Publications

Displaying 301 - 400 of 483
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Cho, T. (2003). The use of domain-initial strengthening in segmentation of continuous English speech. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 2993-2996). Adelaide: Causal Productions.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., & Mitterer, H. (2005). Lexically-driven perceptual adjustments of vowel categories. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 233-236).
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Naming analog clocks conceptually facilitates naming digital clocks. In Proceedings of XIII Conference of the European Society of Cognitive Psychology (ESCOP 2003) (pp. 271-271).
  • Meira, S. (2003). 'Addressee effects' in demonstrative systems: The cases of Tiriyó and Brazilian Portugese. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 3-12). Amsterdam/Philadelphia: John Benjamins.
  • Melinger, A., Schulte im Walde, S., & Weber, A. (2006). Characterizing response types and revealing noun ambiguity in German association norms. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics. Trento: Association for Computational Linguistics.

    Abstract

    This paper presents an analysis of semantic association norms for German nouns. In contrast to prior studies, we not only collected associations elicited by written representations of target objects but also by their pictorial representations. In a first analysis, we identified systematic differences in the type and distribution of associate responses for the two presentation forms. In a second analysis, we applied a soft cluster analysis to the collected target-response pairs. We subsequently used the clustering to predict noun ambiguity and to discriminate senses in our target nouns.
  • Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences.
  • Merkx, D., Frank, S., & Ernestus, M. (2019). Language learning using speech to image retrieval. In Proceedings of Interspeech 2019 (pp. 1841-1845). doi:10.21437/Interspeech.2019-3067.

    Abstract

    Humans learn language by interaction with their environment and listening to other humans. It should also be possible for computational models to learn language directly from speech but so far most approaches require text. We improve on existing neural network approaches to create visually grounded embeddings for spoken utterances. Using a combination of a multi-layer GRU, importance sampling, cyclic learning rates, ensembling and vectorial self-attention our results show a remarkable increase in image-caption retrieval performance over previous work. Furthermore, we investigate which layers in the model learn to recognise words in the input. We find that deeper network layers are better at encoding word presence, although the final layer has slightly lower performance. This shows that our visually grounded sentence encoder learns to recognise words from the input even though it is not explicitly trained for word recognition.
  • Meyer, A. S., & Dobel, C. (2003). Application of eye tracking in speech production research. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 253-272). Amsterdam: Elsevier.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.
  • Mitterer, H. (2005). Short- and medium-term plasticity for speaker adaptation seem to be independent. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 83-86).
  • Mitterer, H., & Cutler, A. (2006). Speech perception. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 11) (pp. 770-782). Amsterdam: Elsevier.

    Abstract

    The goal of speech perception is understanding a speaker's message. To achieve this, listeners must recognize the words that comprise a spoken utterance. This in turn implies distinguishing these words from other minimally different words (e.g., word from bird, etc.), and this involves making phonemic distinctions. The article summarizes research on the perception of phonemic distinctions, on how listeners cope with the continuity and variability of speech signals, and on how phonemic information is mapped onto the representations of words. Particular attention is paid to theories of speech perception and word recognition.
  • Moisik, S. R., Zhi Yun, D. P., & Dediu, D. (2019). Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 864-868). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    The anterior lordosis of the cervical spine is thought
    to contribute to pitch (fo) production by influencing
    cricoid rotation as a function of larynx height. This
    study examines the matter of inter-individual
    variation in cervical spine shape and whether this has
    an influence on how fo is produced along increasing
    or decreasing scales, using the ArtiVarK dataset,
    which contains real-time MRI pitch production data.
    We find that the cervical spine actively participates in
    fo production, but the amount of displacement
    depends on individual shape. In general, anterior
    spine motion (tending toward cervical lordosis)
    occurs for low fo, while posterior movement (tending
    towards cervical kyphosis) occurs for high fo.
  • Moscoso del Prado Martín, F., & Baayen, R. H. (2003). Using the structure found in time: Building real-scale orthographic and phonetic representations by accumulation of expectations. In H. Bowman, & C. Labiouse (Eds.), Connectionist Models of Cognition, Perception and Emotion: Proceedings of the Eighth Neural Computation and Psychology Workshop (pp. 263-272). Singapore: World Scientific.
  • Mudd, K., Lutzenberger, H., De Vos, C., Fikkert, P., Crasborn, O., & De Boer, B. (2020). How does social structure shape language variation? A case study of the Kata Kolok lexicon. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 302-304). Nijmegen: The Evolution of Language Conferences.
  • Neijt, A., Schreuder, R., & Baayen, R. H. (2003). Verpleegsters, ambassadrices, and masseuses: Stratum differences in the comprehension of Dutch words with feminine agent suffixes. In L. Cornips, & P. Fikkert (Eds.), Linguistics in the Netherlands 2003. (pp. 117-127). Amsterdam: Benjamins.
  • Nijveld, A., Ten Bosch, L., & Ernestus, M. (2019). ERP signal analysis with temporal resolution using a time window bank. In Proceedings of Interspeech 2019 (pp. 1208-1212). doi:10.21437/Interspeech.2019-2729.

