Publications

Displaying 301 - 336 of 336
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Sumer, B., & Ozyurek, A. (2016). İşitme Engelli Çocukların Dil Edinimi [Sign language acquisition by deaf children]. In C. Aydin, T. Goksun, A. Kuntay, & D. Tahiroglu (Eds.), Aklın Çocuk Hali: Zihin Gelişimi Araştırmaları [Research on Cognitive Development] (pp. 365-388). Istanbul: Koc University Press.
  • Sumer, B. (2016). Scene-setting and reference introduction in sign and spoken languages: What does modality tell us? In B. Haznedar, & F. N. Ketrez (Eds.), The acquisition of Turkish in childhood (pp. 193-220). Amsterdam: Benjamins.

    Abstract

    Previous studies show that children do not become adult-like in learning to set the scene and introduce referents in their narrations until 9 years of age and even beyond. However, they investigated spoken languages, thus we do not know much about how these skills are acquired in sign languages, where events are expressed in visually similar ways to the real world events, unlike in spoken languages. The results of the current study demonstrate that deaf children (3;5–9;10 years) acquiring Turkish Sign Language, and hearing children (3;8–9;11 years) acquiring spoken Turkish both acquire scene-setting and referent introduction skills at similar ages. Thus the modality of the language being acquired does not have facilitating or hindering effects in the development of these skills.
  • Sumer, B., Zwitserlood, I., Perniss, P., & Ozyurek, A. (2016). Yer Bildiren İfadelerin Türkçe ve Türk İşaret Dili’nde (TİD) Çocuklar Tarafından Edinimi [The acqusition of spatial relations by children in Turkish and Turkish Sign Language (TID)]. In E. Arik (Ed.), Ellerle Konuşmak: Türk İşaret Dili Araştırmaları [Speaking with hands: Studies on Turkish Sign Language] (pp. 157-182). Istanbul: Koç University Press.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Ten Oever, S. (2016). How neuronal oscillations code for temporal statistics. PhD Thesis, Maastricht University, Maastricht, The Netherlands.
  • Terrill, A. (2004). Coordination in Lavukaleve. In M. Haspelmath (Ed.), Coordinating Constructions. (pp. 427-443). Amsterdam: John Benjamins.
  • Todorova, L. (2021). Language bias in visually driven decisions: Computational neurophysiological mechanisms. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Trilsbeek, P., & Wittenburg, P. (2007). "Los acervos lingüísticos digitales y sus desafíos". In J. Haviland, & F. Farfán (Eds.), Bases de la documentacíon lingüística (pp. 359-385). Mexico: Instituto Nacional de Lenguas Indígenas.

    Abstract

    This chapter describes the challenges that modern digital language archives are faced with. One essential aspect of such an archive is to have a rich metadata catalog such that the archived resources can be easily discovered. The challenge of the archive is to obtain these rich metadata descriptions from the depositors without creating too much overhead for them. The rapid changes in storage technology, file formats and encoding standards make it difficult to build a long-lasting repository, therefore archives need to be set up in such a way that a straightforward and automated migration process to newer technology is possible whenever certain technology becomes obsolete. Other problems arise from the fact that there are many different groups of users of the archive, each of them with their own specific expectations and demands. Often conflicts exist between the requirements for different purposes of the archive, e.g. between long-term preservation of the data versus direct access to the resources via the web. The task of the archive is to come up with a technical solution that works well for most usage scenarios.
  • Trompenaars, T. (2021). Bringing stories to life: Animacy in narrative and processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Tsoukala, C. (2021). Bilingual sentence production and code-switching: Neural network simulations. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Tufvesson, S. (2007). Expressives. In A. Majid (Ed.), Field Manual Volume 10 (pp. 53-58). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492919.
  • Van Alphen, P. M. (2004). Perceptual relevance of prevoicing in Dutch. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.58551.

