Publications

Displaying 301 - 400 of 1221
  • Friedrich, P., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Mapping the principal gradient onto the corpus callosum. NeuroImage, 223: 117317. doi:10.1016/j.neuroimage.2020.117317.

    Abstract

    Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.

    Additional information

    supplementary file
  • Friedrich, P., Thiebaut de Schotten, M., Forkel, S. J., Stacho, M., & Howells, H. (2020). An ancestral anatomical and spatial bias for visually guided behavior. Proceedings of the National Academy of Sciences of the United States of America, 117(5), 2251-2252. doi:10.1073/pnas.1918402117.

    Abstract

    Human behavioral asymmetries are commonly studied in the context of structural cortical and connectional asymmetries. Within this framework, Sreenivasan and Sridharan (1) provide intriguing evidence of a relationship between visual asymmetries and the lateralization of superior colliculi connections—a phylogenetically older mesencephalic structure. Specifically, response facilitation for cued locations (i.e., choice bias) in the contralateral hemifield was associated with differences in the connectivity of the superior colliculus. Given that the superior colliculus has a structural homolog—the optic tectum—which can be traced across all Vertebrata, these results may have meaningful evolutionary ramifications.
  • Frost, R. L. A., Monaghan, P., & Tatsumi, T. (2017). Domain-general mechanisms for speech segmentation: The role of duration information in language learning. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 466-476. doi:10.1037/xhp0000325.

    Abstract

    Speech segmentation is supported by multiple sources of information that may either inform language processing specifically, or serve learning more broadly. The Iambic/Trochaic Law (ITL), where increased duration indicates the end of a group and increased emphasis indicates the beginning of a group, has been proposed as a domain-general mechanism that also applies to language. However, language background has been suggested to modulate use of the ITL, meaning that these perceptual grouping preferences may instead be a consequence of language exposure. To distinguish between these accounts, we exposed native-English and native-Japanese listeners to sequences of speech (Experiment 1) and nonspeech stimuli (Experiment 2), and examined segmentation using a 2AFC task. Duration was manipulated over 3 conditions: sequences contained either an initial-item duration increase, or a final-item duration increase, or items of uniform duration. In Experiment 1, language background did not affect the use of duration as a cue for segmenting speech in a structured artificial language. In Experiment 2, the same results were found for grouping structured sequences of visual shapes. The results are consistent with proposals that duration information draws upon a domain-general mechanism that can apply to the special case of language acquisition
  • Frost, R. L. A., Dunn, K., Christiansen, M. H., Gómez, R. L., & Monaghan, P. (2020). Exploring the "anchor word" effect in infants: Segmentation and categorisation of speech with and without high frequency words. PLoS One, 15(12): e0243436. doi:10.1371/journal.pone.0243436.

    Abstract

    High frequency words play a key role in language acquisition, with recent work suggesting they may serve both speech segmentation and lexical categorisation. However, it is not yet known whether infants can detect novel high frequency words in continuous speech, nor whether they can use them to help learning for segmentation and categorisation at the same time. For instance, when hearing “you eat the biscuit”, can children use the high-frequency words “you” and “the” to segment out “eat” and “biscuit”, and determine their respective lexical categories? We tested this in two experiments. In Experiment 1, we familiarised 12-month-old infants with continuous artificial speech comprising repetitions of target words, which were preceded by high-frequency marker words that distinguished the targets into two distributional categories. In Experiment 2, we repeated the task using the same language but with additional phonological cues to word and category structure. In both studies, we measured learning with head-turn preference tests of segmentation and categorisation, and compared performance against a control group that heard the artificial speech without the marker words (i.e., just the targets). There was no evidence that high frequency words helped either speech segmentation or grammatical categorisation. However, segmentation was seen to improve when the distributional information was supplemented with phonological cues (Experiment 2). In both experiments, exploratory analysis indicated that infants’ looking behaviour was related to their linguistic maturity (indexed by infants’ vocabulary scores) with infants with high versus low vocabulary scores displaying novelty and familiarity preferences, respectively. We propose that high-frequency words must reach a critical threshold of familiarity before they can be of significant benefit to learning.

    Additional information

    data
  • Frost, R. L. A., Jessop, A., Durrant, S., Peter, M. S., Bidgood, A., Pine, J. M., Rowland, C. F., & Monaghan, P. (2020). Non-adjacent dependency learning in infancy, and its link to language development. Cognitive Psychology, 120: 101291. doi:10.1016/j.cogpsych.2020.101291.

    Abstract

    To acquire language, infants must learn how to identify words and linguistic structure in speech. Statistical learning has been suggested to assist both of these tasks. However, infants’ capacity to use statistics to discover words and structure together remains unclear. Further, it is not yet known how infants’ statistical learning ability relates to their language development. We trained 17-month-old infants on an artificial language comprising non-adjacent dependencies, and examined their looking times on tasks assessing sensitivity to words and structure using an eye-tracked head-turn-preference paradigm. We measured infants’ vocabulary size using a Communicative Development Inventory (CDI) concurrently and at 19, 21, 24, 25, 27, and 30 months to relate performance to language development. Infants could segment the words from speech, demonstrated by a significant difference in looking times to words versus part-words. Infants’ segmentation performance was significantly related to their vocabulary size (receptive and expressive) both currently, and over time (receptive until 24 months, expressive until 30 months), but was not related to the rate of vocabulary growth. The data also suggest infants may have developed sensitivity to generalised structure, indicating similar statistical learning mechanisms may contribute to the discovery of words and structure in speech, but this was not related to vocabulary size.

    Additional information

    Supplementary data
  • Frost, R. L. A., & Monaghan, P. (2017). Sleep-driven computations in speech processing. PLoS One, 12(1): e0169538. doi:10.1371/journal.pone.0169538.

    Abstract

    Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting—on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously—with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.

    Additional information

    Data available
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Additional information

    Supplementary Information
  • Furman, R., Kuntay, A., & Ozyurek, A. (2014). Early language-specificity of children's event encoding in speech and gesture: Evidence from caused motion in Turkish. Language, Cognition and Neuroscience, 29, 620-634. doi:10.1080/01690965.2013.824993.

    Abstract

    Previous research on language development shows that children are tuned early on to the language-specific semantic and syntactic encoding of events in their native language. Here we ask whether language-specificity is also evident in children's early representations in gesture accompanying speech. In a longitudinal study, we examined the spontaneous speech and cospeech gestures of eight Turkish-speaking children aged one to three and focused on their caused motion event expressions. In Turkish, unlike in English, the main semantic elements of caused motion such as Action and Path can be encoded in the verb (e.g. sok- ‘put in’) and the arguments of a verb can be easily omitted. We found that Turkish-speaking children's speech indeed displayed these language-specific features and focused on verbs to encode caused motion. More interestingly, we found that their early gestures also manifested specificity. Children used iconic cospeech gestures (from 19 months onwards) as often as pointing gestures and represented semantic elements such as Action with Figure and/or Path that reinforced or supplemented speech in language-specific ways until the age of three. In the light of previous reports on the scarcity of iconic gestures in English-speaking children's early productions, we argue that the language children learn shapes gestures and how they get integrated with speech in the first three years of life.
  • Galbiati, A., Sforza, M., Poletti, M., Verga, L., Zucconi, M., Ferini-Strambi, L., & Castronovo, V. (2020). Insomnia patients with subjective short total sleep time have a boosted response to cognitive behavioral therapy for insomnia despite residual symptoms. Behavioral Sleep Medicine, 18(1), 58-67. doi:10.1080/15402002.2018.1545650.

    Abstract

    Background: Two distinct insomnia disorder (ID) phenotypes have been proposed, distinguished on the basis of an objective total sleep time less or more than 6 hr. In particular, it has been recently reported that patients with objective short sleep duration have a blunted response to cognitive behavioral therapy for insomnia (CBT-I). The aim of this study was to investigate the differences of CBT-I response in two groups of ID patients subdivided according to total sleep time. Methods: Two hundred forty-six ID patients were subdivided into two groups, depending on their reported total sleep time (TST) assessed by sleep diaries. Patients with a TST greater than 6 hr were classified as “normal sleepers” (NS), while those with a total sleep time less than 6 hr were classified as “short sleepers” (SS). Results: The delta between Insomnia Severity Index scores and sleep efficiency at the beginning as compared to the end of the treatment was significantly higher for SS in comparison to NS, even if they still exhibit more insomnia symptoms. No difference was found between groups in terms of remitters; however, more responders were observed in the SS group in comparison to the NS group. Conclusions: Our results demonstrate that ID patients with reported short total sleep time had a beneficial response to CBT-I of greater magnitude in comparison to NS. However, these patients may still experience the presence of residual insomnia symptoms after treatment.
  • Gallotto, S., Duecker, F., Ten Oever, S., Schuhmann, T., De Graaf, T. A., & Sack, A. T. (2020). Relating alpha power modulations to competing visuospatial attention theories. NeuroImage, 207: 116429. doi:10.1016/j.neuroimage.2019.116429.

    Abstract

    Visuospatial attention theories often propose hemispheric asymmetries underlying the control of attention. In general support of these theories, previous EEG/MEG studies have shown that spatial attention is associated with hemispheric modulation of posterior alpha power (gating by inhibition). However, since measures of alpha power are typically expressed as lateralization scores, or collapsed across left and right attention shifts, the individual hemispheric contribution to the attentional control mechanism remains unclear. This is, however, the most crucial and decisive aspect in which the currently competing attention theories continue to disagree. To resolve this long-standing conflict, we derived predictions regarding alpha power modulations from Heilman's hemispatial theory and Kinsbourne's interhemispheric competition theory and tested them empirically in an EEG experiment. We used an attention paradigm capable of isolating alpha power modulation in two attentional states, namely attentional bias in a neutral cue condition and spatial orienting following directional cues. Differential alpha modulations were found for both hemispheres across conditions. When anticipating peripheral visual targets without preceding directional cues (neutral condition), posterior alpha power in the left hemisphere was generally lower and more strongly modulated than in the right hemisphere, in line with the interhemispheric competition theory. Intriguingly, however, while alpha power in the right hemisphere was modulated by both, cue-directed leftward and rightward attention shifts, the left hemisphere only showed modulations by rightward shifts of spatial attention, in line with the hemispatial theory. This suggests that the two theories may not be mutually exclusive, but rather apply to different attentional states.
  • Ganushchak, L., Konopka, A. E., & Chen, Y. (2014). What the eyes say about planning of focused referents during sentence formulation: a cross-linguistic investigation. Frontiers in Psychology, 5: 1124. doi:10.3389/fpsyg.2014.01124.

    Abstract

    This study investigated how sentence formulation is influenced by a preceding discourse context. In two eye-tracking experiments, participants described pictures of two-character transitive events in Dutch (Experiment 1) and Chinese (Experiment 2). Focus was manipulated by presenting questions before each picture. In the Neutral condition, participants first heard ‘What is happening here?’ In the Object or Subject Focus conditions, the questions asked about the Object or Subject character (What is the policeman stopping? Who is stopping the truck?). The target response was the same in all conditions (The policeman is stopping the truck). In both experiments, sentence formulation in the Neutral condition showed the expected pattern of speakers fixating the subject character (policeman) before the object character (truck). In contrast, in the focus conditions speakers rapidly directed their gaze preferentially only to the character they needed to encode to answer the question (the new, or focused, character). The timing of gaze shifts to the new character varied by language group (Dutch vs. Chinese): shifts to the new character occurred earlier when information in the question can be repeated in the response with the same syntactic structure (in Chinese but not in Dutch). The results show that discourse affects the timecourse of linguistic formulation in simple sentences and that these effects can be modulated by language-specific linguistic structures such as parallels in the syntax of questions and declarative sentences.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gao, X., & Jiang, T. (2018). Sensory constraints on perceptual simulation during sentence reading. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 848-855. doi:10.1037/xhp0000475.