    Abstract

    In order to study the cognitive processes underlying speech comprehension, neuro-physiological measures (e.g., EEG and MEG), or behavioural measures (e.g., reaction times and response accuracy) can be applied. Compared to behavioural measures, EEG signals can provide a more fine-grained and complementary view of the processes that take place during the unfolding of an auditory stimulus.

    EEG signals are often analysed after having chosen specific time windows, which are usually based on the temporal structure of ERP components expected to be sensitive to the experimental manipulation. However, as the timing of ERP components may vary between experiments, trials, and participants, such a-priori defined analysis time windows may significantly hamper the exploratory power of the analysis of components of interest. In this paper, we explore a wide-window analysis method applied to EEG signals collected in an auditory repetition priming experiment.

    This approach is based on a bank of temporal filters arranged along the time axis in combination with linear mixed effects modelling. Crucially, it permits a temporal decomposition of effects in a single comprehensive statistical model which captures the entire EEG trace.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • O'Connor, L. (2006). Sobre los predicados complejos en el Chontal de la baja. In A. Oseguera (Ed.), Historia y etnografía entre los Chontales de Oaxaca (pp. 119-161). Oaxaca: Instituto Nacional de Antroplogía e Historia.
  • Offenga, F., Broeder, D., Wittenburg, P., Ducret, J., & Romary, L. (2006). Metadata profile in the ISO data category registry. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006) (pp. 1866-1869).
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Oostdijk, N., & Broeder, D. (2003). The Spoken Dutch Corpus and its exploitation environment. In A. Abeille, S. Hansen-Schirra, & H. Uszkoreit (Eds.), Proceedings of the 4th International Workshop on linguistically interpreted corpora (LINC-03) (pp. 93-101).
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Ouni, S., Cohen, M. M., Young, K., & Jesse, A. (2003). Internationalization of a talking head. In M. Sole, D. Recasens, & J. Romero (Eds.), Proceedings of 15th International Congress of Phonetics Sciences (pp. 2569-2572). Barcelona: Casual Productions.

    Abstract

    In this paper we describe a general scheme for internationalization of our talking head, Baldi, to speak other languages. We describe the modular structure of the auditory/visual synthesis software. As an example, we have created a synthetic Arabic talker, which is evaluated using a noisy word recognition task comparing this talker with a natural one.
  • Ozyurek, A. (1998). An analysis of the basic meaning of Turkish demonstratives in face-to-face conversational interaction. In S. Santi, I. Guaitella, C. Cave, & G. Konopczynski (Eds.), Oralite et gestualite: Communication multimodale, interaction: actes du colloque ORAGE 98 (pp. 609-614). Paris: L'Harmattan.
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Papafragou, A., & Ozturk, O. (2006). The acquisition of epistemic modality. In A. Botinis (Ed.), Proceedings of ITRW on Experimental Linguistics in ExLing-2006 (pp. 201-204). ISCA Archive.

    Abstract

    In this paper we try to contribute to the body of knowledge about the acquisition of English epistemic modal verbs (e.g. Mary may/has to be at school). Semantically, these verbs encode possibility or necessity with respect to available evidence. Pragmatically, the use of epistemic modals often gives rise to scalar conversational inferences (Mary may be at school -> Mary doesn’t have to be at school). The acquisition of epistemic modals is challenging for children on both these levels. In this paper, we present findings from two studies which were conducted with 5-year-old children and adults. Our findings, unlike previous work, show that 5-yr-olds have mastered epistemic modal semantics, including the notions of necessity and possibility. However, they are still in the process of acquiring epistemic modal pragmatics.
  • Paplu, S. H., Mishra, C., & Berns, K. (2020). Pseudo-randomization in automating robot behaviour during human-robot interaction. In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 1-6). Institute of Electrical and Electronics Engineers. doi:10.1109/ICDL-EpiRob48136.2020.9278115.

    Abstract

    Automating robot behavior in a specific situation is an active area of research. There are several approaches available in the literature of robotics to cater for the automatic behavior of a robot. However, when it comes to humanoids or human-robot interaction in general, the area has been less explored. In this paper, a pseudo-randomization approach has been introduced to automatize the gestures and facial expressions of an interactive humanoid robot called ROBIN based on its mental state. A significant number of gestures and facial expressions have been implemented to allow the robot more options to perform a relevant action or reaction based on visual stimuli. There is a display of noticeable differences in the behaviour of the robot for the same stimuli perceived from an interaction partner. This slight autonomous behavioural change in the robot clearly shows a notion of automation in behaviour. The results from experimental scenarios and human-centered evaluation of the system help validate the approach.

