutting, beheersing. In W. Veldkamp (Ed.), Innovatie in perspectief (pp. 42-47). Vianen: Nixdorf Computer B.V.
  • Kempen, G. (1973). [Review of the book Psycholinguïstiek by B. Tervoort et al.]. Nederlands Tijdschrift voor de Psychologie, 28, 172-174.
  • Kempen, G. (1966). [Review of the book Theories of learning and instruction ed. by E.R. Hilgard]. Nijmeegs Tijdschrift voor Psychologie, 14, 250.
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2003). An artificial opposition between grammaticality and frequency: Comment on Bornkessel, Schlesewsky & Friederici (2002). Cognition, 90(2), 205-210 [Rectification on p. 215]. doi:10.1016/S0010-0277(03)00145-8.

    Abstract

    In a recent Cognition paper (Cognition 85 (2002) B21), Bornkessel, Schlesewsky, and Friederici report ERP data that they claim “show that online processing difficulties induced by word order variations in German cannot be attributed to the relative infrequency of the constructions in question, but rather appear to reflect the application of grammatical principles during parsing” (p. B21). In this commentary we demonstrate that the posited contrast between grammatical principles and construction (in)frequency as sources of parsing problems is artificial because it is based on factually incorrect assumptions about the grammar of German and on inaccurate corpus frequency data concerning the German constructions involved.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G. (1979). La mise en paroles, aspects psychologiques de l'expression orale. Études de Linguistique Appliquée, 33, 19-28.

    Abstract

    Remarques sur les facteurs intervenant dans le processus de formulation des énoncés.
  • Kempen, G. (1983). Het artificiële-intelligentieparadigma. Ervaringen met een nieuwe methodologie voor cognitief-psychologisch onderzoek. In J. Raaijmakers, P. Hudson, & A. Wertheim (Eds.), Metatheoretische aspekten van de psychonomie (pp. 85-98). Deventer: Van Loghum Slaterus.
  • Kempen, G. (1983). Natural language facilities in information systems: Asset or liability? In J. Van Apeldoorn (Ed.), Man and information technology: Towards friendlier systems (pp. 81-86). Delft University Press.
  • Kempen, G. (1985). Psychologie 2000. Toegepaste psychologie in de informatiemaatschappij. Computers in de psychologie, 13-21.
  • Kempen, G. (1979). Psychologie van de zinsbouw: Een Wundtiaanse inleiding. Nederlands Tijdschrift voor de Psychologie, 34, 533-551.

    Abstract

    The psychology of language as developed by Wilhelm Wundt in his fundamental work Die Sprache (1900) has a strongly mentalistic character. The dominating positions held by behaviorism in psychology and structuralism in linguistics have overruled Wundt’s language theory to the effect that it has remained relatively unknown. This situation has changed recently under the influence of transformational linguistics and cognitive psychology. The paper discusses how Wundt applied the basic psychological concepts of apperception and association to language behavior, in particular to the construction and production of sentences during unprepared speech. The final part of the paper is devoted to the work, published in 1917, of the Dutch linguistic scholar Jacques van Ginneken, who elaborated Wundt’s ideas towards an explanation of some syntactic phenomena during the language acquisition of children.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., Schotel, H., & Pijls, J. (1985). Taaltechnologie en taalonderwijs. In J. Heene (Ed.), Onderwijs en informatietechnologie. Den Haag: Stichting voor Onderzoek van het Onderwijs (SVO).
  • Kempen, G., & Huijbers, P. (1983). The lexicalization process in sentence production and naming: Indirect election of words. Cognition, 14(2), 185-209. doi:10.1016/0010-0277(83)90029-X.