    Abstract

    Resource-constrained models of language processing predict that perceptual simulation during language understanding would be compromised by sensory limitations (such as reading text in unfamiliar/difficult font), whereas strong versions of embodied theories of language would predict that simulating perceptual symbols in language would not be impaired even under sensory-constrained situations. In 2 experiments, sensory decoding difficulty was manipulated by using easy and hard fonts to study perceptual simulation during sentence reading (Zwaan, Stanfield, & Yaxley, 2002). Results indicated that simulating perceptual symbols in language was not compromised by surface-form decoding challenges such as difficult font, suggesting relative resilience of embodied language processing in the face of certain sensory constraints. Further implications for learning from text and individual differences in language processing will be discussed
  • Garcia, R., Dery, J. E., Roeser, J., & Höhle, B. (2018). Word order preferences of Tagalog-speaking adults and children. First Language, 38(6), 617-640. doi:10.1177/0142723718790317.

    Abstract

    This article investigates the word order preferences of Tagalog-speaking adults and five- and seven-year-old children. The participants were asked to complete sentences to describe pictures depicting actions between two animate entities. Adults preferred agent-initial constructions in the patient voice but not in the agent voice, while the children produced mainly agent-initial constructions regardless of voice. This agent-initial preference, despite the lack of a close link between the agent and the subject in Tagalog, shows that this word order preference is not merely syntactically-driven (subject-initial preference). Additionally, the children’s agent-initial preference in the agent voice, contrary to the adults’ lack of preference, shows that children do not respect the subject-last principle of ordering Tagalog full noun phrases. These results suggest that language-specific optional features like a subject-last principle take longer to be acquired.
  • Garcia, R., Roeser, J., & Höhle, B. (2020). Children’s online use of word order and morphosyntactic markers in Tagalog thematic role assignment: An eye-tracking study. Journal of Child Language, 47(3), 533-555. doi:10.1017/S0305000919000618.

    Abstract

    We investigated whether Tagalog-speaking children incrementally interpret the first noun
    as the agent, even if verbal and nominal markers for assigning thematic roles are given
    early in Tagalog sentences. We asked five- and seven-year-old children and adult
    controls to select which of two pictures of reversible actions matched the sentence they
    heard, while their looks to the pictures were tracked. Accuracy and eye-tracking data
    showed that agent-initial sentences were easier to comprehend than patient-initial
    sentences, but the effect of word order was modulated by voice. Moreover, our eyetracking
    data provided evidence that, by the first noun phrase, seven-year-old children
    looked more to the target in the agent-initial compared to the patient-initial conditions,
    but this word order advantage was no longer observed by the second noun phrase. The
    findings support language processing and acquisition models which emphasize the role
    of frequency in developing heuristic strategies (e.g., Chang, Dell, & Bock, 2006).
  • Garcia, R., & Kidd, E. (2020). The acquisition of the Tagalog symmetrical voice system: Evidence from structural priming. Language Learning and Development, 16(4), 399-425. doi:10.1080/15475441.2020.1814780.

    Abstract

    We report on two experiments that investigated the acquisition of the Tagalog symmetrical voice system, a typologically rare feature of Western Austronesian languages in which there are more than one basic transitive construction and no preference for agents to be syntactic subjects. In the experiments, 3-, 5-, and 7-year-old Tagalog-speaking children and adults completed a structural priming task that manipulated voice and word order, with the uniqueness of Tagalog allowing us to tease apart priming of thematic role order from that of syntactic roles. Participants heard a description of a picture showing a transitive action, and were then asked to complete a sentence of an unrelated picture using a voice-marked verb provided by the experimenter. Our results show that children gradually acquire an agent-before-patient preference, instead of having a default mapping of the agent to the first noun position. We also found an earlier mastery of the patient voice verbal and nominal marker configuration (patient is the subject), suggesting that children do not initially map the agent to the subject. Children were primed by thematic role but not syntactic role order, suggesting that they prioritize mapping of the thematic roles to sentence positions.
  • Garcia, M., & Ravignani, A. (2020). Acoustic allometry and vocal learning in mammals. Biology Letters, 16: 20200081. doi:10.1098/rsbl.2020.0081.

    Abstract

    Acoustic allometry is the study of how animal vocalisations reflect their body size. A key aim of this research is to identify outliers to acoustic allometry principles and pinpoint the evolutionary origins of such outliers. A parallel strand of research investigates species capable of vocal learning, the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalisations. Modification of vocalizations is a common feature found when studying both acoustic allometry and vocal learning. Yet, these two fields have only been investigated separately to date. Here, we review and connect acoustic allometry and vocal learning across mammalian clades, combining perspectives from bioacoustics, anatomy and evolutionary biology. Based on this, we hypothesize that, as a precursor to vocal learning, some species might have evolved the capacity for volitional vocal modulation via sexual selection for ‘dishonest’ signalling. We provide preliminary support for our hypothesis by showing significant associations between allometric deviation and vocal learning in a dataset of 164 mammals. Our work offers a testable framework for future empirical research linking allometric principles with the evolution of vocal learning.
  • Garcia, M., Theunissen, F., Sèbe, F., Clavel, J., Ravignani, A., Marin-Cudraz, T., Fuchs, J., & Mathevon, N. (2020). Evolution of communication signals and information during species radiation. Nature Communications, 11: 4970. doi:10.1038/s41467-020-18772-3.

    Abstract

    Communicating species identity is a key component of many animal signals. However, whether selection for species recognition systematically increases signal diversity during clade radiation remains debated. Here we show that in woodpecker drumming, a rhythmic signal used during mating and territorial defense, the amount of species identity information encoded remained stable during woodpeckers’ radiation. Acoustic analyses and evolutionary reconstructions show interchange among six main drumming types despite strong phylogenetic contingencies, suggesting evolutionary tinkering of drumming structure within a constrained acoustic space. Playback experiments and quantification of species discriminability demonstrate sufficient signal differentiation to support species recognition in local communities. Finally, we only find character displacement in the rare cases where sympatric species are also closely related. Overall, our results illustrate how historical contingencies and ecological interactions can promote conservatism in signals during a clade radiation without impairing the effectiveness of information transfer relevant to inter-specific discrimination.
  • Gaskell, M. G., Warker, J., Lindsay, S., Frost, R. L. A., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep Underpins the Plasticity of Language Production. Psychological Science, 25(7), 1457-1465. doi:10.1177/0956797614535937.

    Abstract

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep.

    Additional information

    https://osf.io/zqg9y/
  • Gaspard III, J. C., Bauer, G. B., Mann, D. A., Boerner, K., Denum, L., Frances, C., & Reep, R. L. (2017). Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology. Journal of Comparative Physiology, 203, 111-120. doi:10.1007/s00359-016-1142-8.

    Abstract

    Manatees live in shallow, frequently turbid
    waters. The sensory means by which they navigate in these
    conditions are unknown. Poor visual acuity, lack of echo-
    location, and modest chemosensation suggest that other
    modalities play an important role. Rich innervation of sen-
    sory hairs that cover the entire body and enlarged soma-
    tosensory areas of the brain suggest that tactile senses are
    good candidates. Previous tests of detection of underwater
    vibratory stimuli indicated that they use passive movement
    of the hairs to detect particle displacements in the vicinity
    of a micron or less for frequencies from 10 to 150 Hz. In
    the current study, hydrodynamic stimuli were created by
    a sinusoidally oscillating sphere that generated a dipole
    field at frequencies from 5 to 150 Hz. Go/no-go tests of
    manatee postcranial mechanoreception of hydrodynamic
    stimuli indicated excellent sensitivity but about an order of
    magnitude less than the facial region. When the vibrissae
    were trimmed, detection thresholds were elevated, suggest-
    ing that the vibrissae were an important means by which
    detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90%
    correct at all frequencies tested. We hypothesize that mana-
    tees utilize vibrissae as a three-dimensional array to detect
    and localize low-frequency hydrodynamic stimuli
  • Geambasu, A., Toron, L., Ravignani, A., & Levelt, C. C. (2020). Rhythmic recursion? Human sensitivity to a Lindenmayer grammar with self-similar structure in a musical task. Music & Science. doi:10.1177%2F2059204320946615.

    Abstract

    Processing of recursion has been proposed as the foundation of human linguistic ability. Yet this ability may be shared with other domains, such as the musical or rhythmic domain. Lindenmayer grammars (L-systems) have been proposed as a recursive grammar for use in artificial grammar experiments to test recursive processing abilities, and previous work had shown that participants are able to learn such a grammar using linguistic stimuli (syllables). In the present work, we used two experimental paradigms (a yes/no task and a two-alternative forced choice) to test whether adult participants are able to learn a recursive Lindenmayer grammar composed of drum sounds. After a brief exposure phase, we found that participants at the group level were sensitive to the exposure grammar and capable of distinguishing the grammatical and ungrammatical test strings above chance level in both tasks. While we found evidence of participants’ sensitivity to a very complex L-system grammar in a non-linguistic, potentially musical domain, the results were not robust. We discuss the discrepancy within our results and with the previous literature using L-systems in the linguistic domain. Furthermore, we propose directions for future music cognition research using L-system grammars.
  • Gerrits, F., Senft, G., & Wisse, D. (2018). Bomiyoyeva and bomduvadoya: Two rare structures on the Trobriand Islands exclusively reserved for Tabalu chiefs. Anthropos, 113, 93-113. doi:10.5771/0257-9774-2018-1-93.

    Abstract

    This article presents information about two so far undescribed buildings made by the Trobriand Islanders, the bomiyoyeva and the bomduvadova. These structures are connected to the highest-ranking chiefs living in Labai and Omarakana on Kiriwina Island. They highlight the power and eminence of these chiefs. After a brief report on the history of this project, the structure of the two houses, their function, and their use is described and information on their construction and their mythical background is provided. Finally, everyday as well as ritual, social, and political functions of both buildings are discussed. [Melanesia, Trobriand Islands, Tabalu chiefs, yams houses, bomiyoyeva, bomduvadova, authoritative capacities]

    Additional information

    link to journal
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.

    Abstract

    Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.

    Additional information

    mmc1.docx
  • Gilbers, S., Hoeksema, N., De Bot, K., & Lowie, W. (2020). Regional variation in West and East Coast African-American English prosody and rap flows. Language and Speech, 63(4), 713-745. doi:10.1177/0023830919881479.

    Abstract

    Regional variation in African-American English (AAE) is especially salient to its speakers involved with hip-hop culture, as hip-hop assigns great importance to regional identity and regional accents are a key means of expressing regional identity. However, little is known about AAE regional variation regarding prosodic rhythm and melody. In hip-hop music, regional variation can also be observed, with different regions’ rap performances being characterized by distinct “flows” (i.e., rhythmic and melodic delivery), an observation which has not been quantitatively investigated yet. This study concerns regional variation in AAE speech and rap, specifically regarding the United States’ East and West Coasts. It investigates how East Coast and West Coast AAE prosody are distinct, how East Coast and West Coast rap flows differ, and whether the two domains follow a similar pattern: more rhythmic and melodic variation on the West Coast compared to the East Coast for both speech and rap. To this end, free speech and rap recordings of 16 prominent African-American members of the East Coast and West Coast hip-hop communities were phonetically analyzed regarding rhythm (e.g., syllable isochrony and musical timing) and melody (i.e., pitch fluctuation) using a combination of existing and novel methodological approaches. The results mostly confirm the hypotheses that East Coast AAE speech and rap are less rhythmically diverse and more monotone than West Coast AAE speech and rap, respectively. They also show that regional variation in AAE prosody and rap flows pattern in similar ways, suggesting a connection between rhythm and melody in language and music.
  • Gisladottir, R. S., Bögels, S., & Levinson, S. C. (2018). Oscillatory brain responses reflect anticipation during comprehension of speech acts in spoken dialogue. Frontiers in Human Neuroscience, 12: 34. doi:10.3389/fnhum.2018.00034.