    Files private

    Request files
  • Parhammer*, S. I., Ebersberg*, M., Tippmann*, J., Stärk*, K., Opitz, A., Hinger, B., & Rossi, S. (2019). The influence of distraction on speech processing: How selective is selective attention? In Proceedings of Interspeech 2019 (pp. 3093-3097). doi:10.21437/Interspeech.2019-2699.

    Abstract

    -* indicates shared first authorship -
    The present study investigated the effects of selective attention on the processing of morphosyntactic errors in unattended parts of speech. Two groups of German native (L1) speakers participated in the present study. Participants listened to sentences in which irregular verbs were manipulated in three different conditions (correct, incorrect but attested ablaut pattern, incorrect and crosslinguistically unattested ablaut pattern). In order to track fast dynamic neural reactions to the stimuli, electroencephalography was used. After each sentence, participants in Experiment 1 performed a semantic judgement task, which deliberately distracted the participants from the syntactic manipulations and directed their attention to the semantic content of the sentence. In Experiment 2, participants carried out a syntactic judgement task, which put their attention on the critical stimuli. The use of two different attentional tasks allowed for investigating the impact of selective attention on speech processing and whether morphosyntactic processing steps are performed automatically. In Experiment 2, the incorrect attested condition elicited a larger N400 component compared to the correct condition, whereas in Experiment 1 no differences between conditions were found. These results suggest that the processing of morphosyntactic violations in irregular verbs is not entirely automatic but seems to be strongly affected by selective attention.
  • Pereiro Estevan, Y., Wan, V., Scharenborg, O., & Gallardo Antolín, A. (2006). Segmentación de fonemas no supervisada basada en métodos kernel de máximo margen. In Proceedings of IV Jornadas en Tecnología del Habla.

    Abstract

    En este artículo se desarrolla un método automático de segmentación de fonemas no supervisado. Este método utiliza el algoritmo de agrupación de máximo margen [1] para realizar segmentación de fonemas sobre habla continua sin necesidad de información a priori para el entrenamiento del sistema.
  • Petersson, K. M., Grenholm, P., & Forkstam, C. (2005). Artificial grammar learning and neural networks. In G. B. Bruna, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1726-1731).

    Abstract

    Recent FMRI studies indicate that language related brain regions are engaged in artificial grammar (AG) processing. In the present study we investigate the Reber grammar by means of formal analysis and network simulations. We outline a new method for describing the network dynamics and propose an approach to grammar extraction based on the state-space dynamics of the network. We conclude that statistical frequency-based and rule-based acquisition procedures can be viewed as complementary perspectives on grammar learning, and more generally, that classical cognitive models can be viewed as a special case of a dynamical systems perspective on information processing
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Pluymaekers, M., Ernestus, M., Baayen, R. H., & Booij, G. (2006). The role of morphology in fine phonetic detail: The case of Dutch -igheid. In Variation, detail and representation: 10th Conference on Laboratory Phonology (pp. 53-54).
  • Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2006). Effects of word frequency on the acoustic durations of affixes. In Proceedings of Interspeech 2006 (pp. 953-956). Pittsburgh: ICSLP.

    Abstract

    This study investigates whether the acoustic durations of derivational affixes in Dutch are affected by the frequency of the word they occur in. In a word naming experiment, subjects were presented with a large number of words containing one of the affixes ge-, ver-, ont, or -lijk. Their responses were recorded on DAT tapes, and the durations of the affixes were measured using Automatic Speech Recognition technology. To investigate whether frequency also affected durations when speech rate was high, the presentation rate of the stimuli was varied. The results show that a higher frequency of the word as a whole led to shorter acoustic realizations for all affixes. Furthermore, affixes became shorter as the presentation rate of the stimuli increased. There was no interaction between word frequency and presentation rate, suggesting that the frequency effect also applies in situations in which the speed of articulation is very high.
  • Poletiek, F. H., & Chater, N. (2006). Grammar induction profits from representative stimulus sampling. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society (CogSci 2006) (pp. 1968-1973). Austin, TX, USA: Cognitive Science Society.
  • Poletiek, F. H. (2006). Natural sampling of stimuli in (artificial) grammar learning. In K. Fiedler, & P. Juslin (Eds.), Information sampling and adaptive cognition (pp. 440-455). Cambridge: Cambridge University Press.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. A. (2019). Acoustic specification of upper limb movement in voicing. In A. Grimminger (Ed.), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 68-74). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.
  • Pouw, W., & Dixon, J. A. (2019). Quantifying gesture-speech synchrony. In A. Grimminger (Ed.), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 75-80). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.