    Abstract

    In this dissertation the perceptual relevance of prevoicing in Dutch was investigated. Prevoicing is the presence of vocal fold vibration during the closure of initial voiced plosives (negative voice onset time). The presence or absence of prevoicing is generally used to describe the difference between voiced and voiceless Dutch plosives. The first experiment described in this dissertation showed that prevoicing is frequently absent in Dutch and that several factors affect the production of prevoicing. A detailed acoustic analysis of the voicing distinction identified several acoustic correlates of voicing. Prevoicing appeared to be by far the best predictor. Perceptual classification data revealed that prevoicing was indeed the strongest cue that listeners use when classifying plosives as voiced or voiceless. In the cases where prevoicing was absent, other acoustic cues influenced classification, such that some of these tokens were still perceived as being voiced. In the second part of this dissertation the influence of prevoicing variation on spoken-word recognition was examined. In several cross-modal priming experiments two types of prevoicing variation were contrasted: a difference between the presence and absence of prevoicing (6 versus 0 periods of prevoicing) and a difference in the amount of prevoicing (12 versus 6 periods). All these experiments indicated that primes with 12 and 6 periods of prevoicing had the same effect on lexical decisions to the visual targets. The primes without prevoicing had a different effect, but only when their voiceless counterparts were real words. Phonetic detail appears to influence lexical access only when it is useful: In Dutch, the presence versus absence of prevoicing is informative, while the amount of prevoicing is not.

    Additional information

    full text via Radboud Repository
  • Van Alphen, P. M. (2007). Prevoicing in Dutch initial plosives: Production, perception, and word recognition. In J. van de Weijer, & E. van der Torre (Eds.), Voicing in Dutch (pp. 99-124). Amsterdam: Benjamins.

    Abstract

    Prevoicing is the presence of vocal fold vibration during the closure of initial voiced plosives (negative VOT). The presence or absence of prevoicing is generally used to describe the voicing distinction in Dutch initial plosives. However, a phonetic study showed that prevoicing is frequently absent in Dutch. This article discusses the role of prevoicing in the production and perception of Dutch plosives. Furthermore, two cross-modal priming experiments are presented that examined the effect of prevoicing variation on word recognition. Both experiments showed no difference between primes with 12, 6 or 0 periods of prevoicing, even though a third experiment indicated that listeners could discriminate these words. These results are discussed in light of another priming experiment that did show an effect of the absence of prevoicing, but only when primes had a voiceless word competitor. Phonetic detail appears to influence lexical access only when it helps to distinguish between lexical candidates.
  • Van Dijk, C. N. (2021). Cross-linguistic influence during real-time sentence processing in bilingual children and adults. PhD Thesis, Raboud University Nijmegen, Nijmegen.
  • van der Burght, C. L. (2021). The central contribution of prosody to sentence processing: Evidence from behavioural and neuroimaging studies. PhD Thesis, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig.
  • Van Paridon, J. (2021). Speaking while listening: Language processing in speech shadowing and translation. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1995). Characterizing the application of computer simulations in education: Instructional criteria. In A. Ram, & D. B. Leake (Eds.), Goal-driven learning (pp. 381-392). Cambridge, M: MIT Press.
  • Van Valin Jr., R. D. (2016). An overview of information structure in three Amazonian languages. In M. Fernandez-Vest, & R. D. Van Valin Jr. (Eds.), Information structure and spoken language from a cross-linguistic perspective (pp. 77-92). Berlin: Mouton de Gruyter.
  • Van den Brink, D. (2004). Contextual influences on spoken-word processing: An electrophysiological approach. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.57773.

    Abstract

    The aim of this thesis was to gain more insight into spoken-word comprehension and the influence of sentence-contextual information on these processes using ERPs. By manipulating critical words in semantically constraining sententes, in semantic or syntactic sense, and examining the consequences in the electrophysiological signal (e.g., elicitation of ERP components such as the N400, N200, LAN, and P600), three questions were tackled: I At which moment is context information used in the spoken-word recognition process? II What is the temporal relationship between lexical selection and integration of the meaning of a spoken word into a higher-order level representeation of the preceding sentence? III What is the time course of the processing of different sources of linguistic information obtained from the context, such as phonological, semantic and syntactic information, during spoken-word comprehension? From the results of this thesis it can be concluded that sentential context already exerts an influence on spoken-word processing at approximately 200 ms after word onset. In addition, semantic integration is attempted before a spoken word can be selected on the basis of the acoustic signal, i.e. before lexical selection is completed. Finally, knowledge of the syntactic category of a word is not needed before semantic integration can take place. These findings, therefore, were interpreted as providing evidence for an account of cascaded spoken-word processing that proclaims an optimal use of contextual information during spoken-word identification. Optimal use is accomplished by allowing for semantic and syntactic processing to take place in parallel after bottom-up activation of a set of candidates, and lexical integration to proceed with a limited number of candidates that still match the acoustic input