    Abstract

    Everyday conversation requires listeners to quickly recognize verbal actions, so-called speech acts, from the underspecified linguistic code and prepare a relevant response within the tight time constraints of turn-taking. The goal of this study was to determine the time-course of speech act recognition by investigating oscillatory EEG activity during comprehension of spoken dialogue. Participants listened to short, spoken dialogues with target utterances that delivered three distinct speech acts (Answers, Declinations, Pre-offers). The targets were identical across conditions at lexico-syntactic and phonetic/prosodic levels but differed in the pragmatic interpretation of the speech act performed. Speech act comprehension was associated with reduced power in the alpha/beta bands just prior to Declination speech acts, relative to Answers and Pre-offers. In addition, we observed reduced power in the theta band during the beginning of Declinations, relative to Answers. Based on the role of alpha and beta desynchronization in anticipatory processes, the results are taken to indicate that anticipation plays a role in speech act recognition. Anticipation of speech acts could be critical for efficient turn-taking, allowing interactants to quickly recognize speech acts and respond within the tight time frame characteristic of conversation. The results show that anticipatory processes can be triggered by the characteristics of the interaction, including the speech act type.

    Additional information

    data sheet 1.pdf
  • Goldsborough, Z., Van Leeuwen, E. J. C., Kolff, K. W. T., De Waal, F. B. M., & Webb, C. E. (2020). Do chimpanzees (Pan troglodytes) console a bereaved mother? Primates, 61: 20190695, pp. 93-102. doi:10.1007/s10329-019-00752-x.

    Abstract

    Comparative thanatology encompasses the study of death-related responses in non-human animals and aspires to elucidate the evolutionary origins of human behavior in the context of death. Many reports have revealed that humans are not the only species affected by the death of group members. Non-human primates in particular show behaviors such as congregating around the deceased, carrying the corpse for prolonged periods of time (predominantly mothers carrying dead infants), and inspecting the corpse for signs of life. Here, we extend the focus on death-related responses in non-human animals by exploring whether chimpanzees are inclined to console the bereaved: the individual(s) most closely associated with the deceased. We report a case in which a chimpanzee (Pan troglodytes) mother experienced the loss of her fully developed infant (presumed stillborn). Using observational data to compare the group members’ behavior before and after the death, we found that a substantial number of group members selectively increased their affiliative expressions toward the bereaved mother. Moreover, on the day of the death, we observed heightened expressions of species-typical reassurance behaviors toward the bereaved mother. After ruling out several alternative explanations, we propose that many of the chimpanzees consoled the bereaved mother by means of affiliative and selective empathetic expressions.
  • González Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., & Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56: 100939. doi:10.1016/j.jneuroling.2020.100939.

    Abstract

    The present article examines the proposal that typology is a major factor guiding transfer selectivity in L3/Ln acquisition. We tested first exposure in L3/Ln using two artificial languages (ALs) lexically based in English and Spanish, focusing on gender agreement between determiners and nouns, and between nouns and adjectives. 50 L1 Spanish-L2 English speakers took part in the experiment. After receiving implicit training in one of the ALs (Mini-Spanish, N = 26; Mini-English, N = 24), gender violations elicited a fronto-lateral negativity in Mini-English in the earliest time window (200–500 ms), although this was not followed by any other differences in subsequent periods. This effect was highly localized, surfacing only in electrodes of the right-anterior region. In contrast, gender violations in Mini-Spanish elicited a broadly distributed positivity in the 300–600 ms time window. While we do not find typical indices of grammatical processing such as the P600 component, we believe that the between-groups differential appearance of the positivity for gender violations in the 300–600 ms time window reflects differential allocation of attentional resources as a function of the ALs’ lexical similarity to English or Spanish. We take these differences in attention to be precursors of the processes involved in transfer source selection in L3/Ln.
  • Gonzalez Gomez, N., Hayashi, A., Tsuji, S., Mazuka, R., & Nazzi, T. (2014). The role of the input on the development of the LC bias: A crosslinguistic comparison. Cognition, 132(3), 301-311. doi:10.1016/j.cognition.2014.04.004.

    Abstract

    Previous studies have described the existence of a phonotactic bias called the Labial–Coronal (LC) bias, corresponding to a tendency to produce more words beginning with a labial consonant followed by a coronal consonant (i.e. “bat”) than the opposite CL pattern (i.e. “tap”). This bias has initially been interpreted in terms of articulatory constraints of the human speech production system. However, more recently, it has been suggested that this presumably language-general LC bias in production might be accompanied by LC and CL biases in perception, acquired in infancy on the basis of the properties of the linguistic input. The present study investigates the origins of these perceptual biases, testing infants learning Japanese, a language that has been claimed to possess more CL than LC sequences, and comparing them with infants learning French, a language showing a clear LC bias in its lexicon. First, a corpus analysis of Japanese IDS and ADS revealed the existence of an overall LC bias, except for plosive sequences in ADS, which show a CL bias across counts. Second, speech preference experiments showed a perceptual preference for CL over LC plosive sequences (all recorded by a Japanese speaker) in 13- but not in 7- and 10-month-old Japanese-learning infants (Experiment 1), while revealing the emergence of an LC preference between 7 and 10 months in French-learning infants, using the exact same stimuli. These crosslinguistic behavioral differences, obtained with the same stimuli, thus reflect differences in processing in two populations of infants, which can be linked to differences in the properties of the lexicons of their respective native languages. These findings establish that the emergence of a CL/LC bias is related to exposure to a linguistic input.
  • Goodhew, S. C., & Kidd, E. (2020). Bliss is blue and bleak is grey: Abstract word-colour associations influence objective performance even when not task relevant. Acta Psychologica, 206: 103067. doi:10.1016/j.actpsy.2020.103067.

    Abstract

    Humans associate abstract words with physical stimulus dimensions, such as linking upward locations with positive concepts (e.g., happy = up). These associations manifest both via subjective reports of associations and on objective performance metrics. Humans also report subjective associations between colours and abstract words (e.g., joy is linked to yellow). Here we tested whether such associations manifest on objective task performance, even when not task-relevant. Across three experiments, participants were presented with abstract words in physical colours that were either congruent with previously-reported subjective word-colour associations (e.g., victory in red and unhappy in blue), or were incongruent (e.g., victory in blue and unhappy in red). In Experiment 1, participants' task was to identify the valence of words. This congruency manipulation systematically affected objective task performance. In Experiment 2, participants completed two blocks, a valence-identification and a colour-identification task block. Both tasks produced congruency effects on performance, however, the results of the colour identification block could have reflected learning effects (i.e., associating the more common congruent colour with the word). This issue was rectified in Experiment 3, whereby participants completed the same two tasks as Experiment 2, but now matched congruent and incongruent pairs were used for both tasks. Again, both tasks produced reliable congruency effects. Item analyses in each experiment revealed that these effects demonstrated a degree of item specificity. Overall, there was clear evidence that at least some abstract word-colour pairings can systematically affect behaviour.
  • Goodhew, S. C., & Kidd, E. (2017). Language use statistics and prototypical grapheme colours predict synaesthetes' and non-synaesthetes' word-colour associations. Acta Psychologica, 173, 73-86. doi:10.1016/j.actpsy.2016.12.008.

    Abstract

    Synaesthesia is the neuropsychological phenomenon in which individuals experience unusual sensory associations, such as experiencing particular colours in response to particular words. While it was once thought the particular pairings between stimuli were arbitrary and idiosyncratic to particular synaesthetes, there is now growing evidence for a systematic psycholinguistic basis to the associations. Here we sought to assess the explanatory value of quantifiable lexical association measures (via latent semantic analysis; LSA) in the pairings observed between words and colours in synaesthesia. To test this, we had synaesthetes report the particular colours they experienced in response to given concept words, and found that language association between the concept and colour words provided highly reliable predictors of the reported pairings. These results provide convergent evidence for a psycholinguistic basis to synaesthesia, but in a novel way, showing that exposure to particular patterns of associations in language can predict the formation of particular synaesthetic lexical-colour associations. Consistent with previous research, the prototypical synaesthetic colour for the first letter of the word also played a role in shaping the colour for the whole word, and this effect also interacted with language association, such that the effect of the colour for the first letter was stronger as the association between the concept word and the colour word in language increased. Moreover, when a group of non-synaesthetes were asked what colours they associated with the concept words, they produced very similar reports to the synaesthetes that were predicted by both language association and prototypical synaesthetic colour for the first letter of the word. This points to a shared linguistic experience generating the associations for both groups.
  • Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review, 21(5), 1287-1293. doi:10.3758/s13423-014-0593-6.

    Abstract

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people’s attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
  • Gordon, J. K., & Clough, S. (2020). How fluent? Part B. Underlying contributors to continuous measures of fluency in aphasia. Aphasiology, 34(5), 643-663. doi:10.1080/02687038.2020.1712586.

    Abstract

    Background: While persons with aphasia (PwA) are often dichotomised as fluent or nonfluent, agreement that fluency is not an all-or-nothing construct has led to the use of continuous variables as a way to quantify fluency, such as multi-dimensional rating scales, speech rate, and utterance length. Though these measures are often used in research, they provide little information about the underlying fluency deficit.
    Aim: The aim of the study was to identify how well commonly used continuous measures of fluency capture variability in spontaneous speech variables at lexical, grammatical, and speech production levels. Methods & Procedures: Speech samples of 254 English-speaking PwA from the AphasiaBank database were analyzed to examine the distributions of four continuous measures of fluency: the WAB-R fluency scale, utterance length, retracing, and speech rate. Linear regression was used to identify spontaneous speech predictors contributing to each fluency outcome measure.
    Outcomes & Results: All the outcome measures reflected the influence of multiple underlying dimensions, although the predictors varied. The WAB-R fluency scale, speech rate, and retracing were influenced by measures of grammatical competence, lexical retrieval, and speech production, whereas utterance length was influenced only by measures of grammatical competence and lexical retrieval. The strongest predictor of WAB-R fluency was aphasia severity, whereas the strongest predictor for all other fluency proxy measures was grammatical complexity.
    Conclusions: Continuous measures allow a variety of ways to objectively quantify speech fluency; however, they reflect superficial manifestations of fluency that may be affected by multiple underlying deficits. Furthermore, the deficits underlying different measures vary, which may reduce the reliability of fluency diagnoses. Capturing these differences at the individual level is critical to accurate diagnosis and appropriately targeted therapy.
  • Goregliad Fjaellingsdal, T., Schwenke, D., Scherbaum, S., Kuhlen, A. K., Bögels, S., Meekes, J., & Bleichner, M. G. (2020). Expectancy effects in the EEG during joint and spontaneous word-by-word sentence production in German. Scientific Reports, 10: 5460. doi:10.1038/s41598-020-62155-z.

    Abstract

    Our aim in the present study is to measure neural correlates during spontaneous interactive sentence production. We present a novel approach using the word-by-word technique from improvisational theatre, in which two speakers jointly produce one sentence. This paradigm allows the assessment of behavioural aspects, such as turn-times, and electrophysiological responses, such as event-related-potentials (ERPs). Twenty-five participants constructed a cued but spontaneous four-word German sentence together with a confederate, taking turns for each word of the sentence. In 30% of the trials, the confederate uttered an unexpected gender-marked article. To complete the sentence in a meaningful way, the participant had to detect the violation and retrieve and utter a new fitting response. We found significant increases in response times after unexpected words and – despite allowing unscripted language production and naturally varying speech material – successfully detected significant N400 and P600 ERP effects for the unexpected word. The N400 EEG activity further significantly predicted the response time of the subsequent turn. Our results show that combining behavioural and neuroscientific measures of verbal interactions while retaining sufficient experimental control is possible, and that this combination provides promising insights into the mechanisms of spontaneous spoken dialogue.
  • Gori, M., Vercillo, T., Sandini, G., & Burr, D. (2014). Tactile feedback improves auditory spatial localization. Frontiers in Psychology, 5: 1121. doi:10.3389/fpsyg.2014.01121.

    Abstract

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gon etal., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial.The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.
  • Goriot, C., McQueen, J. M., Unsworth, S., & Van Hout, R. (2020). Perception of English phonetic contrasts by Dutch children: How bilingual are early-English learners? PLoS One, 15(3): e0229902. doi:10.1371/journal.pone.0229902.