    Abstract

    Spontaneously occurring speech is often seamlessly accompanied by hand gestures. Detailed
    observations of video data suggest that speech and gesture are tightly synchronized in time,
    consistent with a dynamic interplay between body and mind. However, spontaneous gesturespeech
    synchrony has rarely been objectively quantified beyond analyses of video data, which
    do not allow for identification of kinematic properties of gestures. Consequently, the point in
    gesture which is held to couple with speech, the so-called moment of “maximum effort”, has
    been variably equated with the peak velocity, peak acceleration, peak deceleration, or the onset
    of the gesture. In the current exploratory report, we provide novel evidence from motiontracking
    and acoustic data that peak velocity is closely aligned, and shortly leads, the peak pitch
    (F0) of speech

    Additional information

    https://osf.io/9843h/
  • Rasenberg, M., Dingemanse, M., & Ozyurek, A. (2020). Lexical and gestural alignment in interaction and the emergence of novel shared symbols. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 356-358). Nijmegen: The Evolution of Language Conferences.
  • Ravignani, A., Barbieri, C., Flaherty, M., Jadoul, Y., Lattenkamp, E. Z., Little, H., Martins, M., Mudd, K., & Verhoef, T. (Eds.). (2020). The Evolution of Language: Proceedings of the 13th International Conference (Evolang13). Nijmegen: The Evolution of Language Conferences. doi:10.17617/2.3190925.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2020). Network structure and the cultural evolution of linguistic structure: A group communication experiment. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 359-361). Nijmegen: The Evolution of Language Conferences.
  • de Reus, K., Carlson, D., Jadoul, Y., Lowry, A., Gross, S., Garcia, M., Salazar-Casals, A., Rubio-García, A., Haas, C. E., De Boer, B., & Ravignani, A. (2020). Relationships between vocal ontogeny and vocal tract anatomy in harbour seals (Phoca vitulina). In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 63-66). Nijmegen: The Evolution of Language Conferences.
  • Rietveld, T., & Chen, A. (2006). How to obtain and process perceptual judgements of intonational meaning. In S. Sudhoff, D. Lenertová, R. Meyer, S. Pappert, P. Augurzky, I. Mleinek, N. Richter, & J. Schliesser (Eds.), Methods in empirical prosody research (pp. 283-319). Berlin: Mouton de Gruyter.
  • Rissman, L., & Majid, A. (2019). Agency drives category structure in instrumental events. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2661-2667). Montreal, QB: Cognitive Science Society.

    Abstract

    Thematic roles such as Agent and Instrument have a long-standing place in theories of event representation. Nonetheless, the structure of these categories has been difficult to determine. We investigated how instrumental events, such as someone slicing bread with a knife, are categorized in English. Speakers described a variety of typical and atypical instrumental events, and we determined the similarity structure of their descriptions using correspondence analysis. We found that events where the instrument is an extension of an intentional agent were most likely to elicit similar language, highlighting the importance of agency in structuring instrumental categories.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Roelofs, A. (2003). Modeling the relation between the production and recognition of spoken word forms. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 115-158). Berlin: Mouton de Gruyter.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rowland, C. F. (2020). Introduction. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Rubio-Fernández, P., Breheny, R., & Lee, M. W. (2003). Context-independent information in concepts: An investigation of the notion of ‘core features’. In Proceedings of the 25th Annual Conference of the Cognitive Science Society (CogSci 2003). Austin, TX: Cognitive Science Society.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • De Ruiter, J. P. (2003). The function of hand gesture in spoken conversation. In M. Bickenbach, A. Klappert, & H. Pompe (Eds.), Manus Loquens: Medium der Geste, Gesten der Medien (pp. 338-347). Cologne: DuMont.
  • De Ruiter, J. P. (2003). A quantitative model of Störung. In A. Kümmel, & E. Schüttpelz (Eds.), Signale der Störung (pp. 67-81). München: Wilhelm Fink Verlag.
  • Sauter, D., Wiland, J., Warren, J., Eisner, F., Calder, A., & Scott, S. K. (2005). Sounds of joy: An investigation of vocal expressions of positive emotions [Abstract]. Journal of Cognitive Neuroscience, 61(Supplement), B99.

