Publications

Displaying 401 - 426 of 426
  • Váradi, T., Wittenburg, P., Krauwer, S., Wynne, M., & Koskenniemi, K. (2008). CLARIN: Common language resources and technology infrastructure. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC 2008).

    Abstract

    This paper gives an overview of the CLARIN project [1], which aims to create a research infrastructure that makes language resources and technology (LRT) available and readily usable to scholars of all disciplines, in particular the humanities and social sciences (HSS).
  • Verkerk, A., & Lestrade, S. (2008). The encoding of adjectives. In M. Van Koppen, & B. Botma (Eds.), Linguistics in the Netherlands 2008 (pp. 157-168). Amsterdam: Benjamins.

    Abstract

    In this paper, we will give a unified account of the cross-linguistic variation in the encoding of adjectives in predicative and attributive constructions. Languages may differ in the encoding strategy of adjectives in the predicative domain (Stassen 1997), and sometimes change this strategy in the attributive domain (Verkerk 2007). We will show that the interaction of two principles, that of faithfulness to the semantic class of a lexical root and that of faithfulness to discourse functions, can account for all attested variation in the encoding of adjectives.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Vosse, T. G., & Kempen, G. (2008). Parsing verb-final clauses in German: Garden-path and ERP effects modeled by a parallel dynamic parser. In B. Love, K. McRae, & V. Sloutsky (Eds.), Proceedings of the 30th Annual Conference on the Cognitive Science Society (pp. 261-266). Washington: Cognitive Science Society.

    Abstract

    Experimental sentence comprehension studies have shown that superficially similar German clauses with verb-final word order elicit very different garden-path and ERP effects. We show that a computer implementation of the Unification Space parser (Vosse & Kempen, 2000) in the form of a localist-connectionist network can model the observed differences, at least qualitatively. The model embodies a parallel dynamic parser that, in contrast with existing models, does not distinguish between consecutive first-pass and reanalysis stages, and does not use semantic or thematic roles. It does use structural frequency data and animacy information.
  • Wagner, M. A., Broersma, M., McQueen, J. M., & Lemhöfer, K. (2019). Imitating speech in an unfamiliar language and an unfamiliar non-native accent in the native language. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1362-1366). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study concerns individual differences in speech imitation ability and the role that lexical representations play in imitation. We examined 1) whether imitation of sounds in an unfamiliar language (L0) is related to imitation of sounds in an unfamiliar
    non-native accent in the speaker’s native language (L1) and 2) whether it is easier or harder to imitate speech when you know the words to be imitated. Fifty-nine native Dutch speakers imitated words with target vowels in Basque (/a/ and /e/) and Greekaccented
    Dutch (/i/ and /u/). Spectral and durational
    analyses of the target vowels revealed no relationship between the success of L0 and L1 imitation and no difference in performance between tasks (i.e., L1
    imitation was neither aided nor blocked by lexical knowledge about the correct pronunciation). The results suggest instead that the relationship of the vowels to native phonological categories plays a bigger role in imitation
  • Weber, A., & Melinger, A. (2008). Name dominance in spoken word recognition is (not) modulated by expectations: Evidence from synonyms. In A. Botinis (Ed.), Proceedings of ISCA Tutorial and Research Workshop On Experimental Linguistics (ExLing 2008) (pp. 225-228). Athens: University of Athens.

    Abstract

    Two German eye-tracking experiments tested whether top-down expectations interact with acoustically-driven word-recognition processes. Competitor objects with two synonymous names were paired with target objects whose names shared word onsets with either the dominant or the non-dominant name of the competitor. Non-dominant names of competitor objects were either introduced before the test session or not. Eye-movements were monitored while participants heard instructions to click on target objects. Results demonstrate dominant and non-dominant competitor names were considered for recognition, regardless of top-down expectations, though dominant names were always activated more strongly.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Weber, A. (2008). What eye movements can tell us about spoken-language processing: A psycholinguistic survey. In C. M. Riehl (Ed.), Was ist linguistische Evidenz: Kolloquium des Zentrums Sprachenvielfalt und Mehrsprachigkeit, November 2006 (pp. 57-68). Aachen: Shaker.
  • Weber, A. (2008). What the eyes can tell us about spoken-language comprehension [Abstract]. Journal of the Acoustical Society of America, 124, 2474-2474.