    Abstract

    The aim of this study was to investigate whether early-English education benefits the perception
    of English phonetic contrasts that are known to be perceptually confusable for Dutch
    native speakers, comparing Dutch pupils who were enrolled in an early-English programme
    at school from the age of four with pupils in a mainstream programme with English instruction
    from the age of 11, and English-Dutch early bilingual children. Children were 4-5-yearolds
    (start of primary school), 8-9-year-olds, or 11-12-year-olds (end of primary school).
    Children were tested on four contrasts that varied in difficulty: /b/-/s/ (easy), /k/-/ɡ/ (intermediate),
    /f/-/θ/ (difficult), /ε/-/æ/ (very difficult). Bilingual children outperformed the two other
    groups on all contrasts except /b/-/s/. Early-English pupils did not outperform mainstream
    pupils on any of the contrasts. This shows that early-English education as it is currently
    implemented is not beneficial for pupils’ perception of non-native contrasts.

    Additional information

    Supporting information
  • Goriot, C., Broersma, M., McQueen, J. M., Unsworth, S., & Van Hout, R. (2018). Language balance and switching ability in children acquiring English as a second language. Journal of Experimental Child Psychology, 173, 168-186. doi:10.1016/j.jecp.2018.03.019.

    Abstract

    This study investigated whether relative lexical proficiency in Dutch and English in child second language (L2) learners is related to executive functioning. Participants were Dutch primary school pupils of three different age groups (4–5, 8–9, and 11–12 years) who either were enrolled in an early-English schooling program or were age-matched controls not on that early-English program. Participants performed tasks that measured switching, inhibition, and working memory. Early-English program pupils had greater knowledge of English vocabulary and more balanced Dutch–English lexicons. In both groups, lexical balance, a ratio measure obtained by dividing vocabulary scores in English by those in Dutch, was related to switching but not to inhibition or working memory performance. These results show that for children who are learning an L2 in an instructional setting, and for whom managing two languages is not yet an automatized process, language balance may be more important than L2 proficiency in influencing the relation between childhood bilingualism and switching abilities.
  • De Graaf, T. A., Thomson, A., Janssens, S. E. W., Van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. European Journal of Neuroscience, 51(11), 2299-2313. doi:10.1111/ejn.14677.

    Abstract

    In recent years, the influence of alpha (7–13 Hz) phase on visual processing has received a lot of attention. Magneto‐/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre‐determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS‐phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG‐based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo‐)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom‐built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one‐cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.

    Additional information

    Supporting Information
  • De Graaf, T. A., Duecker, F., Stankevich, Y., Ten Oever, S., & Sack, A. T. (2017). Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs. Brain Stimulation, 10(4), 828-835. doi:10.1016/j.brs.2017.04.127.

    Abstract

    Background: Voluntarily opening or closing our eyes results in fundamentally different input patterns and expectancies. Yet it remains unclear how our brains and visual systems adapt to these ocular states.
    Objective/Hypothesis: We here used transcranial magnetic stimulation (TMS) to probe the excitability of the human visual system with eyes open or closed, in the complete absence of visual inputs.
    Methods: Combining Bayesian staircase procedures with computer control of TMS pulse intensity allowed interleaved determination of phosphene thresholds (PT) in both conditions. We measured parieto-occipital EEG baseline activity in several stages to track oscillatory power in the alpha (8-12 Hz) frequency-band, which has previously been shown to be inversely related to phosphene perception.
    Results: Since closing the eyes generally increases alpha power, one might have expected a decrease in excitability (higher PT). While we confirmed a rise in alpha power with eyes closed, visual excitability was actually increased (PT was lower) with eyes closed.
    Conclusions: This suggests that, aside from oscillatory alpha power, additional neuronal mechanisms influence the excitability of early visual cortex. One of these may involve a more internally oriented mode of brain operation, engaged by closing the eyes. In this state, visual cortex may be more susceptible to top-down inputs, to facilitate for example multisensory integration or imagery/working memory, although alternative explanations remain possible. (C) 2017 Elsevier Inc. All rights reserved.

    Additional information

    Supplementary data
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • Grasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K. and 341 moreGrasby, K. L., Jahanshad, N., Painter, J. N., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Pizzagalli, F., Ching, C. R. K., McMahon, M. A. B., Shatokhina, N., Zsembik, L. C. P., Thomopoulos, S. I., Zhu, A. H., Strike, L. T., Agartz, I., Alhusaini, S., Almeida, M. A. A., Alnæs, D., Amlien, I. K., Andersson, M., Ard, T., Armstrong, N. J., Ashley-Koch, A., Atkins, J. R., Bernard, M., Brouwer, R. M., Buimer, E. E. L., Bülow, R., Bürger, C., Cannon, D. M., Chakravarty, M., Chen, Q., Cheung, J. W., Couvy-Duchesne, B., Dale, A. M., Dalvie, S., De Araujo, T. K., De Zubicaray, G. I., De Zwarte, S. M. C., Den Braber, A., Doan, N. T., Dohm, K., Ehrlich, S., Engelbrecht, H.-R., Erk, S., Fan, C. C., Fedko, I. O., Foley, S. F., Ford, J. M., Fukunaga, M., Garrett, M. E., Ge, T., Giddaluru, S., Goldman, A. L., Green, M. J., Groenewold, N. A., Grotegerd, D., Gurholt, T. P., Gutman, B. A., Hansell, N. K., Harris, M. A., Harrison, M. B., Haswell, C. C., Hauser, M., Herms, S., Heslenfeld, D. J., Ho, N. F., Hoehn, D., Hoffmann, P., Holleran, L., Hoogman, M., Hottenga, J.-J., Ikeda, M., Janowitz, D., Jansen, I. E., Jia, T., Jockwitz, C., Kanai, R., Karama, S., Kasperaviciute, D., Kaufmann, T., Kelly, S., Kikuchi, M., Klein, M., Knapp, M., Knodt, A. R., Krämer, B., Lam, M., Lancaster, T. M., Lee, P. H., Lett, T. A., Lewis, L. B., Lopes-Cendes, I., Luciano, M., Macciardi, F., Marquand, A. F., Mathias, S. R., Melzer, T. R., Milaneschi, Y., Mirza-Schreiber, N., Moreira, J. C. V., Mühleisen, T. W., Müller-Myhsok, B., Najt, P., Nakahara, S., Nho, K., Olde Loohuis, L. M., Orfanos, D. P., Pearson, J. F., Pitcher, T. L., Pütz, B., Quidé, Y., Ragothaman, A., Rashid, F. M., Reay, W. R., Redlich, R., Reinbold, C. S., Repple, J., Richard, G., Riedel, B. C., Risacher, S. L., Rocha, C. S., Mota, N. R., Salminen, L., Saremi, A., Saykin, A. J., Schlag, F., Schmaal, L., Schofield, P. R., Secolin, R., Shapland, C. Y., Shen, L., Shin, J., Shumskaya, E., Sønderby, I. E., Sprooten, E., Tansey, K. E., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Turner, J. A., Uhlmann, A., Vallerga, C. L., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, L., Van Erp, T. G. M., Van Haren, N. E. M., Van Rooij, D., Van Tol, M.-J., Veldink, J. H., Verhoef, E., Walton, E., Wang, M., Wang, Y., Wardlaw, J. M., Wen, W., Westlye, L. T., Whelan, C. D., Witt, S. H., Wittfeld, K., Wolf, C., Wolfers, T., Wu, J. Q., Yasuda, C. L., Zaremba, D., Zhang, Z., Zwiers, M. P., Artiges, E., Assareh, A. A., Ayesa-Arriola, R., Belger, A., Brandt, C. L., Brown, G. G., Cichon, S., Curran, J. E., Davies, G. E., Degenhardt, F., Dennis, M. F., Dietsche, B., Djurovic, S., Doherty, C. P., Espiritu, R., Garijo, D., Gil, Y., Gowland, P. A., Green, R. C., Häusler, A. N., Heindel, W., Ho, B.-C., Hoffmann, W. U., Holsboer, F., Homuth, G., Hosten, N., Jack Jr., C. R., Jang, M., Jansen, A., Kimbrel, N. A., Kolskår, K., Koops, S., Krug, A., Lim, K. O., Luykx, J. J., Mathalon, D. H., Mather, K. A., Mattay, V. S., Matthews, S., Mayoral Van Son, J., McEwen, S. C., Melle, I., Morris, D. W., Mueller, B. A., Nauck, M., Nordvik, J. E., Nöthen, M. M., O’Leary, D. S., Opel, N., Paillère Martinot, M.-L., Pike, G. B., Preda, A., Quinlan, E. B., Rasser, P. E., Ratnakar, V., Reppermund, S., Steen, V. M., Tooney, P. A., Torres, F. R., Veltman, D. J., Voyvodic, J. T., Whelan, R., White, T., Yamamori, H., Adams, H. H. H., Bis, J. C., Debette, S., Decarli, C., Fornage, M., Gudnason, V., Hofer, E., Ikram, M. A., Launer, L., Longstreth, W. T., Lopez, O. L., Mazoyer, B., Mosley, T. H., Roshchupkin, G. V., Satizabal, C. L., Schmidt, R., Seshadri, S., Yang, Q., Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson’s Progression Markers Initiative, Alvim, M. K. M., Ames, D., Anderson, T. J., Andreassen, O. A., Arias-Vasquez, A., Bastin, M. E., Baune, B. T., Beckham, J. C., Blangero, J., Boomsma, D. I., Brodaty, H., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bustillo, J. R., Cahn, W., Cairns, M. J., Calhoun, V., Carr, V. J., Caseras, X., Caspers, S., Cavalleri, G. L., Cendes, F., Corvin, A., Crespo-Facorro, B., Dalrymple-Alford, J. C., Dannlowski, U., De Geus, E. J. C., Deary, I. J., Delanty, N., Depondt, C., Desrivières, S., Donohoe, G., Espeseth, T., Fernández, G., Fisher, S. E., Flor, H., Forstner, A. J., Francks, C., Franke, B., Glahn, D. C., Gollub, R. L., Grabe, H. J., Gruber, O., Håberg, A. K., Hariri, A. R., Hartman, C. A., Hashimoto, R., Heinz, A., Henskens, F. A., Hillegers, M. H. J., Hoekstra, P. J., Holmes, A. J., Hong, L. E., Hopkins, W. D., Hulshoff Pol, H. E., Jernigan, T. L., Jönsson, E. G., Kahn, R. S., Kennedy, M. A., Kircher, T. T. J., Kochunov, P., Kwok, J. B. J., Le Hellard, S., Loughland, C. M., Martin, N. G., Martinot, J.-L., McDonald, C., McMahon, K. L., Meyer-Lindenberg, A., Michie, P. T., Morey, R. A., Mowry, B., Nyberg, L., Oosterlaan, J., Ophoff, R. A., Pantelis, C., Paus, T., Pausova, Z., Penninx, B. W. J. H., Polderman, T. J. C., Posthuma, D., Rietschel, M., Roffman, J. L., Rowland, L. M., Sachdev, P. S., Sämann, P. G., Schall, U., Schumann, G., Scott, R. J., Sim, K., Sisodiya, S. M., Smoller, J. W., Sommer, I. E., St Pourcain, B., Stein, D. J., Toga, A. W., Trollor, J. N., Van der Wee, N. J. A., van 't Ent, D., Völzke, H., Walter, H., Weber, B., Weinberger, D. R., Wright, M. J., Zhou, J., Stein, J. L., Thompson, P. M., & Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484): eaay6690. doi:10.1126/science.aay6690.

    Abstract

    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Greenfield, P. M., Slobin, D., Cole, M., Gardner, H., Sylva, K., Levelt, W. J. M., Lucariello, J., Kay, A., Amsterdam, A., & Shore, B. (2017). Remembering Jerome Bruner: A series of tributes to Jerome “Jerry” Bruner, who died in 2016 at the age of 100, reflects the seminal contributions that led him to be known as a co-founder of the cognitive revolution. Observer, 30(2). Retrieved from http://www.psychologicalscience.org/observer/remembering-jerome-bruner.

    Abstract

    Jerome Seymour “Jerry” Bruner was born on October 1, 1915, in New York City. He began his academic career as psychology professor at Harvard University; he ended it as University Professor Emeritus at New York University (NYU) Law School. What happened at both ends and in between is the subject of the richly variegated remembrances that follow. On June 5, 2016, Bruner died in his Greenwich Village loft at age 100. He leaves behind his beloved partner Eleanor Fox, who was also his distinguished colleague at NYU Law School; his son Whitley; his daughter Jenny; and three grandchildren.