    Abstract

    A series of experiment tested Ekman’s (1992) hypothesis that there are a set of positive basic emotions that are expressed using vocal para-linguistic sounds, e.g. laughter and cheers. The proposed categories investigated were amusement, contentment, pleasure, relief and triumph. Behavioural testing using a forced-choice task indicated that participants were able to reliably recognize vocal expressions of the proposed emotions. A cross-cultural study in the preliterate Himba culture in Namibia confirmed that these categories are also recognized across cultures. A recognition test of acoustically manipulated emotional vocalizations established that the recognition of different emotions utilizes different vocal cues, and that these in turn differ from the cues used when comprehending speech. In a study using fMRI we found that relative to a signal correlated noise baseline, the paralinguistic expressions of emotion activated bilateral superior temporal gyri and sulci, lateral and anterior to primary auditory cortex, which is consistent with the processing of non linguistic vocal cues in the auditory ‘what’ pathway. Notably amusement was associated with greater activation extending into both temporal poles and amygdale and insular cortex. Overall, these results support the claim that ‘happiness’ can be fractionated into amusement, pleasure, relief and triumph.
  • Scharenborg, O., Wan, V., & Moore, R. K. (2006). Capturing fine-phonetic variation in speech through automatic classification of articulatory features. In Speech Recognition and Intrinsic Variation Workshop [SRIV2006] (pp. 77-82). ISCA Archive.

    Abstract

    The ultimate goal of our research is to develop a computational model of human speech recognition that is able to capture the effects of fine-grained acoustic variation on speech recognition behaviour. As part of this work we are investigating automatic feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. In the experiments reported here, we compared support vector machines (SVMs) with multilayer perceptrons (MLPs). MLPs have been widely (and rather successfully) used for the task of multi-value articulatory feature classification, while (to the best of our knowledge) SVMs have not. This paper compares the performances of the two classifiers and analyses the results in order to better understand the articulatory representations. It was found that the MLPs outperformed the SVMs, but it is concluded that both classifiers exhibit similar behaviour in terms of patterns of errors.
  • Scharenborg, O., & Seneff, S. (2005). A two-pass strategy for handling OOVs in a large vocabulary recognition task. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology, (pp. 1669-1672). ISCA Archive.

    Abstract

    This paper addresses the issue of large-vocabulary recognition in a specific word class. We propose a two-pass strategy in which only major cities are explicitly represented in the first stage lexicon. An unknown word model encoded as a phone loop is used to detect OOV city names (referred to as rare city names). After which SpeM, a tool that can extract words and word-initial cohorts from phone graphs on the basis of a large fallback lexicon, provides an N-best list of promising city names on the basis of the phone sequences generated in the first stage. This N-best list is then inserted into the second stage lexicon for a subsequent recognition pass. Experiments were conducted on a set of spontaneous telephone-quality utterances each containing one rare city name. We tested the size of the N-best list and three types of language models (LMs). The experiments showed that SpeM was able to include nearly 85% of the correct city names into an N-best list of 3000 city names when a unigram LM, which also boosted the unigram scores of a city name in a given state, was used.
  • Scharenborg, O., McQueen, J. M., Ten Bosch, L., & Norris, D. (2003). Modelling human speech recognition using automatic speech recognition paradigms in SpeM. In Proceedings of Eurospeech 2003 (pp. 2097-2100). Adelaide: Causal Productions.

    Abstract

    We have recently developed a new model of human speech recognition, based on automatic speech recognition techniques [1]. The present paper has two goals. First, we show that the new model performs well in the recognition of lexically ambiguous input. These demonstrations suggest that the model is able to operate in the same optimal way as human listeners. Second, we discuss how to relate the behaviour of a recogniser, designed to discover the optimum path through a word lattice, to data from human listening experiments. We argue that this requires a metric that combines both path-based and word-based measures of recognition performance. The combined metric varies continuously as the input speech signal unfolds over time.
  • Scharenborg, O. (2005). Parallels between HSR and ASR: How ASR can contribute to HSR. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1237-1240). ISCA Archive.

    Abstract

    In this paper, we illustrate the close parallels between the research fields of human speech recognition (HSR) and automatic speech recognition (ASR) using a computational model of human word recognition, SpeM, which was built using techniques from ASR. We show that ASR has proven to be useful for improving models of HSR by relieving them of some of their shortcomings. However, in order to build an integrated computational model of all aspects of HSR, a lot of issues remain to be resolved. In this process, ASR algorithms and techniques definitely can play an important role.
  • Scharenborg, O., ten Bosch, L., & Boves, L. (2003). Recognising 'real-life' speech with SpeM: A speech-based computational model of human speech recognition. In Eurospeech 2003 (pp. 2285-2288).

    Abstract

    In this paper, we present a novel computational model of human speech recognition – called SpeM – based on the theory underlying Shortlist. We will show that SpeM, in combination with an automatic phone recogniser (APR), is able to simulate the human speech recognition process from the acoustic signal to the ultimate recognition of words. This joint model takes an acoustic speech file as input and calculates the activation flows of candidate words on the basis of the degree of fit of the candidate words with the input. Experiments showed that SpeM outperforms Shortlist on the recognition of ‘real-life’ input. Furthermore, SpeM performs only slightly worse than an off-the-shelf full-blown automatic speech recogniser in which all words are equally probable, while it provides a transparent computationally elegant paradigm for modelling word activations in human word recognition.
  • Schiller, N. O. (2005). Verbal self-monitoring. In A. Cutler (Ed.), Twenty-first Century Psycholinguistics: Four cornerstones (pp. 245-261). Lawrence Erlbaum: Mahwah [etc.].
  • Schiller, N. O. (2003). Metrical stress in speech production: A time course study. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 451-454). Adelaide: Causal Productions.