    Abstract

    A series of experiments is reported in which subjects describe simple visual scenes by means of both sentential and non-sentential responses. The data support the following statements about the lexicalization (word finding) process. (1) Words used by speakers in overt naming or sentence production responses are selected by a sequence of two lexical retrieval processes, the first yielding abstract pre-phonological items (Ll -items), the second one adding their phonological shapes (L2-items). (2) The selection of several Ll-items for a multi-word utterance can take place simultaneously. (3) A monitoring process is watching the output of Ll-lexicalization to check if it is in keeping with prevailing constraints upon utterance format. (4) Retrieval of the L2-item which corresponds with a given LI-item waits until the Ld-item has been checked by the monitor, and all other Ll-items needed for the utterance under construction have become available. A coherent picture of the lexicalization process begins to emerge when these characteristics are brought together with other empirical results in the area of naming and sentence production, e.g., picture naming reaction times (Seymour, 1979), speech errors (Garrett, 1980), and word order preferences (Bock, 1982).
  • Kempen, G. (1983). Wat betekent taalvaardigheid voor informatiesystemen? TNO project: Maandblad voor toegepaste wetenschappen, 11, 401-403.
  • Kempen, G. (1979). Woordwaarde. De Psycholoog, 14, 577.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kemps, R. J. J. K., Ernestus, M., Schreuder, R., & Baayen, R. H. (2004). Processing reduced word forms: The suffix restoration effect. Brain and Language, 90(1-3), 117-127. doi:10.1016/S0093-934X(03)00425-5.

    Abstract

    Listeners cannot recognize highly reduced word forms in isolation, but they can do so when these forms are presented in context (Ernestus, Baayen, & Schreuder, 2002). This suggests that not all possible surface forms of words have equal status in the mental lexicon. The present study shows that the reduced forms are linked to the canonical representations in the mental lexicon, and that these latter representations induce reconstruction processes. Listeners restore suffixes that are partly or completely missing in reduced word forms. A series of phoneme-monitoring experiments reveals the nature of this restoration: the basis for suffix restoration is mainly phonological in nature, but orthography has an influence as well.
  • Kidd, E., Junge, C., Spokes, T., Morrison, L., & Cutler, A. (2018). Individual differences in infant speech segmentation: Achieving the lexical shift. Infancy, 23(6), 770-794. doi:10.1111/infa.12256.

    Abstract

    We report a large‐scale electrophysiological study of infant speech segmentation, in which over 100 English‐acquiring 9‐month‐olds were exposed to unfamiliar bisyllabic words embedded in sentences (e.g., He saw a wild eagle up there), after which their brain responses to either the just‐familiarized word (eagle) or a control word (coral) were recorded. When initial exposure occurs in continuous speech, as here, past studies have reported that even somewhat older infants do not reliably recognize target words, but that successful segmentation varies across children. Here, we both confirm and further uncover the nature of this variation. The segmentation response systematically varied across individuals and was related to their vocabulary development. About one‐third of the group showed a left‐frontally located relative negativity in response to familiar versus control targets, which has previously been described as a mature response. Another third showed a similarly located positive‐going reaction (a previously described immature response), and the remaining third formed an intermediate grouping that was primarily characterized by an initial response delay. A fine‐grained group‐level analysis suggested that a developmental shift to a lexical mode of processing occurs toward the end of the first year, with variation across individual infants in the exact timing of this shift.

    Additional information

    supporting information
  • Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual differences in language acquisition and processing. Trends in Cognitive Sciences, 22(2), 154-169. doi:10.1016/j.tics.2017.11.006.

    Abstract

    Humans differ in innumerable ways, with considerable variation observable at every level of description, from the molecular to the social. Traditionally, linguistic and psycholinguistic theory has downplayed the possibility of meaningful differences in language across individuals. However, it is becoming increasingly evident that there is
    significant variation among speakers at any age as well as across the lifespan. In this paper, we review recent research in psycholinguistics, and argue that a focus on individual differences provides a crucial source of evidence that bears strongly upon core issues in theories of the acquisition and processing of language; specifically, the role of experience in language acquisition, processing, and attainment, and the architecture of the language faculty.
  • Kidd, E. (2004). Grammars, parsers, and language acquisition. Journal of Child Language, 31(2), 480-483. doi:10.1017/S0305000904006117.

    Abstract

    Drozd's critique of Crain & Thornton's (C&T) (1998) book Investigations in Universal Grammar (IUG) raises many issues concerning theory and experimental design within generative approaches to language acquisition. I focus here on one of the strongest theoretical claims of the Modularity Matching Model (MMM): continuity of processing. For reasons different to Drozd, I argue that the assumption is tenuous. Furthermore, I argue that the focus of the MMM and the methodological prescriptions contained in IUG are too narrow to capture language acquisition.
  • Kidd, E. (2003). Relative clause comprehension revisited: Commentary on Eisenberg (2002). Journal of Child Language, 30(3), 671-679. doi:10.1017/S0305000903005683.