    Bruner’s interdisciplinarity and internationalism are seen in the remarkable variety of disciplines and geographical locations represented in the following tributes. The reader will find developmental psychology, anthropology, computer science, psycholinguistics, cognitive psychology, cultural psychology, education, and law represented; geographically speaking, the writers are located in the United States, Canada, the United Kingdom, and the Netherlands. The memories that follow are arranged in roughly chronological order according to when the writers had their first contact with Jerry Bruner.
  • Greenhill, S. J., Wu, C.-H., Hua, X., Dunn, M., Levinson, S. C., & Gray, R. D. (2017). Evolutionary dynamics of language systems. Proceedings of the National Academy of Sciences of the United States of America, 114(42), E8822-E8829. doi:10.1073/pnas.1700388114.

    Abstract

    Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000–10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.
  • Grieco-Calub, T. M., Ward, K. M., & Brehm, L. (2017). Multitasking During Degraded Speech Recognition in School-Age Children. Trends in hearing, 21, 1-14. doi:10.1177/2331216516686786.

    Abstract

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unpro- cessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.
  • Groen, I. I. A., Jahfari, S., Seijdel, N., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2018). Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 14: e1006690. doi:10.1371/journal.pcbi.1006690.

    Abstract

    Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity. Human participants performed an animal target detection task on natural scenes with low, medium or high complexity as determined by a computational model of low-level contrast statistics. Three converging lines of evidence indicate that feedback was selectively enhanced for high complexity scenes. First, functional magnetic resonance imaging (fMRI) activity in early visual cortex (V1) was enhanced for target objects in scenes with high, but not low or medium complexity. Second, event-related potentials (ERPs) evoked by target objects were selectively enhanced at feedback stages of visual processing (from ~220 ms onwards) for high complexity scenes only. Third, behavioral performance for high complexity scenes deteriorated when participants were pressed for time and thus less able to incorporate the feedback activity. Modeling of the reaction time distributions using drift diffusion revealed that object information accumulated more slowly for high complexity scenes, with evidence accumulation being coupled to trial-to-trial variation in the EEG feedback response. Together, these results suggest that while feed-forward activity may suffice to recognize isolated objects, the brain employs recurrent processing more adaptively in naturalistic settings, using minimal feedback for simple scenes and increasing feedback for complex scenes.

    Additional information

    data via OSF
  • De Groot, F., Huettig, F., & Olivers, C. N. L. (2017). Language-induced visual and semantic biases in visual search are subject to task requirements. Visual Cognition, 25, 225-240. doi:10.1080/13506285.2017.1324934.

    Abstract

    Visual attention is biased by both visual and semantic representations activated by words. We investigated to what extent language-induced visual and semantic biases are subject to task demands. Participants memorized a spoken word for a verbal recognition task, and performed a visual search task during the retention period. Crucially, while the word had to be remembered in all conditions, it was either relevant for the search (as it also indicated the target) or irrelevant (as it only served the memory test afterwards). On critical trials, displays contained objects that were visually or semantically related to the memorized word. When the word was relevant for the search, eye movement biases towards visually related objects arose earlier and more strongly than biases towards semantically related objects. When the word was irrelevant, there was still evidence for visual and semantic biases, but these biases were substantially weaker, and similar in strength and temporal dynamics, without a visual advantage. We conclude that language-induced attentional biases are subject to task requirements.
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T. and 141 moreGuadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T., Blangero, J., Bokde, A. L., Boedhoe, P. S., Bose, A., Brem, S., Brodaty, H., Bromberg, U., Brooks, S., Büchel, C., Buitelaar, J., Calhoun, V. D., Cannon, D. M., Cattrell, A., Cheng, Y., Conrod, P. J., Conzelmann, A., Corvin, A., Crespo-Facorro, B., Crivello, F., Dannlowski, U., De Zubicaray, G. I., De Zwarte, S. M., Deary, I. J., Desrivières, S., Doan, N. T., Donohoe, G., Dørum, E. S., Ehrlich, S., Espeseth, T., Fernández, G., Flor, H., Fouche, J.-P., Frouin, V., Fukunaga, M., Gallinat, J., Garavan, H., Gill, M., Suarez, A. G., Gowland, P., Grabe, H. J., Grotegerd, D., Gruber, O., Hagenaars, S., Hashimoto, R., Hauser, T. U., Heinz, A., Hibar, D. P., Hoekstra, P. J., Hoogman, M., Howells, F. M., Hu, H., Hulshoff Pol, H. E.., Huyser, C., Ittermann, B., Jahanshad, N., Jönsson, E. G., Jurk, S., Kahn, R. S., Kelly, S., Kraemer, B., Kugel, H., Kwon, J. S., Lemaitre, H., Lesch, K.-P., Lochner, C., Luciano, M., Marquand, A. F., Martin, N. G., Martínez-Zalacaín, I., Martinot, J.-L., Mataix-Cols, D., Mather, K., McDonald, C., McMahon, K. L., Medland, S. E., Menchón, J. M., Morris, D. W., Mothersill, O., Maniega, S. M., Mwangi, B., Nakamae, T., Nakao, T., Narayanaswaamy, J. C., Nees, F., Nordvik, J. E., Onnink, A. M. H., Opel, N., Ophoff, R., Martinot, M.-L.-P., Orfanos, D. P., Pauli, P., Paus, T., Poustka, L., Reddy, J. Y., Renteria, M. E., Roiz-Santiáñez, R., Roos, A., Royle, N. A., Sachdev, P., Sánchez-Juan, P., Schmaal, L., Schumann, G., Shumskaya, E., Smolka, M. N., Soares, J. C., Soriano-Mas, C., Stein, D. J., Strike, L. T., Toro, R., Turner, J. A., Tzourio-Mazoyer, N., Uhlmann, A., Valdés Hernández, M., Van den Heuvel, O. A., Van der Meer, D., Van Haren, N. E.., Veltman, D. J., Venkatasubramanian, G., Vetter, N. C., Vuletic, D., Walitza, S., Walter, H., Walton, E., Wang, Z., Wardlaw, J., Wen, W., Westlye, L. T., Whelan, R., Wittfeld, K., Wolfers, T., Wright, M. J., Xu, J., Xu, X., Yun, J.-Y., Zhao, J., Franke, B., Thompson, P. M., Glahn, D. C., Mazoyer, B., Fisher, S. E., & Francks, C. (2017). Human subcortical asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 11(5), 1497-1514. doi:10.1007/s11682-016-9629-z.

    Abstract

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

    Additional information

    11682_2016_9629_MOESM1_ESM.pdf
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Guerra, E., & Knoeferle, P. (2014). Spatial distance effects on incremental semantic interpretation of abstract sentences: Evidence from eye tracking. Cognition, 133(3), 535-552. doi:10.1016/j.cognition.2014.07.007.

    Abstract

    A large body of evidence has shown that visual context information can rapidly modulate language comprehension for concrete sentences and when it is mediated by a referential or a lexical-semantic link. What has not yet been examined is whether visual context can also modulate comprehension of abstract sentences incrementally when it is neither referenced by, nor lexically associated with, the sentence. Three eye-tracking reading experiments examined the effects of spatial distance between words (Experiment 1) and objects (Experiment 2 and 3) on participants’ reading times for sentences that convey similarity or difference between two abstract nouns (e.g., ‘Peace and war are certainly different...’). Before reading the sentence, participants inspected a visual context with two playing cards that moved either far apart or close together. In Experiment 1, the cards turned and showed the first two nouns of the sentence (e.g., ‘peace’, ‘war’). In Experiments 2 and 3, they turned but remained blank. Participants’ reading times at the adjective (Experiment 1: first-pass reading time; Experiment 2: total times) and at the second noun phrase (Experiment 3: first-pass times) were faster for sentences that expressed similarity when the preceding words/objects were close together (vs. far apart) and for sentences that expressed dissimilarity when the preceding words/objects were far apart (vs. close together). Thus, spatial distance between words or entirely unrelated objects can rapidly and incrementally modulate the semantic interpretation of abstract sentences.

    Additional information

    mmc1.doc
  • Guest, O., Caso, A., & Cooper, R. P. (2020). On simulating neural damage in connectionist networks. Computational Brain & Behavior, 3, 289-321. doi:10.1007/s42113-020-00081-z.

    Abstract

    A key strength of connectionist modelling is its ability to simulate both intact cognition and the behavioural effects of neural damage. We survey the literature, showing that models have been damaged in a variety of ways, e.g. by removing connections, by adding noise to connection weights, by scaling weights, by removing units and by adding noise to unit activations. While these different implementations of damage have often been assumed to be behaviourally equivalent, some theorists have made aetiological claims that rest on nonequivalence. They suggest that related deficits with different aetiologies might be accounted for by different forms of damage within a single model. We present two case studies that explore the effects of different forms of damage in two influential connectionist models, each of which has been applied to explain neuropsychological deficits. Our results indicate that the effect of simulated damage can indeed be sensitive to the way in which damage is implemented, particularly when the environment comprises subsets of items that differ in their statistical properties, but such effects are sensitive to relatively subtle aspects of the model’s training environment. We argue that, as a consequence, substantial methodological care is required if aetiological claims about simulated neural damage are to be justified, and conclude more generally that implementation assumptions, including those concerning simulated damage, must be fully explored when evaluating models of neurological deficits, both to avoid over-extending the explanatory power of specific implementations and to ensure that reported results are replicable.
  • Guest, O., & Love, B. C. (2017). What the success of brain imaging implies about the neural code. eLife, 6: e21397. doi:10.7554/eLife.21397.

    Abstract

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Gullberg, M., & Holmqvist, K. (1999). Keeping an eye on gestures: Visual perception of gestures in face-to-face communication. Pragmatics & Cognition, 7(1), 35-63. doi:10.1075/pc.7.1.04gul.

    Abstract

    Since listeners usually look at the speaker's face, gestural information has to be absorbed through peripheral visual perception. In the literature, it has been suggested that listeners look at gestures under certain circumstances: 1) when the articulation of the gesture is peripheral; 2) when the speech channel is insufficient for comprehension; and 3) when the speaker him- or herself indicates that the gesture is worthy of attention. The research here reported employs eye tracking techniques to study the perception of gestures in face-to-face interaction. The improved control over the listener's visual channel allows us to test the validity of the above claims. We present preliminary findings substantiating claims 1 and 3, and relate them to theoretical proposals in the literature and to the issue of how visual and cognitive attention are related.
  • Gumperz, J. J., & Levinson, S. C. (1991). Rethinking linguistic relativity. Current Anthropology, 32(5), 613-623. Retrieved from http://www.jstor.org/stable/2743696.
  • Haan, E. H. F., Seijdel, N., Kentridge, R. W., & Heywood, C. A. (2020). Plasticity versus chronicity: Stable performance on category fluency 40 years post‐onset. Journal of Neuropsychology, 14(1), 20-27. doi:10.1111/jnp.12180.

    Abstract

    What is the long‐term trajectory of semantic memory deficits in patients who have suffered structural brain damage? Memory is, per definition, a changing faculty. The traditional view is that after an initial recovery period, the mature human brain has little capacity to repair or reorganize. More recently, it has been suggested that the central nervous system may be more plastic with the ability to change in neural structure, connectivity, and function. The latter observations are, however, largely based on normal learning in healthy subjects. Here, we report a patient who suffered bilateral ventro‐medial damage after presumed herpes encephalitis in 1971. He was seen regularly in the eighties, and we recently had the opportunity to re‐assess his semantic memory deficits. On semantic category fluency, he showed a very clear category‐specific deficit performing better that control data on non‐living categories and significantly worse on living items. Recent testing showed that his impairments have remained unchanged for more than 40 years. We suggest cautiousness when extrapolating the concept of brain plasticity, as observed during normal learning, to plasticity in the context of structural brain damage.
  • Hagoort, P. (1999). De toekomstige eeuw zonder psychologie. Psychologie Magazine, 18, 35-36.
  • Hagoort, P. (2017). Don't forget neurobiology: An experimental approach to linguistic representation. Commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e292. doi:10.1017/S0140525X17000401.