    Abstract

    This study investigated the encoding of metrical information during speech production in Dutch. In Experiment 1, participants were asked to judge whether bisyllabic picture names had initial or final stress. Results showed significantly faster decision times for initially stressed targets (e.g., LEpel 'spoon') than for targets with final stress (e.g., liBEL 'dragon fly'; capital letters indicate stressed syllables) and revealed that the monitoring latencies are not a function of the picture naming or object recognition latencies to the same pictures. Experiments 2 and 3 replicated the outcome of the first experiment with bi- and trisyllabic picture names. These results demonstrate that metrical information of words is encoded rightward incrementally during phonological encoding in speech production. The results of these experiments are in line with Levelt's model of phonological encoding.
  • Schiller, N. O., & Meyer, A. S. (2003). Introduction to the relation between speech comprehension and production. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 1-8). Berlin: Mouton de Gruyter.
  • Schmiedtová, B. (2003). The use of aspect in Czech L2. In D. Bittner, & N. Gagarina (Eds.), ZAS Papers in Linguistics (pp. 177-194). Berlin: Zentrum für Allgemeine Sprachwissenschaft.
  • Schmiedtová, B. (2003). Aspekt und Tempus im Deutschen und Tschechischen: Eine vergleichende Studie. In S. Höhne (Ed.), Germanistisches Jahrbuch Tschechien - Slowakei: Schwerpunkt Sprachwissenschaft (pp. 185-216). Praha: Lidové noviny.
  • Schoenmakers, G.-J., & De Swart, P. (2019). Adverbial hurdles in Dutch scrambling. In A. Gattnar, R. Hörnig, M. Störzer, & S. Featherston (Eds.), Proceedings of Linguistic Evidence 2018: Experimental Data Drives Linguistic Theory (pp. 124-145). Tübingen: University of Tübingen.

    Abstract

    This paper addresses the role of the adverb in Dutch direct object scrambling constructions. We report four experiments in which we investigate whether the structural position and the scope sensitivity of the adverb affect acceptability judgments of scrambling constructions and native speakers' tendency to scramble definite objects. We conclude that the type of adverb plays a key role in Dutch word ordering preferences.
  • Schreuder, R., Burani, C., & Baayen, R. H. (2003). Parsing and semantic opacity. In E. M. Assink, & D. Sandra (Eds.), Reading complex words (pp. 159-189). Dordrecht: Kluwer.
  • Schuerman, W. L., McQueen, J. M., & Meyer, A. S. (2019). Speaker statistical averageness modulates word recognition in adverse listening conditions. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1203-1207). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    We tested whether statistical averageness (SA) at the level of the individual speaker could predict a speaker’s intelligibility. 28 female and 21 male speakers of Dutch were recorded producing 336 sentences,
    each containing two target nouns. Recordings were compared to those of all other same-sex speakers using dynamic time warping (DTW). For each sentence, the DTW distance constituted a metric
    of phonetic distance from one speaker to all other speakers. SA comprised the average of these distances. Later, the same participants performed a word recognition task on the target nouns in the same sentences, under three degraded listening conditions. In all three conditions, accuracy increased with SA. This held even when participants listened to their own utterances. These findings suggest that listeners process speech with respect to the statistical
    properties of the language spoken in their community, rather than using their own speech as a reference
  • Scott, S., & Sauter, D. (2006). Non-verbal expressions of emotion - acoustics, valence, and cross cultural factors. In Third International Conference on Speech Prosody 2006. ISCA.

    Abstract

    This presentation will address aspects of the expression of emotion in non-verbal vocal behaviour, specifically attempting to determine the roles of both positive and negative emotions, their acoustic bases, and the extent to which these are recognized in non-Western cultures.
  • Seidl, A., & Johnson, E. K. (2003). Position and vowel quality effects in infant's segmentation of vowel-initial words. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 2233-2236). Adelaide: Causal Productions.
  • Seidlmayer, E., Voß, J., Melnychuk, T., Galke, L., Tochtermann, K., Schultz, C., & Förstner, K. U. (2020). ORCID for Wikidata. Data enrichment for scientometric applications. In L.-A. Kaffee, O. Tifrea-Marciuska, E. Simperl, & D. Vrandečić (Eds.), Proceedings of the 1st Wikidata Workshop (Wikidata 2020). Aachen, Germany: CEUR Workshop Proceedings.