    Abstract

    Eisenberg (2002) presents data from an experiment investigating three- and four-year-old children's comprehension of restrictive relative clauses (RC). From the results she argues, contrary to Hamburger & Crain (1982), that children do not have discourse knowledge of the felicity conditions of RCs before acquiring the syntax of relativization. This note evaluates this conclusion on the basis of the methodology used, and proposes that an account of syntactic development needs to be sensitive to the real-time processing requirements acquisition places on the learner.
  • Kircher, T. T. J., Brammer, M. J., Levelt, W. J. M., Bartels, M., & McGuire, P. K. (2004). Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage, 21(1), 84-90. doi:10.1016/j.neuroimage.2003.09.041.

    Abstract

    Pauses during continuous speech, particularly those that occur within clauses, are thought to reflect the planning of forthcoming verbal output. We used functional Magnetic Resonance Imaging (fMRI) to examine their neural correlates. Six volunteers were scanned while describing seven Rorschach inkblots, producing 3 min of speech per inkblot. In an event-related design, the level of blood oxygenation level dependent (BOLD) contrast during brief speech pauses (mean duration 1.3 s, SD 0.3 s) during overt speech was contrasted with that during intervening periods of articulation. We then examined activity associated with pauses that occurred within clauses and pauses that occurred between grammatical junctions. Relative to articulation during speech, pauses were associated with activation in the banks of the left superior temporal sulcus (BA 39/22), at the temporoparietal junction. Continuous speech was associated with greater activation bilaterally in the inferior frontal (BA 44/45), middle frontal (BA 8) and anterior cingulate (BA 24) gyri, the middle temporal sulcus (BA 21/22), the occipital cortex and the cerebellum. Left temporal activation was evident during pauses that occurred within clauses but not during pauses at grammatical junctions. In summary, articulation during continuous speech involved frontal, temporal and cerebellar areas, while pausing was associated with activity in the left temporal cortex, especially when this occurred within a clause. The latter finding is consistent with evidence that within-clause pauses are a correlate of speech planning and in particular lexical retrieval.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.
  • Kita, S., & Ozyurek, A. (2003). What does cross-linguistic variation in semantic coordination of speech and gesture reveal? Evidence for an interface representation of spatial thinking and speaking. Journal of Memory and Language, 48(1), 16-32. doi:10.1016/S0749-596X(02)00505-3.

    Abstract

    Gestures that spontaneously accompany speech convey information coordinated with the concurrent speech. There has been considerable theoretical disagreement about the process by which this informational coordination is achieved. Some theories predict that the information encoded in gesture is not influenced by how information is verbally expressed. However, others predict that gestures encode only what is encoded in speech. This paper investigates this issue by comparing informational coordination between speech and gesture across different languages. Narratives in Turkish, Japanese, and English were elicited using an animated cartoon as the stimulus. It was found that gestures used to express the same motion events were influenced simultaneously by (1) how features of motion events were expressed in each language, and (2) spatial information in the stimulus that was never verbalized. From this, it is concluded that gestures are generated from spatio-motoric processes that interact on-line with the speech production process. Through the interaction, spatio-motoric information to be expressed is packaged into chunks that are verbalizable within a processing unit for speech formulation. In addition, we propose a model of speech and gesture production as one of a class of frameworks that are compatible with the data.
  • Kita, S. (2003). Interplay of gaze, hand, torso orientation and language in pointing. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 307-328). Mahwah, NJ: Erlbaum.
  • Kita, S., & Essegbey, J. (2003). Left-hand taboo on direction-indicating gestures in Ghana: When and why people still use left-hand gestures. In M. Rector, I. Poggi, & N. Trigo (Eds.), Gesture: Meaning and use (pp. 301-306). Oporto: Edições Universidade Fernando Pessoa, Fundação Fernado Pessoa.
  • Kita, S., & Enfield, N. J. (2003). Recording recommendations for video research. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kiyama, S., Verdonschot, R. G., Xiong, K., & Tamaoka, K. (2018). Individual mentalizing ability boosts flexibility toward a linguistic marker of social distance: An ERP investigation. Journal of Neurolinguistics, 47, 1-15. doi:10.1016/j.jneuroling.2018.01.005.

