Publications

Displaying 401 - 418 of 418
  • von Stutterheim, C., & Flecken, M. (Eds.). (2013). Principles of information organization in L2 discourse [Special Issue]. International Review of Applied linguistics in Language Teaching (IRAL), 51(2).
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Weissenborn, J. (1986). Learning how to become an interlocutor. The verbal negotiation of common frames of reference and actions in dyads of 7–14 year old children. In J. Cook-Gumperz, W. A. Corsaro, & J. Streeck (Eds.), Children's worlds and children's language (pp. 377-404). Berlin: Mouton de Gruyter.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Windhouwer, M., Petro, J., Newskaya, I., Drude, S., Aristar-Dry, H., & Gippert, J. (2013). Creating a serialization of LMF: The experience of the RELISH project. In G. Francopoulo (Ed.), LMF - Lexical Markup Framework (pp. 215-226). London: Wiley.
  • Windhouwer, M., & Wright, S. E. (2013). LMF and the Data Category Registry: Principles and application. In G. Francopoulo (Ed.), LMF: Lexical Markup Framework (pp. 41-50). London: Wiley.
  • Wittenburg, P., Trilsbeek, P., & Wittenburg, F. (2014). Corpus archiving and dissemination. In J. Durand, U. Gut, & G. Kristoffersen (Eds.), The Oxford Handbook of Corpus Phonology (pp. 133-149). Oxford: Oxford University Press.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.
  • Wittenburg, P., & Ringersma, J. (2013). Metadata description for lexicons. In R. H. Gouws, U. Heid, W. Schweickard, & H. E. Wiegand (Eds.), Dictionaries: An international encyclopedia of lexicography: Supplementary volume: Recent developments with focus on electronic and computational lexicography (pp. 1329-1335). Berlin: Mouton de Gruyter.
  • Wright, S. E., Windhouwer, M., Schuurman, I., & Kemps-Snijders, M. (2013). Community efforts around the ISOcat Data Category Registry. In I. Gurevych, & J. Kim (Eds.), The People's Web meets NLP: Collaboratively constructed language resources (pp. 349-374). New York: Springer.

    Abstract

    The ISOcat Data Category Registry provides a community computing environment for creating, storing, retrieving, harmonizing and standardizing data category specifications (DCs), used to register linguistic terms used in various fields. This chapter recounts the history of DC documentation in TC 37, beginning from paper-based lists created for lexicographers and terminologists and progressing to the development of a web-based resource for a much broader range of users. While describing the considerable strides that have been made to collect a very large comprehensive collection of DCs, it also outlines difficulties that have arisen in developing a fully operative web-based computing environment for achieving consensus on data category names, definitions, and selections and describes efforts to overcome some of the present shortcomings and to establish positive working procedures designed to engage a wide range of people involved in the creation of language resources.
  • Zeshan, U. (2006). Sign language of the world. In K. Brown (Ed.), Encyclopedia of language and linguistics (vol. 11) (pp. 358-365). Amsterdam: Elsevier.

    Abstract

    Although sign language-using communities exist in all areas of the world, few sign languages have been documented in detail. Sign languages occur in a variety of sociocultural contexts, ranging from sign languages used in closed village communities to officially recognized national sign languages. They may be grouped into language families on historical grounds or may participate in various language contact situations. Systematic cross-linguistic comparison reveals both significant structural similarities and important typological differences between sign languages. Focusing on information from non-Western countries, this article provides an overview of the sign languages of the world.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • De Zubicaray, G. I., Acheson, D. J., & Hartsuiker, R. J. (Eds.). (2013). Mind what you say - general and specific mechanisms for monitoring in speech production [Research topic] [Special Issue]. Frontiers in Human Neuroscience. Retrieved from http://www.frontiersin.org/human_neuroscience/researchtopics/mind_what_you_say_-_general_an/1197.

    Abstract

    Psycholinguistic research has typically portrayed speech production as a relatively automatic process. This is because when errors are made, they occur as seldom as one in every thousand words we utter. However, it has long been recognised that we need some form of control over what we are currently saying and what we plan to say. This capacity to both monitor our inner speech and self-correct our speech output has often been assumed to be a property of the language comprehension system. More recently, it has been demonstrated that speech production benefits from interfacing with more general cognitive processes such as selective attention, short-term memory (STM) and online response monitoring to resolve potential conflict and successfully produce the output of a verbal plan. The conditions and levels of representation according to which these more general planning, monitoring and control processes are engaged during speech production remain poorly understood. Moreover, there remains a paucity of information about their neural substrates, despite some of the first evidence of more general monitoring having come from electrophysiological studies of error related negativities (ERNs). While aphasic speech errors continue to be a rich source of information, there has been comparatively little research focus on instances of speech repair. The purpose of this Frontiers Research Topic is to provide a forum for researchers to contribute investigations employing behavioural, neuropsychological, electrophysiological, neuroimaging and virtual lesioning techniques. In addition, while the focus of the research topic is on novel findings, we welcome submission of computational simulations, review articles and methods papers.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I., & Van Gijn, I. (2006). Agreement phenomena in Sign Language of the Netherlands. In P. Ackema (Ed.), Arguments and Agreement (pp. 195-229). Oxford: Oxford University Press.
  • Zwitserlood, I. (2014). Meaning at the feature level in sign languages. The case of name signs in Sign Language of the Netherlands (NGT). In R. Kager (Ed.), Where the Principles Fail. A Festschrift for Wim Zonneveld on the occasion of his 64th birthday (pp. 241-251). Utrecht: Utrecht Institute of Linguistics OTS.
  • Zwitserlood, I., Perniss, P. M., & Ozyurek, A. (2013). Expression of multiple entities in Turkish Sign Language (TİD). In E. Arik (Ed.), Current Directions in Turkish Sign Language Research (pp. 272-302). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Abstract

    This paper reports on an exploration of the ways in which multiple entities are expressed in Turkish Sign Language (TİD). The (descriptive and quantitative) analyses provided are based on a corpus of both spontaneous data and specifically elicited data, in order to provide as comprehensive an account as possible. We have found several devices in TİD for expression of multiple entities, in particular localization, spatial plural predicate inflection, and a specific form used to express multiple entities that are side by side in the same configuration (not reported for any other sign language to date), as well as numerals and quantifiers. In contrast to some other signed languages, TİD does not appear to have a productive system of plural reduplication. We argue that none of the devices encountered in the TİD data is a genuine plural marking device and that the plural interpretation of multiple entity localizations and plural predicate inflections is a by-product of the use of space to indicate the existence or the involvement in an event of multiple entities.

Share this page