    Abstract

    Acceptability judgments are no longer acceptable as the holy grail for testing the nature of linguistic representations. Experimental and quantitative methods should be used to test theoretical claims in psycholinguistics. These methods should include not only behavior, but also the more recent possibilities to probe the neural codes for language-relevant representation
  • Hagoort, P., & Brown, C. M. (1999). Gender electrified: ERP evidence on the syntactic nature of gender processing. Journal of Psycholinguistic Research, 28(6), 715-728. doi:10.1023/A:1023277213129.

    Abstract

    The central issue of this study concerns the claim that the processing of gender agreement in online sentence comprehension is a syntactic rather than a conceptual/semantic process. This claim was tested for the grammatical gender agreement in Dutch between the definite article and the noun. Subjects read sentences in which the definite article and the noun had the same gender and sentences in which the gender agreement was violated, While subjects read these sentences, their electrophysiological activity was recorded via electrodes placed on the scalp. Earlier research has shown that semantic and syntactic processing events manifest themselves in different event-related brain potential (ERP) effects. Semantic integration modulates the amplitude of the so-called N400.The P600/SPS is an ERP effect that is more sensitive to syntactic processes. The violation of grammatical gender agreement was found to result in a P600/SPS. For violations in sentence-final position, an additional increase of the N400 amplitude was observed. This N400 effect is interpreted as resulting from the consequence of a syntactic violation for the sentence-final wrap-up. The overall pattern of results supports the claim that the on-line processing of gender agreement information is not a content driven but a syntactic-form driven process.
  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.

    Abstract

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
  • Hagoort, P. (2018). Prerequisites for an evolutionary stance on the neurobiology of language. Current Opinion in Behavioral Sciences, 21, 191-194. doi:10.1016/j.cobeha.2018.05.012.
  • Hagoort, P., & Brown, C. M. (1999). The consequences of the temporal interaction between syntactic and semantic processes for haemodynamic studies of language. NeuroImage, 9, S1024-S1024.
  • Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience and Biobehavioral Reviews, 81, 194-204. doi:10.1016/j.neubiorev.2017.01.048.

    Abstract

    In this paper a general cognitive architecture of spoken language processing is specified. This is followed by an account of how this cognitive architecture is instantiated in the human brain. Both the spatial aspects of the networks for language are discussed, as well as the temporal dynamics and the underlying neurophysiology. A distinction is proposed between networks for coding/decoding linguistic information and additional networks for getting from coded meaning to speaker meaning, i.e. for making the inferences that enable the listener to understand the intentions of the speaker
  • Hagoort, P., Ramsey, N., Rutten, G.-J., & Van Rijen, P. (1999). The role of the left anterior temporal cortex in language processing. Brain and Language, 69, 322-325. doi:10.1006/brln.1999.2169.
  • Hagoort, P., Indefrey, P., Brown, C. M., Herzog, H., Steinmetz, H., & Seitz, R. J. (1999). The neural circuitry involved in the reading of german words and pseudowords: A PET study. Journal of Cognitive Neuroscience, 11(4), 383-398. doi:10.1162/089892999563490.

    Abstract

    Silent reading and reading aloud of German words and pseudowords were used in a PET study using (15O)butanol to examine the neural correlates of reading and of the phonological conversion of legal letter strings, with or without meaning.
    The results of 11 healthy, right-handed volunteers in the age range of 25 to 30 years showed activation of the lingual gyri during silent reading in comparison with viewing a fixation cross. Comparisons between the reading of words and pseudowords suggest the involvement of the middle temporal gyri in retrieving both the phonological and semantic code for words. The reading of pseudowords activates the left inferior frontal gyrus, including the ventral part of Broca’s area, to a larger extent than the reading of words. This suggests that this area might be involved in the sublexical conversion of orthographic input strings into phonological output codes. (Pre)motor areas were found to be activated during both silent reading and reading aloud. On the basis of the obtained activation patterns, it is hypothesized that the articulation of high-frequency syllables requires the retrieval of their concomitant articulatory gestures from the SMA and that the articulation of lowfrequency syllables recruits the left medial premotor cortex.
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Hahn, L. E., Benders, T., Snijders, T. M., & Fikkert, P. (2018). Infants' sensitivity to rhyme in songs. Infant Behavior and Development, 52, 130-139. doi:10.1016/j.infbeh.2018.07.002.

    Abstract

    Children’s songs often contain rhyming words at phrase endings. In this study, we investigated whether infants can already recognize this phonological pattern in songs. Earlier studies using lists of spoken words were equivocal on infants’ spontaneous processing of rhymes (Hayes, Slater, & Brown, 2000; Jusczyk, Goodman, & Baumann, 1999). Songs, however, constitute an ecologically valid rhyming stimulus, which could allow for spontaneous processing of this phonological pattern in infants. Novel children’s songs with rhyming and non-rhyming lyrics using pseudo-words were presented to 35 9-month-old Dutch infants using the Headturn Preference Procedure. Infants on average listened longer to the non-rhyming songs, with around half of the infants however exhibiting a preference for the rhyming songs. These results highlight that infants have the processing abilities to benefit from their natural rhyming input for the development of their phonological abilities.
  • Hahn, L. E., Ten Buuren, M., Snijders, T. M., & Fikkert, P. (2020). Learning words in a second language while cycling and listening to children’s songs: The Noplica Energy Center. International Journal of Music in Early Childhood, 15(1), 95-108. doi:10.1386/ijmec_00014_1.

    Abstract

    Children’s songs are a great source for linguistic learning. Here we explore whether children can acquire novel words in a second language by playing a game featuring children’s songs in a playhouse. The playhouse is designed by the Noplica foundation (www.noplica.nl) to advance language learning through unsupervised play. We present data from three experiments that serve to scientifically proof the functionality of one game of the playhouse: the Energy Center. For this game, children move three hand-bikes mounted on a panel within the playhouse. Once the children cycle, a song starts playing that is accompanied by musical instruments. In our experiments, children executed a picture-selection task to evaluate whether they acquired new vocabulary from the songs presented during the game. Two of our experiments were run in the field, one at a Dutch and one at an Indian pre-school. The third experiment features data from a more controlled laboratory setting. Our results partly confirm that the Energy Center is a successful means to support vocabulary acquisition in a second language. More research with larger sample sizes and longer access to the Energy Center is needed to evaluate the overall functionality of the game. Based on informal observations at our test sites, however, we are certain that children do pick up linguistic content from the songs during play, as many of the children repeat words and phrases from the songs they heard. We will pick up upon these promising observations during future studies.
  • Hahn, L. E., Benders, T., Snijders, T. M., & Fikkert, P. (2020). Six-month-old infants recognize phrases in song and speech. Infancy, 25(5), 699-718. doi:10.1111/infa.12357.

    Abstract

    Infants exploit acoustic boundaries to perceptually organize phrases in speech. This prosodic parsing ability is well‐attested and is a cornerstone to the development of speech perception and grammar. However, infants also receive linguistic input in child songs. This study provides evidence that infants parse songs into meaningful phrasal units and replicates previous research for speech. Six‐month‐old Dutch infants (n = 80) were tested in the song or speech modality in the head‐turn preference procedure. First, infants were familiarized to two versions of the same word sequence: One version represented a well‐formed unit, and the other contained a phrase boundary halfway through. At test, infants were presented two passages, each containing one version of the familiarized sequence. The results for speech replicated the previously observed preference for the passage containing the well‐formed sequence, but only in a more fine‐grained analysis. The preference for well‐formed phrases was also observed in the song modality, indicating that infants recognize phrase structure in song. There were acoustic differences between stimuli of the current and previous studies, suggesting that infants are flexible in their processing of boundary cues while also providing a possible explanation for differences in effect sizes.

    Additional information

    infa12357-sup-0001-supinfo.zip
  • Hammarstroem, H., & Güldemann, T. (2014). Quantifying geographical determinants of large-scale distributions of linguistic features. Language Dynamics and Change, 4, 87-115. doi:10.1163/22105832-00401002.

    Abstract

    In the recent past the work on large-scale linguistic distributions across the globe has intensified considerably. Work on macro-areal relationships in Africa (Güldemann, 2010) suggests that the shape of convergence areas may be determined by climatic factors and geophysical features such as mountains, water bodies, coastlines, etc. Worldwide data is now available for geophysical features as well as linguistic features, including numeral systems and basic constituent order. We explore the possibility that the shape of areal aggregations of individual features in these two linguistic domains correlates with Köppen-Geiger climate zones. Furthermore, we test the hypothesis that the shape of such areal feature aggregations is determined by the contour of adjacent geophysical features like mountain ranges or coastlines. In these first basic tests, we do not find clear evidence that either Köppen-Geiger climate zones or the contours of geophysical features are major predictors for the linguistic data at hand

    Files private

    Request files
  • Hammarstroem, H., & Donohue, M. (2014). Some principles on the use of macro-areas in typological comparison. Language Dynamics and Change, 4, 167-187. doi:10.1163/22105832-00401001.

    Abstract

    While the notion of the ‘area’ or ‘Sprachbund’ has a long history in linguistics, with geographically-defined regions frequently cited as a useful means to explain typological distributions, the problem of delimiting areas has not been well addressed. Lists of general-purpose, largely independent ‘macro-areas’ (typically continent size) have been proposed as a step to rule out contact as an explanation for various large-scale linguistic phenomena. This squib points out some problems in some of the currently widely-used predetermined areas, those found in the World Atlas of Language Structures (Haspelmath et al., 2005). Instead, we propose a principled division of the world’s landmasses into six macro-areas that arguably have better geographical independence properties
  • Hammarström, H. (2014). [Review of the book A grammar of the great Andamanese language: An ethnolinguistic study by Anvita Abbi]. Journal of South Asian Languages and Linguistics, 1, 111-116. doi:10.1515/jsall-2014-0007.
  • Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the Cardinal Coordinate System Contributes to the Precision of Cognitive Maps. Frontiers in Psychology, 8: 1166. doi:10.3389/fpsyg.2017.01166.

    Abstract

    The coordinate system has been proposed as a fundamental and cross-culturally used spatial representation, through which people code location and direction information in the environment. Here we provided direct evidence demonstrating that daily experience with the cardinal coordinate system (i.e., east, west, north, and south) contributed to the representation of cognitive maps. Behaviorally, we found that individuals who relied more on the cardinal coordinate system for daily navigation made smaller errors in an indoor pointing task, suggesting that the cardinal coordinate system is an important element of cognitive maps. Neurally, the extent to which individuals relied on the cardinal coordinate system was positively correlated with the gray matter volume of the entorhinal cortex, suggesting that the entorhinal cortex may serve as the neuroanatomical basis of coordinate-based navigation (the entorhinal coordinate area, ECA). Further analyses on the resting-state functional connectivity revealed that the intrinsic interaction between the ECA and two hippocampal sub-regions, the subiculum and cornu ammonis, might be linked with the representation precision of cognitive maps. In sum, our study reveals an association between daily experience with the cardinal coordinate system and cognitive maps, and suggests that the ECA works in collaboration with hippocampal sub-regions to represent cognitive maps.
  • Harmon, Z., & Kapatsinski, V. (2017). Putting old tools to novel uses: The role of form accessibility in semantic extension. Cognitive Psychology, 98, 22-44. doi:10.1016/j.cogpsych.2017.08.002.

    Abstract

    An increase in frequency of a form has been argued to result in semantic extension (Bybee, 2003; Zipf, 1949). Yet, research on the acquisition of lexical semantics suggests that a form that frequently co-occurs with a meaning gets restricted to that meaning (Xu & Tenenbaum, 2007). The current work reconciles these positions by showing that – through its effect on form accessibility – frequency causes semantic extension in production, while at the same time causing entrenchment in comprehension. Repeatedly experiencing a form paired with a specific meaning makes one more likely to re-use the form to express related meanings, while also increasing one’s confidence that the form is never used to express those meanings. Recurrent pathways of semantic change are argued to result from a tug of war between the production-side pressure to reuse easily accessible forms and the comprehension-side confidence that one has seen all possible uses of a frequent form.
  • Hartung, F., Hagoort, P., & Willems, R. M. (2017). Readers select a comprehension mode independent of pronoun: Evidence from fMRI during narrative comprehension. Brain and Language, 170, 29-38. doi:10.1016/j.bandl.2017.03.007.