    Abstract

    Sentence-final particles (SFPs) as bound morphemes in Japanese have no obvious effect on the truth conditions of a sentence. However, they encompass a diverse range of usages, from typical to atypical, according to the context and the interpersonal relationships in the specific situation. The most frequent particle,-ne, is typically used after addressee-oriented propositions for information sharing, while another frequent particle,-yo, is typically used after addresser-oriented propositions to elicit a sense of strength. This study sheds light on individual differences among native speakers in flexibly understanding such linguistic markers based on their mentalizing ability (i.e., the ability to infer the mental states of others). Two experiments employing electroencephalography (EEG) consistently showed enhanced early posterior negativities (EPN) for atypical SFP usage compared to typical usage, especially when understanding-ne compared to -yo, in both an SFP appropriateness judgment task and a content comprehension task. Importantly, the amplitude of the EPN for atypical usages of-ne was significantly higher in participants with lower mentalizing ability than in those with a higher mentalizing ability. This effect plausibly reflects low-ability mentalizers' stronger sense of strangeness toward atypical-ne usage. While high-ability mentalizers may aptly perceive others' attitudes via their various usages of-ne, low-ability mentalizers seem to adopt a more stereotypical understanding. These results attest to the greater degree of difficulty low-ability mentalizers have in establishing a smooth regulation of interpersonal distance during social encounters.

    Additional information

    stimuli dialog sets
  • Klein, W. (Ed.). (2004). Philologie auf neuen Wegen [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 136.
  • Klein, W. (Ed.). (2004). Universitas [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik (LiLi), 134.
  • Klein, W. (2004). Vom Wörterbuch zum digitalen lexikalischen System. Zeitschrift für Literaturwissenschaft und Linguistik, 136, 10-55.
  • Klein, W. (2003). Wozu braucht man eigentlich Flexionsmorphologie? Zeitschrift für Literaturwissenschaft und Linguistik, 131, 23-54.
  • Klein, W. (1983). Deixis and spatial orientation in route directions. In H. Pick, & L. Acredolo (Eds.), Spatial orientation theory: Research, and application (pp. 283-311). New York: Plenum.
  • Klein, W. (1983). Der Ausdruck der Temporalität im ungesteuerten Spracherwerb. In G. Rauh (Ed.), Essays on Deixis (pp. 149-168). Tübingen: Narr.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1973). Eine Analyse der Kerne in Schillers "Räuber". In S. Marcus (Ed.), Mathematische Poetik (pp. 326-333). Frankfurt am Main: Athenäum.
  • Klein, W. (1973). Eine Analyse der Kerne in Schillers "Räuber". Cahiers de linguistique théorique et appliquée, 10, 195-200.
  • Klein, W. (1985). Einleitung. Zeitschrift für Literaturwissenschaft und Linguistik; Metzler, Stuttgart, 15(59), 7-8.
  • Klein, W. (1979). Einleitung. Zeitschrift für Literaturwissenschaft und Linguistik; Metzler, Stuttgart, 9(33), 7-8.
  • Klein, W. (1985). Ellipse, Fokusgliederung und thematischer Stand. In R. Meyer-Hermann, & H. Rieser (Eds.), Ellipsen und fragmentarische Ausdrücke (pp. 1-24). Tübingen: Niemeyer.
  • Klein, W. (1985). Argumentationsanalyse: Ein Begriffsrahmen und ein Beispiel. In W. Kopperschmidt, & H. Schanze (Eds.), Argumente - Argumentationen (pp. 208-260). München: Fink.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (1979). Die Geschichte eines Tores. In R. Baum, F. J. Hausmann, & I. Monreal-Wickert (Eds.), Sprache in Unterricht und Forschung: Schwerpunkt Romanistik (pp. 175-194). Tübingen: Narr.
  • Klein, W., & Dimroth, C. (2003). Der ungesteuerte Zweitspracherwerb Erwachsener: Ein Überblick über den Forschungsstand. In U. Maas, & U. Mehlem (Eds.), Qualitätsanforderungen für die Sprachförderung im Rahmen der Integration von Zuwanderern (Heft 21) (pp. 127-161). Osnabrück: IMIS.
  • Klein, W. (1973). Dialekt und Einheitssprache im Fremdsprachenunterricht. In Beiträge zu den Sommerkursen des Goethe-Instituts München (pp. 53-60).
  • Klein, W., & Franceschini, R. (Eds.). (2003). Einfache Sprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 131.
  • Klein, W. (2004). Auf der Suche nach den Prinzipien, oder: Warum die Geisteswissenschaften auf dem Rückzug sind. Zeitschrift für Literaturwissenschaft und Linguistik, 134, 19-44.
  • Klein, W. (2004). Im Lauf der Jahre. Linguistische Berichte, 200, 397-407.
  • Klein, W. (1985). Gesprochene Sprache - geschriebene Sprache. Zeitschrift für Literaturwissenschaft und Linguistik, 59, 9-35.
  • Klein, W. (Ed.). (1983). Intonation [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (49).
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).
  • Klein, W. (1998). The contribution of second language acquisition research. Language Learning, 48, 527-550. doi:10.1111/0023-8333.00057.