    Abstract

    Due to its numerous bibliometric entries of scholarly articles and connected information Wikidata can serve as an open and rich
    source for deep scientometrical analyses. However, there are currently certain limitations: While 31.5% of all Wikidata entries represent scientific articles, only 8.9% are entries describing a person and the number
    of entries researcher is accordingly even lower. Another issue is the frequent absence of established relations between the scholarly article item and the author item although the author is already listed in Wikidata.
    To fill this gap and to improve the content of Wikidata in general, we established a workflow for matching authors and scholarly publications by integrating data from the ORCID (Open Researcher and Contributor ID) database. By this approach we were able to extend Wikidata by more than 12k author-publication relations and the method can be
    transferred to other enrichments based on ORCID data. This is extension is beneficial for Wikidata users performing bibliometrical analyses or using such metadata for other purposes.
  • Seidlmayer, E., Galke, L., Melnychuk, T., Schultz, C., Tochtermann, K., & Förstner, K. U. (2019). Take it personally - A Python library for data enrichment for infometrical applications. In M. Alam, R. Usbeck, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Eds.), Proceedings of the Posters and Demo Track of the 15th International Conference on Semantic Systems co-located with 15th International Conference on Semantic Systems (SEMANTiCS 2019).

    Abstract

    Like every other social sphere, science is influenced by individual characteristics of researchers. However, for investigations on scientific networks, only little data about the social background of researchers, e.g. social origin, gender, affiliation etc., is available.
    This paper introduces ”Take it personally - TIP”, a conceptual model and library currently under development, which aims to support the
    semantic enrichment of publication databases with semantically related background information which resides elsewhere in the (semantic) web, such as Wikidata.
    The supplementary information enriches the original information in the publication databases and thus facilitates the creation of complex scientific knowledge graphs. Such enrichment helps to improve the scientometric analysis of scientific publications as they can also take social backgrounds of researchers into account and to understand social structure in research communities.
  • Seifart, F. (2003). Encoding shape: Formal means and semantic distinctions. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 57-59). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877660.

    Abstract

    The basic idea behind this task is to find out how languages encode basic shape distinctions such as dimensionality, axial geometry, relative size, etc. More specifically, we want to find out (i) which formal means are used cross linguistically to encode basic shape distinctions, and (ii) which are the semantic distinctions that are made in this domain. In languages with many shape-classifiers, these distinctions are encoded (at least partially) in classifiers. In other languages, positional verbs, descriptive modifiers, such as “flat”, “round”, or nouns such as “cube”, “ball”, etc. might be the preferred means. In this context, we also want to investigate what other “grammatical work” shapeencoding expressions possibly do in a given language, e.g. unitization of mass nouns, or anaphoric uses of shape-encoding classifiers, etc. This task further seeks to determine the role of shape-related parameters which underlie the design of objects in the semantics of the system under investigation.
  • Seijdel, N., Sakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2019). Implicit scene segmentation in deeper convolutional neural networks. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 1059-1062). doi:10.32470/CCN.2019.1149-0.

    Abstract

    Feedforward deep convolutional neural networks (DCNNs) are matching and even surpassing human performance on object recognition. This performance suggests that activation of a loose collection of image
    features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Recent findings in humans however, suggest that while feedforward activity may suffice for
    sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to
    performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects
    and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicated less distinction between object- and background features for more shallow networks. For those networks, we observed a benefit of training on segmented objects (as compared to unsegmented objects). Overall, deeper networks trained on natural
    (unsegmented) scenes seem to perform implicit 'segmentation' of the objects from their background, possibly by improved selection of relevant features.
  • Senft, G. (2006). Prolegomena to Kilivila grammar of space. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 206-229). Cambridge: Cambridge University Press.