    Abstract

    Perspective is a crucial feature for communicating about events. Yet it is unclear how linguistically encoded perspective relates to cognitive perspective taking. Here, we tested the effect of perspective taking with short literary stories. Participants listened to stories with 1st or 3rd person pronouns referring to the protagonist, while undergoing fMRI. When comparing action events with 1st and 3rd person pronouns, we found no evidence for a neural dissociation depending on the pronoun. A split sample approach based on the self-reported experience of perspective taking revealed 3 comprehension preferences. One group showed a strong 1st person preference, another a strong 3rd person preference, while a third group engaged in 1st and 3rd person perspective taking simultaneously. Comparing brain activations of the groups revealed different neural networks. Our results suggest that comprehension is perspective dependent, but not on the perspective suggested by the text, but on the reader’s (situational) preference
  • Hartung, F., Withers, P., Hagoort, P., & Willems, R. M. (2017). When fiction is just as real as fact: No differences in reading behavior between stories believed to be based on true or fictional events. Frontiers in Psychology, 8: 1618. doi:10.3389/fpsyg.2017.01618.

    Abstract

    Experiments have shown that compared to fictional texts, readers read factual texts faster and have better memory for described situations. Reading fictional texts on the other hand seems to improve memory for exact wordings and expressions. Most of these studies used a ‘newspaper’ versus ‘literature’ comparison. In the present study, we investigated the effect of reader’s expectation to whether information is true or fictional with a subtler manipulation by labelling short stories as either based on true or fictional events. In addition, we tested whether narrative perspective or individual preference in perspective taking affects reading true or fictional stories differently. In an online experiment, participants (final N=1742) read one story which was introduced as based on true events or as fictional (factor fictionality). The story could be narrated in either 1st or 3rd person perspective (factor perspective). We measured immersion in and appreciation of the story, perspective taking, as well as memory for events. We found no evidence that knowing a story is fictional or based on true events influences reading behavior or experiential aspects of reading. We suggest that it is not whether a story is true or fictional, but rather expectations towards certain reading situations (e.g. reading newspaper or literature) which affect behavior by activating appropriate reading goals. Results further confirm that narrative perspective partially influences perspective taking and experiential aspects of reading
  • Hasson, U., Egidi, G., Marelli, M., & Willems, R. M. (2018). Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension. Cognition, 180(1), 135-157. doi:10.1016/j.cognition.2018.06.018.

    Abstract

    Recent decades have ushered in tremendous progress in understanding the neural basis of language. Most of our current knowledge on language and the brain, however, is derived from lab-based experiments that are far removed from everyday language use, and that are inspired by questions originating in linguistic and psycholinguistic contexts. In this paper we argue that in order to make progress, the field needs to shift its focus to understanding the neurobiology of naturalistic language comprehension. We present here a new conceptual framework for understanding the neurobiological organization of language comprehension. This framework is non-language-centered in the computational/neurobiological constructs it identifies, and focuses strongly on context. Our core arguments address three general issues: (i) the difficulty in extending language-centric explanations to discourse; (ii) the necessity of taking context as a serious topic of study, modeling it formally and acknowledging the limitations on external validity when studying language comprehension outside context; and (iii) the tenuous status of the language network as an explanatory construct. We argue that adopting this framework means that neurobiological studies of language will be less focused on identifying correlations between brain activity patterns and mechanisms postulated by psycholinguistic theories. Instead, they will be less self-referential and increasingly more inclined towards integration of language with other cognitive systems, ultimately doing more justice to the neurobiological organization of language and how it supports language as it is used in everyday life.
  • Haun, D. B. M., Rekers, Y., & Tomasello, M. (2014). Children conform the behavior of peers; Other great apes stick with what they know. Psychological Science, 25, 2160-2167. doi:10.1177/0956797614553235.

    Abstract

    All primates learn things from conspecifics socially, but it is not clear whether they conform to the behavior of these conspecifics—if conformity is defined as overriding individually acquired behavioral tendencies in order to copy peers’ behavior. In the current study, chimpanzees, orangutans, and 2-year-old human children individually acquired a problem-solving strategy. They then watched several conspecific peers demonstrate an alternative strategy. The children switched to this new, socially demonstrated strategy in roughly half of all instances, whereas the other two great-ape species almost never adjusted their behavior to the majority’s. In a follow-up study, children switched much more when the peer demonstrators were still present than when they were absent, which suggests that their conformity arose at least in part from social motivations. These results demonstrate an important difference between the social learning of humans and great apes, a difference that might help to account for differences in human and nonhuman cultures

    Additional information

    Haun_Rekers_Tomasello_2014_supp.pdf
  • Havron, N., Raviv, L., & Arnon, I. (2018). Literate and preliterate children show different learning patterns in an artificial language learning task. Journal of Cultural Cognitive Science, 2, 21-33. doi:10.1007/s41809-018-0015-9.

    Abstract

    Literacy affects many aspects of cognitive and linguistic processing. Among them, it increases the salience of words as units of linguistic processing. Here, we explored the impact of literacy acquisition on children’s learning of an artifical language. Recent accounts of L1–L2 differences relate adults’ greater difficulty with language learning to their smaller reliance on multiword units. In particular, multiword units are claimed to be beneficial for learning opaque grammatical relations like grammatical gender. Since literacy impacts the reliance on words as units of processing, we ask if and how acquiring literacy may change children’s language-learning results. We looked at children’s success in learning novel noun labels relative to their success in learning article-noun gender agreement, before and after learning to read. We found that preliterate first graders were better at learning agreement (larger units) than at learning nouns (smaller units), and that the difference between the two trial types significantly decreased after these children acquired literacy. In contrast, literate third graders were as good in both trial types. These findings suggest that literacy affects not only language processing, but also leads to important differences in language learning. They support the idea that some of children’s advantage in language learning comes from their previous knowledge and experience with language—and specifically, their lack of experience with written texts.
  • Havron, N., Bergmann, C., & Tsuji, S. (2020). Preregistration in infant research - A primer. Infancy, 25(5), 734-754. doi:10.1111/infa.12353.

    Abstract

    Preregistration, the act of specifying a research plan in advance, is becoming more common in scientific research. Infant researchers contend with unique problems that might make preregistration particularly challenging. Infants are a hard‐to‐reach population, usually yielding small sample sizes, they can only complete a limited number of trials, and they can be excluded based on hard‐to‐predict complications (e.g., parental interference, fussiness). In addition, as effects themselves potentially change with age and population, it is hard to calculate an a priori effect size. At the same time, these very factors make preregistration in infant studies a valuable tool. A priori examination of the planned study, including the hypotheses, sample size, and resulting statistical power, increases the credibility of single studies and adds value to the field. Preregistration might also improve explicit decision making to create better studies. We present an in‐depth discussion of the issues uniquely relevant to infant researchers, and ways to contend with them in preregistration and study planning. We provide recommendations to researchers interested in following current best practices.

    Additional information

    Preprint version on OSF
  • Hebebrand, J., Peters, T., Schijven, D., Hebebrand, M., Grasemann, C., Winkler, T. W., Heid, I. M., Antel, J., Föcker, M., Tegeler, L., Brauner, L., Adan, R. A., Luykx, J. J., Correll, C. U., König, I. R., Hinney, A., & Libuda, L. (2018). The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Molecular Metabolism, 12, 1-11. doi:10.1016/j.molmet.2018.03.015.

    Abstract

    Objective
    The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders
    Methods
    We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10−6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10−5) on the correction for the 516 SNPs only.
    Results
    19 SNPs located in nine independent loci revealed p-values < 6.92 × 10−6; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment.
    Conclusions
    Approximately 5–10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies.
  • Heidlmayr, K., Kihlstedt, M., & Isel, F. (2020). A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 146: 105637. doi:10.1016/j.bandc.2020.105637.

    Abstract

    The present article on executive control addresses the issue of the locus of the Stroop effect by examining neurophysiological components marking conflict monitoring, interference suppression, and conflict resolution. Our goal was to provide an overview of a series of determining neurophysiological findings including neural source reconstruction data on distinct executive control processes and sub-processes involved in the Stroop task. Consistently, a fronto-central N2 component is found to reflect conflict monitoring processes, with its main neural generator being the anterior cingulate cortex (ACC). Then, for cognitive control tasks that involve a linguistic component like the Stroop task, the N2 is followed by a centro-posterior N400 and subsequently a late sustained potential (LSP). The N400 is mainly generated by the ACC and the prefrontal cortex (PFC) and is thought to reflect interference suppression, whereas the LSP plausibly reflects conflict resolution processes. The present overview shows that ERP constitute a reliable methodological tool for tracing with precision the time course of different executive processes and sub-processes involved in experimental tasks involving a cognitive conflict. Future research should shed light on the fine-grained mechanisms of control respectively involved in linguistic and non-linguistic tasks.
  • Heidlmayr, K., Weber, K., Takashima, A., & Hagoort, P. (2020). No title, no theme: The joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex, 130, 111-126. doi:10.1016/j.cortex.2020.04.035.

    Abstract

    Speakers and listeners usually interact in larger discourses than single words or even single sentences. The goal of the present study was to identify the neural bases reflecting how the mental representation of the situation denoted in a multi-sentence discourse (situation model) is constructed and shared between speakers and listeners. An fMRI study using a variant of the ambiguous text paradigm was designed. Speakers (n=15) produced ambiguous texts in the scanner and listeners (n=27) subsequently listened to these texts in different states of ambiguity: preceded by a highly informative, intermediately informative or no title at all. Conventional BOLD activation analyses in listeners, as well as inter-subject correlation analyses between the speakers’ and the listeners’ hemodynamic time courses were performed. Critically, only the processing of disambiguated, coherent discourse with an intelligible situation model representation involved (shared) activation in bilateral lateral parietal and medial prefrontal regions. This shared spatiotemporal pattern of brain activation between the speaker and the listener suggests that the process of memory retrieval in medial prefrontal regions and the binding of retrieved information in the lateral parietal cortex constitutes a core mechanism underlying the communication of complex conceptual representations.

    Additional information

    supplementary data
  • Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & De Lange, F. P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, 11: 321. doi:10.1038/s41467-019-13996-4.

    Abstract

    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions.

    Additional information

    Supplementary information
  • Heinrich, T., Ravignani, A., & Hanke, F. H. (2020). Visual timing abilities of a harbour seal (Phoca vitulina) and a South African fur seal (Arctocephalus pusillus pusillus) for sub- and supra-second time intervals. Animal Cognition, 23(5), 851-859. doi:10.1007/s10071-020-01390-3.

    Abstract

    Timing is an essential parameter influencing many behaviours. A previous study demonstrated a high sensitivity of a phocid, the harbour seal (Phoca vitulina), in discriminating time intervals. In the present study, we compared the harbour seal’s timing abilities with the timing abilities of an otariid, the South African fur seal (Arctocephalus pusillus pusillus). This comparison seemed essential as phocids and otariids differ in many respects and might, thus, also differ regarding their timing abilities. We determined time difference thresholds for sub- and suprasecond time intervals marked by a white circle on a black background displayed for a specific time interval on a monitor using a staircase method. Contrary to our expectation, the timing abilities of the fur seal and the harbour seal were comparable. Over a broad range of time intervals, 0.8–7 s in the fur seal and 0.8–30 s in the harbour seal, the difference thresholds followed Weber’s law. In this range, both animals could discriminate time intervals differing only by 12 % and 14 % on average. Timing might, thus be a fundamental cue for pinnipeds in general to be used in various contexts, thereby complementing information provided by classical sensory systems. Future studies will help to clarify if timing is indeed involved in foraging decisions or the estimation of travel speed or distance.