    Abstract

    During the last 25 years, second language acquisition (SLA) research hasmade considerable progress, but is still far from proving a solid basis for foreign language teaching, or from a general theory of SLA. In addition, its status within the linguistic disciplines is still very low. I argue this has not much to do with low empirical or theoretical standards in the field—in this regard, SLA research is fully competitive—but with a particular perspective on the acquisition process: SLA researches learners' utterances as deviations from a certain target, instead of genuine manifestations of underlying language capacity; it analyses them in terms of what they are not rather than what they are. For some purposes such a "target deviation perspective" makes sense, but it will not help SLA researchers to substantially and independently contribute to a deeper understanding of the structure and function of the human language faculty. Therefore, these findings will remain of limited interest to other scientists until SLA researchers consider learner varieties a normal, in fact typical, manifestation of this unique human capacity.
  • Klein, W. (Ed.). (1979). Sprache und Kontext [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (33).
  • Klein, W. (Ed.). (1985). Schriftlichkeit [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (59).
  • Klein, W. (1985). Sechs Grundgrößen des Spracherwerbs. In R. Eppeneder (Ed.), Lernersprache: Thesen zum Erwerb einer Fremdsprache (pp. 67-106). München: Goethe Institut.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (2004). Was die Geisteswissenschaften leider noch von den Naturwissenschaften unterscheidet. Gegenworte, 13, 79-84.
  • Klein, W. (1979). Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik, 33, 9-57.
  • Klein, W. (1983). Vom Glück des Mißverstehens und der Trostlosigkeit der idealen Kommunikationsgemeinschaft. Zeitschrift für Literaturwissenschaft und Linguistik, 50, 128-140.
  • Klein, W. (1998). Von der einfältigen Wißbegierde. Zeitschrift für Literaturwissenschaft und Linguistik, 112, 6-13.
  • Kochari, A. R., & Ostarek, M. (2018). Introducing a replication-first rule for PhD projects (commmentary on Zwaan et al., ‘Making replication mainstream’). Behavioral and Brain Sciences, 41: e138. doi:10.1017/S0140525X18000730.

    Abstract

    Zwaan et al. mention that young researchers should conduct replications as a
    small part of their portfolio. We extend this proposal and suggest that conducting and
    reporting replications should become an integral part of PhD projects and be taken into
    account in their assessment. We discuss how this would help not only scientific
    advancement, but also PhD candidates’ careers.
  • Kolipakam, V., Jordan, F., Dunn, M., Greenhill, S. J., Bouckaert, R., Gray, R. D., & Verkerk, A. (2018). A Bayesian phylogenetic study of the Dravidian language family. Royal Society Open Science, 5: 171504. doi:10.1098/rsos.171504.

    Abstract

    The Dravidian language family consists of about 80 varieties (Hammarström H. 2016 Glottolog 2.7) spoken by 220 million people across southern and central India and surrounding countries (Steever SB. 1998 In The Dravidian languages (ed. SB Steever), pp. 1–39: 1). Neither the geographical origin of the Dravidian language homeland nor its exact dispersal through time are known. The history of these languages is crucial for understanding prehistory in Eurasia, because despite their current restricted range, these languages played a significant role in influencing other language groups including Indo-Aryan (Indo-European) and Munda (Austroasiatic) speakers. Here, we report the results of a Bayesian phylogenetic analysis of cognate-coded lexical data, elicited first hand from native speakers, to investigate the subgrouping of the Dravidian language family, and provide dates for the major points of diversification. Our results indicate that the Dravidian language family is approximately 4500 years old, a finding that corresponds well with earlier linguistic and archaeological studies. The main branches of the Dravidian language family (North, Central, South I, South II) are recovered, although the placement of languages within these main branches diverges from previous classifications. We find considerable uncertainty with regard to the relationships between the main branches.
  • Kong, X., Mathias, S. R., Guadalupe, T., ENIGMA Laterality Working Group, Glahn, D. C., Franke, B., Crivello, F., Tzourio-Mazoyer, N., Fisher, S. E., Thompson, P. M., & Francks, C. (2018). Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5154-E5163. doi:10.1073/pnas.1718418115.