    Abstract

    Lexical recognition is typically slower in L2 than in L1. Part of the difficulty comes from a not precise enough processing of L2 phonemes. Consequently, L2 listeners fail to eliminate candidate words that L1 listeners can exclude from competing for recognition. For instance, the inability to distinguish /r/ from /l/ in rocket and locker makes for Japanese listeners both words possible candidates when hearing their onset (e.g., Cutler, Weber, and Otake, 2006). The L2 disadvantage can, however, be dispelled: For L2 listeners, but not L1 listeners, L2 speech from a non-native talker with the same language background is known to be as intelligible as L2 speech from a native talker (e.g., Bent and Bradlow, 2003). A reason for this may be that L2 listeners have ample experience with segmental deviations that are characteristic for their own accent. On this account, only phonemic deviations that are typical for the listeners’ own accent will cause spurious lexical activation in L2 listening (e.g., English magic pronounced as megic for Dutch listeners). In this talk, I will present evidence from cross-modal priming studies with a variety of L2 listener groups, showing how the processing of phonemic deviations is accent-specific but withstands fine phonetic differences.
  • Widlok, T., Rapold, C. J., & Hoymann, G. (2008). Multimedia analysis in documentation projects: Kinship, interrogatives and reciprocals in ǂAkhoe Haiǁom. In K. D. Harrison, D. S. Rood, & A. Dwyer (Eds.), Lessons from documented endangered languages (pp. 355-370). Amsterdam: Benjamins.

    Abstract

    This contribution emphasizes the role of multimedia data not only for archiving languages but also for creating opportunities for innovative analyses. In the case at hand, video material was collected as part of the documentation of Akhoe Haiom, a Khoisan language spoken in northern Namibia. The multimedia documentation project brought together linguistic and anthropological work to highlight connections between specialized domains, namely kinship terminology, interrogatives and reciprocals. These connections would have gone unnoticed or undocumented in more conventional modes of language description. It is suggested that such an approach may be particularly appropriate for the documentation of endangered languages since it directs the focus of attention away from isolated traits of languages towards more complex practices of communication that are also frequently threatened with extinction.
  • Widlok, T. (2008). The dilemmas of walking: A comparative view. In T. Ingold, & J. L. Vergunst (Eds.), Ways of walking: Ethnography and practice on foot (pp. 51-66). Aldershot: Ashgate.
  • Wilkins, D. (1995). Towards a Socio-Cultural Profile of the Communities We Work With. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 70-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513481.

    Abstract

    Field data are drawn from a particular speech community at a certain place and time. The intent of this survey is to enrich understanding of the various socio-cultural contexts in which linguistic and “cognitive” data may have been collected, so that we can explore the role which societal, cultural and contextual factors may play in this material. The questionnaire gives guidelines concerning types of ethnographic information that are important to cross-cultural and cross-linguistic enquiry, and will be especially useful to researchers who do not have specialised training in anthropology.
  • Wilkins, D., Pederson, E., & Levinson, S. C. (1995). Background questions for the "enter"/"exit" research. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 14-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003935.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored.
  • Wilkins, D. (1995). Motion elicitation: "moving 'in(to)'" and "moving 'out (of)'". In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 4-12). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003391.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This task investigates the expression of “enter” and “exit” activities, that is, events involving motion in(to) and motion out (of) container-like items. The researcher first uses particular stimuli (a ball, a cup, rice, etc.) to elicit descriptions of enter/exit events from one consultant, and then asks another consultant to demonstrate the event based on these descriptions. See also the related entries Enter/Exit Animation and Background Questions for Enter/Exit Research.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Wolf, M. C., Smith, A. C., Meyer, A. S., & Rowland, C. F. (2019). Modality effects in vocabulary acquisition. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 1212-1218). Montreal, QB: Cognitive Science Society.