    Additional information

    supplementary material
  • Hendricks, A. E., Bochukova, E. G., Marenne, G., Keogh, J. M., Atanassova, N., Bounds, R., Wheeler, E., Mistry, V., Henning, E., Körner, A., Muddyman, D., McCarthy, S., Hinney, A., Hebebrand, J., Scott, R. A., Langenberg, C., Wareham, N. J., Surendran, P., Howson, J. M., Butterworth, A. S. and 14 moreHendricks, A. E., Bochukova, E. G., Marenne, G., Keogh, J. M., Atanassova, N., Bounds, R., Wheeler, E., Mistry, V., Henning, E., Körner, A., Muddyman, D., McCarthy, S., Hinney, A., Hebebrand, J., Scott, R. A., Langenberg, C., Wareham, N. J., Surendran, P., Howson, J. M., Butterworth, A. S., Danesh, J., Børge G, N., Nielse, S. F., Afzal, S., Papadia, S., Ashford, S., Garg, S., Palomino, R. I., Kwasniewska, A., Tachmazidou, I., O’Rahilly, S., Zeggini, E., Barroso, I., & Farooqi, I. S. (2017). Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. Scientific Reports, 7: 4394. doi:10.1038/s41598-017-03054-8.

    Abstract

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10−3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.
  • Henson, R. N., Suri, S., Knights, E., Rowe, J. B., Kievit, R. A., Lyall, D. M., Chan, D., Eising, E., & Fisher, S. E. (2020). Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. Brain and Neuroscience Advances, 4: 2398212820961704. doi:10.1177/2398212820961704.

    Abstract

    Polymorphisms in the apolipoprotein E (APOE) gene have been associated with individual differences in cognition, brain structure and brain function. For example, the ε4 allele has been associated with cognitive and brain impairment in old age and increased risk of dementia, while the ε2 allele has been claimed to be neuroprotective. According to the ‘antagonistic pleiotropy’ hypothesis, these polymorphisms have different effects across the lifespan, with ε4, for example, postulated to confer benefits on cognitive and brain functions earlier in life. In this stage 2 of the Registered Report – https://osf.io/bufc4, we report the results from the cognitive and brain measures in the Cambridge Centre for Ageing and Neuroscience cohort (www.cam-can.org). We investigated the antagonistic pleiotropy hypothesis by testing for allele-by-age interactions in approximately 600 people across the adult lifespan (18–88 years), on six outcome variables related to cognition, brain structure and brain function (namely, fluid intelligence, verbal memory, hippocampal grey-matter volume, mean diffusion within white matter and resting-state connectivity measured by both functional magnetic resonance imaging and magnetoencephalography). We found no evidence to support the antagonistic pleiotropy hypothesis. Indeed, Bayes factors supported the null hypothesis in all cases, except for the (linear) interaction between age and possession of the ε4 allele on fluid intelligence, for which the evidence for faster decline in older ages was ambiguous. Overall, these pre-registered analyses question the antagonistic pleiotropy of APOE polymorphisms, at least in healthy adults.

    Additional information

    supplementary material
  • Heritage, J., & Stivers, T. (1999). Online commentary in acute medical visits: A method of shaping patient expectations. Social Science and Medicine, 49(11), 1501-1517. doi:10.1016/S0277-9536(99)00219-1.
  • Hersh, T. A., Dimond, A. L., Ruth, B. A., Lupica, N. V., Bruce, J. C., Kelley, J. M., King, B. L., & Lutton, B. V. (2018). A role for the CXCR4-CXCL12 axis in the little skate, Leucoraja erinacea. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 315, R218-R229. doi:10.1152/ajpregu.00322.2017.

    Abstract

    The interaction between C-X-C chemokine receptor type 4 (CXCR4) and its cognate ligand C-X-C motif chemokine ligand 12 (CXCL12) plays a critical role in regulating hematopoietic stem cell activation and subsequent cellular mobilization. Extensive studies of these genes have been conducted in mammals, but much less is known about the expression and function of CXCR4 and CXCL12 in non-mammalian vertebrates. In the present study, we identify simultaneous expression of CXCR4 and CXCL12 orthologs in the epigonal organ (the primary hematopoietic tissue) of the little skate, Leucoraja erinacea. Genetic and phylogenetic analyses were functionally supported by significant mobilization of leukocytes following administration of Plerixafor, a CXCR4 antagonist and clinically important drug. Our results provide evidence that, as in humans, Plerixafor disrupts CXCR4/CXCL12 binding in the little skate, facilitating release of leukocytes into the bloodstream. Our study illustrates the value of the little skate as a model organism, particularly in studies of hematopoiesis and potentially for preclinical research on hematological and vascular disorders.

    Files private

    Request files
  • Hersh, T., King, B., & Lutton, B. V. (2014). Novel bioinformatics tools for analysis of gene expression in the skate, Leucoraja erinacea. The Bulletin, MDI Biological Laboratory, 53, 16-18.
  • Hervais-Adelman, A., Egorova, N., & Golestani, N. (2018). Beyond bilingualism: Multilingual experience correlates with caudate volume. Brain Structure and Function, 223(7), 3495-3502. doi:10.1007/s00429-018-1695-0.

    Abstract

    The multilingual brain implements mechanisms that serve to select the appropriate language as a function of the communicative environment. Engaging these mechanisms on a regular basis appears to have consequences for brain structure and function. Studies have implicated the caudate nuclei as important nodes in polyglot language control processes, and have also shown structural differences in the caudate nuclei in bilingual compared to monolingual populations. However, the majority of published work has focused on the categorical differences between monolingual and bilingual individuals, and little is known about whether these findings extend to multilingual individuals, who have even greater language control demands. In the present paper, we present an analysis of the volume and morphology of the caudate nuclei, putamen, pallidum and thalami in 75 multilingual individuals who speak three or more languages. Volumetric analyses revealed a significant relationship between multilingual experience and right caudate volume, as well as a marginally significant relationship with left caudate volume. Vertex-wise analyses revealed a significant enlargement of dorsal and anterior portions of the left caudate nucleus, known to have connectivity with executive brain regions, as a function of multilingual expertise. These results suggest that multilingual expertise might exercise a continuous impact on brain structure, and that as additional languages beyond a second are acquired, the additional demands for linguistic and cognitive control result in modifications to brain structures associated with language management processes.
  • Hervais-Adelman, A., Pefkou, M., & Golestani, N. (2014). Bilingual speech-in-noise: Neural bases of semantic context use in the native language. Brain and Language, 132, 1-6. doi:10.1016/j.bandl.2014.01.009.

    Abstract

    Bilingual listeners comprehend speech-in-noise better in their native than non-native language. This native-language benefit is thought to arise from greater use of top-down linguistic information to assist degraded speech comprehension. Using functional magnetic resonance imaging, we recently showed that left angular gyrus activation is modulated when semantic context is used to assist native language speech-in-noise comprehension (Golestani, Hervais-Adelman, Obleser, & Scott, 2013). Here, we extend the previous work, by reanalyzing the previous data alongside the results obtained in the non-native language of the same late bilingual participants. We found a behavioral benefit of semantic context in processing speech-in-noise in the native language only, and the imaging results also revealed a native language context effect in the left angular gyrus. We also find a complementary role of lower-level auditory regions during stimulus-driven processing. Our findings help to elucidate the neural basis of the established native language behavioral benefit of speech-in-noise processing. (C) 2014 Elsevier Inc. All rights reserved.
  • Hervais-Adelman, A., Moser-Mercer, B., Murray, M. M., & Golestani, N. (2017). Cortical thickness increases after simultaneous interpretation training. Neuropsychologia, 98, 212-219. doi:10.1016/j.neuropsychologia.2017.01.008.

    Abstract

    Simultaneous interpretation is a complex cognitive task that not only demands multilingual language processing, but also requires application of extreme levels of domain-general cognitive control. We used MRI to longitudinally measure cortical thickness in simultaneous interpretation trainees before and after a Master's program in conference interpreting. We compared them to multilingual control participants scanned at the same interval of time. Increases in cortical thickness were specific to trainee interpreters. Increases were observed in regions involved in lower-level, phonetic processing (left posterior superior temporal gyrus, anterior supramarginal gyrus and planum temporale), in the higher-level formulation of propositional speech (right angular gyrus) and in the conversion of items from working memory into a sequence (right dorsal premotor cortex), and finally, in domain-general executive control and attention (right parietal lobule). Findings are consistent with the linguistic requirements of simultaneous interpretation and also with the more general cognitive demands on attentional control for expert performance in simultaneous interpreting. Our findings may also reflect beneficial, potentially protective effects of simultaneous interpretation training, which has previously been shown to confer enhanced skills in certain executive and attentional domains over and above those conferred by bilingualism.
  • Hervais-Adelman, A., Moser-Mercer, B., & Golestani, N. (2018). Commentary: Broca pars triangularis constitutes a “hub” of the language-control network during simultaneous language translation. Frontiers in Human Neuroscience, 12: 22. doi:10.3389/fnhum.2018.00022.

    Abstract

    A commentary on
    Broca Pars Triangularis Constitutes a “Hub” of the Language-Control Network during Simultaneous Language Translation

    by Elmer, S. (2016). Front. Hum. Neurosci. 10:491. doi: 10.3389/fnhum.2016.00491

    Elmer (2016) conducted an fMRI investigation of “simultaneous language translation” in five participants. The article presents group and individual analyses of German-to-Italian and Italian-to-German translation, confined to a small set of anatomical regions previously reported to be involved in multilingual control. Here we take the opportunity to discuss concerns regarding certain aspects of the study.
  • Hessels, R. S., Hooge, I., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44, 443-451. doi:10.1007/s10803-013-1886-8.

    Abstract

    Superiority in visual search for individuals diagnosed with autism spectrum disorder (ASD) is a well-reported finding. We administered two visual search tasks to individuals with ASD and matched controls. One showed no difference between the groups, and one did show the expected superior performance for individuals with ASD. These results offer an explanation, formulated in terms of load theory. We suggest that there is a limit to the superiority in visual search for individuals with ASD, related to the perceptual load of the stimuli. When perceptual load becomes so high that no additional task-(ir)relevant information can be processed, performance will be based on single stimulus identification, in which no differences between individuals with ASD and controls have been demonstrated
  • Hestvik, A., Shinohara, Y., Durvasula, K., Verdonschot, R. G., & Sakai, H. (2020). Abstractness of human speech sound representations. Brain Research, 1732: 146664. doi:10.1016/j.brainres.2020.146664.

    Abstract

    We argue, based on a study of brain responses to speech sound differences in Japanese, that memory encoding of functional speech sounds-phonemes-are highly abstract. As an example, we provide evidence for a theory where the consonants/p t k b d g/ are not only made up of symbolic features but are underspecified with respect to voicing or laryngeal features, and that languages differ with respect to which feature value is underspecified. In a previous study we showed that voiced stops are underspecified in English [Hestvik, A., & Durvasula, K. (2016). Neurobiological evidence for voicing underspecification in English. Brain and Language], as shown by asymmetries in Mismatch Negativity responses to /t/ and /d/. In the current study, we test the prediction that the opposite asymmetry should be observed in Japanese, if voiceless stops are underspecified in that language. Our results confirm this prediction. This matches a linguistic architecture where phonemes are highly abstract and do not encode actual physical characteristics of the corresponding speech sounds, but rather different subsets of abstract distinctive features.
  • Heyne, H. O., Singh, T., Stamberger, H., Jamra, R. A., Caglayan, H., Craiu, D., Guerrini, R., Helbig, K. L., Koeleman, B. P. C., Kosmicki, J. A., Linnankivi, T., May, P., Muhle, H., Møller, R. S., Neubauer, B. A., Palotie, A., Pendziwiat, M., Striano, P., Tang, S., Wu, S. and 9 moreHeyne, H. O., Singh, T., Stamberger, H., Jamra, R. A., Caglayan, H., Craiu, D., Guerrini, R., Helbig, K. L., Koeleman, B. P. C., Kosmicki, J. A., Linnankivi, T., May, P., Muhle, H., Møller, R. S., Neubauer, B. A., Palotie, A., Pendziwiat, M., Striano, P., Tang, S., Wu, S., EuroEPINOMICS RES Consortium, De Kovel, C. G. F., Poduri, A., Weber, Y. G., Weckhuysen, S., Sisodiya, S. M., Daly, M. J., Helbig, I., Lal, D., & Lemke, J. R. (2018). De novo variants in neurodevelopmental disorders with epilepsy. Nature Genetics, 50, 1048-1053. doi:10.1038/s41588-018-0143-7.

    Abstract

    Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent–offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.

Share this page