    Abstract

    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.

    Additional information

    pnas.1718418115.sapp.pdf
  • Hu, C.-P., Kong, X., Wagenmakers, E.-J., Ly, A., & Peng, K. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965. doi:10.3724/SP.J.1042.2018.00951.

    Abstract

    Statistical inference plays a critical role in modern scientific research, however, the dominant method for statistical inference in science, null hypothesis significance testing (NHST), is often misunderstood and misused, which leads to unreproducible findings. To address this issue, researchers propose to adopt the Bayes factor as an alternative to NHST. The Bayes factor is a principled Bayesian tool for model selection and hypothesis testing, and can be interpreted as the strength for both the null hypothesis H0 and the alternative hypothesis H1 based on the current data. Compared to NHST, the Bayes factor has the following advantages: it quantifies the evidence that the data provide for both the H0 and the H1, it is not “violently biased” against H0, it allows one to monitor the evidence as the data accumulate, and it does not depend on sampling plans. Importantly, the recently developed open software JASP makes the calculation of Bayes factor accessible for most researchers in psychology, as we demonstrated for the t-test. Given these advantages, adopting the Bayes factor will improve psychological researchers’ statistical inferences. Nevertheless, to make the analysis more reproducible, researchers should keep their data analysis transparent and open.
  • Konopka, A., Meyer, A. S., & Forest, T. A. (2018). Planning to speak in L1 and L2. Cognitive Psychology, 102, 72-104. doi:10.1016/j.cogpsych.2017.12.003.

    Abstract

    The leading theories of sentence planning – Hierarchical Incrementality and Linear Incrementality – differ in their assumptions about the coordination of processes that map preverbal information onto language. Previous studies showed that, in native (L1) speakers, this coordination can vary with the ease of executing the message-level and sentence-level processes necessary to plan and produce an utterance. We report the first series of experiments to systematically examine how linguistic experience influences sentence planning in native (L1) speakers (i.e., speakers with life-long experience using the target language) and non-native (L2) speakers (i.e., speakers with less experience using the target language). In all experiments, speakers spontaneously generated one-sentence descriptions of simple events in Dutch (L1) and English (L2). Analyses of eye-movements across early and late time windows (pre- and post-400 ms) compared the extent of early message-level encoding and the onset of linguistic encoding. In Experiment 1, speakers were more likely to engage in extensive message-level encoding and to delay sentence-level encoding when using their L2. Experiments 2–4 selectively facilitated encoding of the preverbal message, encoding of the agent character (i.e., the first content word in active sentences), and encoding of the sentence verb (i.e., the second content word in active sentences) respectively. Experiment 2 showed that there is no delay in the onset of L2 linguistic encoding when speakers are familiar with the events. Experiments 3 and 4 showed that the delay in the onset of L2 linguistic encoding is not due to speakers delaying encoding of the agent, but due to a preference to encode information needed to select a suitable verb early in the formulation process. Overall, speakers prefer to temporally separate message-level from sentence-level encoding and to prioritize encoding of relational information when planning L2 sentences, consistent with Hierarchical Incrementality
  • Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.

    Abstract

    Low-frequency neural entrainment to rhythmic input
    has been hypothesized as a canonical mechanism
    that shapes sensory perception in time. Neural
    entrainment is deemed particularly relevant for
    speech analysis, as it would contribute to the extraction
    of discrete linguistic elements from continuous
    acoustic signals. However, its causal influence in
    speech perception has been difficult to establish.
    Here, we provide evidence that oscillations build temporal
    predictions about the duration of speech tokens
    that affect perception. Using magnetoencephalography
    (MEG), we studied neural dynamics during
    listening to sentences that changed in speech rate.
    Weobserved neural entrainment to preceding speech
    rhythms persisting for several cycles after the change
    in rate. The sustained entrainment was associated
    with changes in the perceived duration of the last
    word’s vowel, resulting in the perception of words
    with different meanings. These findings support oscillatory
    models of speech processing, suggesting that
    neural oscillations actively shape speech perception.

Share this page