    Abstract

    It is unknown whether modality affects the efficiency with which humans learn novel word forms and their meanings, with previous studies reporting both written and auditory advantages. The current study implements controls whose absence in previous work likely offers explanation for such contradictory findings. In two novel word learning experiments, participants were trained and tested on pseudoword - novel object pairs, with controls on: modality of test, modality of meaning, duration of exposure and transparency of word form. In both experiments word forms were presented in either their written or spoken form, each paired with a pictorial meaning (novel object). Following a 20-minute filler task, participants were tested on their ability to identify the picture-word form pairs on which they were trained. A between subjects design generated four participant groups per experiment 1) written training, written test; 2) written training, spoken test; 3) spoken training, written test; 4) spoken training, spoken test. In Experiment 1 the written stimulus was presented for a time period equal to the duration of the spoken form. Results showed that when the duration of exposure was equal, participants displayed a written training benefit. Given words can be read faster than the time taken for the spoken form to unfold, in Experiment 2 the written form was presented for 300 ms, sufficient time to read the word yet 65% shorter than the duration of the spoken form. No modality effect was observed under these conditions, when exposure to the word form was equivalent. These results demonstrate, at least for proficient readers, that when exposure to the word form is controlled across modalities the efficiency with which word form-meaning associations are learnt does not differ. Our results therefore suggest that, although we typically begin as aural-only word learners, we ultimately converge on developing learning mechanisms that learn equally efficiently from both written and spoken materials.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zinn, C., Cablitz, G., Ringersma, J., Kemps-Snijders, M., & Wittenburg, P. (2008). Constructing knowledge spaces from linguistic resources. In Proceedings of the CIL 18 Workshop on Linguistic Studies of Ontology: From lexical semantics to formal ontologies and back.
  • Zinn, C. (2008). Conceptual spaces in ViCoS. In S. Bechhofer, M. Hauswirth, J. Hoffmann, & M. Koubarakis (Eds.), The semantic web: Research and applications (pp. 890-894). Berlin: Springer.

    Abstract

    We describe ViCoS, a tool for constructing and visualising conceptual spaces in the area of language documentation. ViCoS allows users to enrich existing lexical information about the words of a language with conceptual knowledge. Their work towards language-based, informal ontology building must be supported by easy-to-use workflows and supporting software, which we will demonstrate.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I., Ozyurek, A., & Perniss, P. M. (2008). Annotation of sign and gesture cross-linguistically. In O. Crasborn, E. Efthimiou, T. Hanke, E. D. Thoutenhoofd, & I. Zwitserlood (Eds.), Construction and Exploitation of Sign Language Corpora. 3rd Workshop on the Representation and Processing of Sign Languages (pp. 185-190). Paris: ELDA.

    Abstract

    This paper discusses the construction of a cross-linguistic, bimodal corpus containing three modes of expression: expressions from two sign languages, speech and gestural expressions in two spoken languages and pantomimic expressions by users of two spoken languages who are requested to convey information without speaking. We discuss some problems and tentative solutions for the annotation of utterances expressing spatial information about referents in these three modes, suggesting a set of comparable codes for the description of both sign and gesture. Furthermore, we discuss the processing of entered annotations in ELAN, e.g. relating descriptive annotations to analytic annotations in all three modes and performing relational searches across annotations on different tiers.
  • Zwitserlood, I. (2008). Morphology below the level of the sign - frozen forms and classifier predicates. In J. Quer (Ed.), Proceedings of the 8th Conference on Theoretical Issues in Sign Language Research (TISLR) (pp. 251-272). Hamburg: Signum Verlag.

    Abstract

    The lexicons of many sign languages hold large proportions of “frozen” forms, viz. signs that are generally considered to have been formed productively (as classifier predicates), but that have diachronically undergone processes of lexicalisation. Nederlandse Gebarentaal (Sign Language of the Netherlands; henceforth: NGT) also has many of these signs (Van der Kooij 2002, Zwitserlood 2003). In contrast to the general view on “frozen” forms, a few researchers claim that these signs may be formed according to productive sign formation rules, notably Brennan (1990) for BSL, and Meir (2001, 2002) for ISL. Following these claims, I suggest an analysis of “frozen” NGT signs as morphologically complex, using the framework of Distributed Morphology. The signs in question are derived in a similar way as classifier predicates; hence their similar form (but diverging characteristics). I will indicate how and why the structure and use of classifier predicates and “frozen” forms differ. Although my analysis focuses on NGT, it may also be applicable to other sign languages.

Share this page