    Abstract

    This paper presents preliminary remarks on some of the central linguistic means speakers of Kilivila use in expressing their conceptions of space and for referring to objects, persons, and events in space . After a brief characterisation of the language and its speakers, I sketch how specific topological relations are encoded, how motion events are described, and what frames of spatial reference are preferred in what contexts for what means and ends.
  • Senft, G. (2003). Wosi Milamala: Weisen von Liebe und Tod auf den Trobriand Inseln. In I. Bobrowski (Ed.), Anabasis: Prace Ofiarowane Professor Krystynie Pisarkowej (pp. 289-295). Kraków: LEXIS.
  • Senft, G. (2003). Zur Bedeutung der Sprache für die Feldforschung. In B. Beer (Ed.), Methoden und Techniken der Feldforschung (pp. 55-70). Berlin: Reimer.
  • Senft, G. (2020). Kampfschild - vayola. In T. Brüderlin, S. Schien, & S. Stoll (Eds.), Ausgepackt! 125Jahre Geschichte[n] im Museum Natur und Mensch (pp. 58-59). Freiburg: Michael Imhof Verlag.
  • Senft, G. (2020). 32 Kampfschild - dance or war shield - vayola. In T. Brüderlin, & S. Stoll (Eds.), Ausgepackt! 125Jahre Geschichte[n] im Museum Natur und Mensch. Texte zur Ausstellung, Städtische Museen Freiburg, vom 20. Juni 2020 bis 10. Januar 2021 (pp. 76-77). Freiburg: Städtische Museen.
  • Senft, G. (1998). 'Noble Savages' and the 'Islands of Love': Trobriand Islanders in 'Popular Publications'. In J. Wassmann (Ed.), Pacific answers to Western hegemony: Cultural practices of identity construction (pp. 119-140). Oxford: Berg Publishers.
  • Senft, G. (2003). Ethnographic Methods. In W. Deutsch, T. Hermann, & G. Rickheit (Eds.), Psycholinguistik - Ein internationales Handbuch [Psycholinguistics - An International Handbook] (pp. 106-114). Berlin: Walter de Gruyter.
  • Senft, G. (2003). Ethnolinguistik. In B. Beer, & H. Fischer (Eds.), Ethnologie: Einführung und Überblick. 5. Aufl., Neufassung (pp. 255-270). Berlin: Reimer.
  • Senft, G. (2005). Bronislaw Malinowski and linguistic pragmatics. In P. Cap (Ed.), Pragmatics today (pp. 139-155). Frankfurt am Main: Lang.
  • Senft, G. (2003). Reasoning in language. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 28-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877663.

    Abstract

    This project aims to investigate how speakers of various languages in indigenous cultures verbally reason about moral issues. The ways in which a solution for a moral problem is found, phrased and justified will be taken as the basis for researching reasoning processes that manifest themselves verbally in the speakers’ arguments put forward to solve a number of moral problems which will be presented to them in the form of unfinished story plots or scenarios that ask for a solution. The plots chosen attempt to present common problems in human society and human behaviour. They should function to elicit moral discussion and/or moral arguments in groups of consultants of at least three persons.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Senft, G. (1998). Zeichenkonzeptionen in Ozeanien. In R. Posner, T. Robering, & T.. Sebeok (Eds.), Semiotics: A handbook on the sign-theoretic foundations of nature and culture (Vol. 2) (pp. 1971-1976). Berlin: de Gruyter.
  • Senghas, A., Ozyurek, A., & Kita, S. (2003). Encoding motion events in an emerging sign language: From Nicaraguan gestures to Nicaraguan signs. In A. E. Baker, B. van den Bogaerde, & O. A. Crasborn (Eds.), Crosslinguistic perspectives in sign language research (pp. 119-130). Hamburg: Signum Press.
  • Seuren, P. A. M. (2006). Sentence-oriented semantic approaches in generative grammar. In S. Auroux, E. Koerner, H. J. Niederehe, & K. Versteegh (Eds.), History of the Language Sciences: An International Handbook on the Evolution of the Study of Language from the Beginnings to the Present (pp. 2201-2213). Berlin: Walter de Gruyter.

    Abstract

    1. Introduction 2. A generative grammar as an algorithm 3. The semantic component 4. Bibliography 1. Introduction Throughout the 20th century up to the present day grammar and semantics have been uneasy bedfellows. A look at the historical background will make it clear how this curious situation came about. 20th-century linguistics has been characterized by an almost exclusive concern with the structure of words, word groups and sentences. This concern was reinforced, especially on the American side of the Atlantic, by the sudden rise and subsequent dominance of behaviorism during the 1920s. It started in psychology but quickly permeated all the human sciences, including linguistics, until the early 1960s, when it collapsed as suddenly as it had arisen.
  • Seuren, P. A. M. (2006). Presupposition. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 10) (pp. 80-87). Amsterdam: Elsevier.

    Abstract

    Presupposition is a semantic device built into natural language to make sentences fit for use in certain contexts but not in others. A sentence carrying a presupposition thus evokes a context in which that presupposition is fulfilled. The study of presupposition was triggered by the behavior of natural language negation, which tends to preserve presuppositions either as invited inferences or as entailments. As the role of discourse became more apparent in semantics, presupposition began to be seen increasingly as a discourse-semantic phenomenon with consequences for the logic of language.
  • Seuren, P. A. M. (2006). Projection problem. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 10) (pp. 128-131). Amsterdam: Elsevier.

    Abstract

    The property of presuppositions to be sometimes preserved through embeddings, albeit often in a weakened form, is called projection. The projection problem consists in formulating the conditions under which the presuppositions of an embedded clause (a) are kept as presuppositions of the superordinate structure, or (b) remain as an invited inference that can be overruled by context, or (c) are canceled. Over the past 25 years it has been recognized that the projection problem is to be solved in the context of a wider theory of presupposition and discourse incrementation.

Share this page