Publications

Displaying 301 - 307 of 307
  • De Weert, C., & Levelt, W. J. M. (1976). Dichoptic brightness combinations for unequally coloured lights. Vision Research, 16, 1077-1086.
  • Wegener, C. (2006). Savosavo body part terminology. Language Sciences, 28(2-3), 344-359. doi:10.1016/j.langsci.2005.11.005.

    Abstract

    This paper provides a description of body part terminology used in Savosavo, a Papuan language of the Solomon Islands. The first part of the paper lists the known terms and discusses their meanings. This is followed by an analysis of their structural properties. Finally, the paper discusses partonomic relations in Savosavo and argues that it is difficult to structure the body part terminology hierarchically, because there is no linguistic evidence for part–whole relations between body parts.
  • Weisfelt, M., Hoogman, M., van de Beek, D., de Gans, J., Dreschler, W. A., & Schmand, B. A. (2006). Dexamethasone and long-term outcome in adults with bacterial meningitis. Annals of Neurology, 60, 456-468. doi:10.1002/ana.20944.

    Abstract

    This follow-up study of the European Dexamethasone Study was designed to examine the potential harmful effect of adjunctive dexamethasone treatment on long-term neuropsychological outcome in adults with bacterial meningitis. METHODS: Neurological, audiological, and neuropsychological examinations were performed in adults who survived pneumococcal or meningococcal meningitis. RESULTS: Eighty-seven of 99 (88%) eligible patients were included in the follow-up study; 46 (53%) were treated with dexamethasone and 41 (47%) with placebo. Median time between meningitis and testing was 99 months. Neuropsychological evaluation showed no significant differences between patients treated with dexamethasone and placebo. The proportions of patients with persisting neurological sequelae or hearing loss were similar in the dexamethasone and placebo groups. The overall rate of cognitive dysfunction did not differ significantly between patients and control subjects; however, patients after pneumococcal meningitis had a higher rate of cognitive dysfunction (21 vs 6%; p = 0.05) and experienced more impairment of everyday functioning due to physical problems (p = 0.05) than those after meningococcal meningitis. INTERPRETATION: Treatment with adjunctive dexamethasone is not associated with an increased risk for long-term cognitive impairment. Adults who survive pneumococcal meningitis are at significant risk for long-term neuropsychological abnormalities.
  • Weisfelt, M., van de Beek, D., Hoogman, M., Hardeman, C., de Gans, J., & Schmand, B. (2006). Cognitive outcome in adults with moderate disability after pneumococcal meningitis. Journal of Infection, 52, 433-439. doi:10.1016/j.jinf.2005.08.014.

    Abstract

    Objectives To assess cognitive outcome and quality of life in patients with moderate disability after bacterial meningitis as compared to patients with good recovery. Methods Neuropsychological evaluation was performed in 40 adults after pneumococcal meningitis; 20 patients with moderate disability at discharge on the glasgow outcome scale (GOS score 4) and 20 with good recovery (GOS score 5). Results Patients with GOS score 4 had similar test results as compared to patients with GOS score 5 for the neuropsychological domains ‘intelligence’, ‘memory’ and ‘attention and executive functioning’. Patients with GOS score 4 showed less cognitive slowness than patients with GOS score 5. In a linear regression analysis cognitive speed was related to current intelligence, years of education and time since meningitis. Overall performance on the speed composite score correlated significantly with time since meningitis (−0.62; P<0.001). Therefore, difference between both groups may have been related to a longer time between meningitis and testing for GOS four patients (29 vs. 12 months; P<0.001). Conclusions Patients with moderate disability after bacterial meningitis are not at higher risk for neuropsychological abnormalities than patients with good recovery. In addition, cognitive slowness after bacterial meningitis may be reversible in time.
  • Weterman, M. A. J., Wilbrink, M. J. M., Janssen, I. M., Janssen, H. A. P., Berg, E. v. d., Fisher, S. E., Craig, I., & Geurts van Kessel, A. H. M. (1996). Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1)(p11;q21) breakpoint. Cytogenetic and genome research, 75(1), 2-6. doi:10.1159/000134444.

    Abstract

    A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization techniques was used to map YACs, cosmids and DNA markers from the Xp11.2 region relative to the X chromosome breakpoint of the renal cell carcinoma-associated t(X;1)(p11;q21). The position of the breakpoint could be determined as follows: Xcen-OATL2-DXS146-DXS255-SYP-t(X;1)-TFE 3-OATL1-Xpter. Fluorescence in situ hybridization experiments using TFE3-containing YACs and cosmids revealed split signals indicating that the corresponding DNA inserts span the breakpoint region. Subsequent Southern blot analysis showed that a 2.3-kb EcoRI fragment which is present in all TFE3 cosmids identified, hybridizes to aberrant restriction fragments in three independent t(X;1)-positive renal cell carcinoma DNAs. The breakpoints in these tumors are not the same, but map within a region of approximately 6.5 kb. Through preparative gel electrophoresis an (X;1) chimaeric 4.4-kb EcoRI fragment could be isolated which encompasses the breakpoint region present on der(X). Preliminary characterization of this fragment revealed the presence of a 150-bp region with a strong homology to the 5' end of the mouse TFE3 cDNA in the X-chromosome part, and a 48-bp segment in the chromosome 1-derived part identical to the 5' end of a known EST (accession number R93849). These observations suggest that a fusion gene is formed between the two corresponding genes in t(X;1)(p11;q21)-positive papillary renal cell carcinomas.
  • White, S. A., Fisher, S. E., Geschwind, D. H., Scharff, C., & Holy, T. E. (2006). Singing mice, songbirds, and more: Models for FOXP2 function and dysfunction in human speech and language. The Journal of Neuroscience, 26(41), 10376-10379. doi:10.1523/JNEUROSCI.3379-06.2006.

    Abstract

    In 2001, a point mutation in the forkhead box P2 (FOXP2) coding sequence was identified as the basis of an inherited speech and language disorder suffered by members of the family known as "KE." This mini-symposium review focuses on recent findings and research-in-progress, primarily from five laboratories. Each aims at capitalizing on the FOXP2 discovery to build a neurobiological bridge between molecule and phenotype. Below, we describe genetic through behavioral techniques used currently to investigate FoxP2 in birds, rodents, and humans for discovery of the neural bases of vocal learning and language.
  • Wurm, L. H., Ernestus, M., Schreuder, R., & Baayen, R. H. (2006). Dynamics of the auditory comprehension of prefixed words: Cohort entropies and conditional root uniqueness points. The Mental Lexicon, 1(1), 125-146.

    Abstract

    This auditory lexical decision study shows that cohort entropies, conditional root uniqueness points, and morphological family size all contribute to the dynamics of the auditory comprehension of prefixed words. Three entropy measures calculated for different positions in the stem of Dutch prefixed words revealed facilitation for higher entropies, except at the point of disambiguation, where we observed inhibition. Morphological family size was also facilitatory, but only for prefixed words in which the conditional root uniqueness point coincided with the conventional uniqueness point. For words with early conditional disambiguation, in contrast, only the morphologically related words that were onset-aligned with the target word facilitated lexical decision.

Share this page