    Additional information

    full text via Radboud Repository
  • Van Wijk, C., & Kempen, G. (1982). Kost zinsbouw echt tijd? In R. Stuip, & W. Zwanenberg (Eds.), Handelingen van het zevenendertigste Nederlands Filologencongres (pp. 223-231). Amsterdam: APA-Holland University Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Berkum, J. J. A. (2004). Sentence comprehension in a wider discourse: Can we use ERPs to keep track of things? In M. Carreiras, Jr., & C. Clifton (Eds.), The on-line study of sentence comprehension: eyetracking, ERPs and beyond (pp. 229-270). New York: Psychology Press.
  • Van Rijswijk, R. (2016). The strength of a weaker first language: Language production and comprehension by Turkish heritage speakers in the Netherlands. PhD Thesis, Radboud University, Nijmegen, The Netherlands.
  • Van Valin Jr., R. D. (1995). Toward a functionalist account of so-called ‘extraction constraints’. In B. Devriendt (Ed.), Complex structures: A functionalist perspective (pp. 29-60). Berlin: Mouton de Gruyter.
  • Verhoef, E. (2021). Why do we change how we speak? Multivariate genetic analyses of language and related traits across development and disorder. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (Eds.). (2021). Vocal learning in animals and humans [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Viebahn, M. (2016). Acoustic reduction in spoken-word processing: Distributional, syntactic, morphosyntactic, and orthographic effects. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Von Stutterheim, C., & Klein, W. (2004). Die Gesetze des Geistes sind metrisch: Hölderlin und die Sprachproduktion. In H. Schwarz (Ed.), Fenster zur Welt: Deutsch als Fremdsprachenphilologie (pp. 439-460). München: Iudicium.
  • Wilkins, D. (1995). Towards a Socio-Cultural Profile of the Communities We Work With. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 70-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513481.

    Abstract

    Field data are drawn from a particular speech community at a certain place and time. The intent of this survey is to enrich understanding of the various socio-cultural contexts in which linguistic and “cognitive” data may have been collected, so that we can explore the role which societal, cultural and contextual factors may play in this material. The questionnaire gives guidelines concerning types of ethnographic information that are important to cross-cultural and cross-linguistic enquiry, and will be especially useful to researchers who do not have specialised training in anthropology.
  • Wilkins, D., Pederson, E., & Levinson, S. C. (1995). Background questions for the "enter"/"exit" research. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 14-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003935.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored.
  • Wilkins, D., Kita, S., & Enfield, N. J. (2007). 'Ethnography of pointing' - field worker's guide. In A. Majid (Ed.), Field Manual Volume 10 (pp. 89-95). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492922.

    Abstract

    Pointing gestures are recognised to be a primary manifestation of human social cognition and communicative capacity. The goal of this task is to collect empirical descriptions of pointing practices in different cultural settings.
  • Wilkins, D. (1995). Motion elicitation: "moving 'in(to)'" and "moving 'out (of)'". In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 4-12). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003391.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This task investigates the expression of “enter” and “exit” activities, that is, events involving motion in(to) and motion out (of) container-like items. The researcher first uses particular stimuli (a ball, a cup, rice, etc.) to elicit descriptions of enter/exit events from one consultant, and then asks another consultant to demonstrate the event based on these descriptions. See also the related entries Enter/Exit Animation and Background Questions for Enter/Exit Research.
  • Wnuk, E. (2016). Semantic specificity of perception verbs in Maniq. PhD Thesis, Radboud University Nijmegen, Nijmegen.

Share this page