Publications

Displaying 501 - 600 of 977
  • Liu, S., & Zhang, Y. (2019). Why some verbs are harder to learn than others – A micro-level analysis of everyday learning contexts for early verb learning. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2173-2178). Montreal, QB: Cognitive Science Society.

    Abstract

    Verb learning is important for young children. While most
    previous research has focused on linguistic and conceptual
    challenges in early verb learning (e.g. Gentner, 1982, 2006),
    the present paper examined early verb learning at the
    attentional level and quantified the input for early verb learning
    by measuring verb-action co-occurrence statistics in parent-
    child interaction from the learner’s perspective. To do so, we
    used head-mounted eye tracking to record fine-grained
    multimodal behaviors during parent-infant joint play, and
    analyzed parent speech, parent and infant action, and infant
    attention at the moments when parents produced verb labels.
    Our results show great variability across different action verbs,
    in terms of frequency of verb utterances, frequency of
    corresponding actions related to verb meanings, and infants’
    attention to verbs and actions, which provide new insights on
    why some verbs are harder to learn than others.
  • Liu, X., Gao, Y., Di, Q., Hu, J., Lu, C., Nan, Y., Booth, J. R., & Liu, L. (2018). Differences between child and adult large-scale functional brain networks for reading tasks. Human Brain Mapping, 39(2), 662-679. doi:10.1002/hbm.23871.

    Abstract

    Reading is an important high‐level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large‐scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19–28 years old) and 16 children (11–13 years old), and graph theoretical analyses to investigate age‐related changes in large‐scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter‐regional connectivity and nodal degree in occipital regions, while children had stronger inter‐regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between‐task differences in inter‐regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults’ reading network is more specialized. (3) Children showed greater inter‐regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain‐general while others may be specific to the reading domain.
  • Xu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., Cao, Y., Wang, F., Jiang, N., Lin, S., Li, B., Zhang, Z., Wei, Z., Fan, Y., Jin, Y., He, L., Zhou, R., Dekker, J. D., Tucker, H. O., Fisher, S. E. and 4 moreXu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., Cao, Y., Wang, F., Jiang, N., Lin, S., Li, B., Zhang, Z., Wei, Z., Fan, Y., Jin, Y., He, L., Zhou, R., Dekker, J. D., Tucker, H. O., Fisher, S. E., Yao, Z., Liu, Q., Xia, X., & Guo, X. (2018). Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proceedings of the National Academy of Sciences of the United States of America, 115(35), 8799-8804. doi:10.1073/pnas.1721820115.

    Abstract

    Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.

    Files private

    Request files
  • Long, M., Horton, W. S., Rohde, H., & Sorace, A. (2018). Individual differences in switching and inhibition predict perspective-taking across the lifespan. Cognition, 170, 25-30. doi:10.1016/j.cognition.2017.09.004.

    Abstract

    Studies exploring the influence of executive functions (EF) on perspective-taking have focused on inhibition and working memory in young adults or clinical populations. Less consideration has been given to more complex capacities that also involve switching attention between perspectives, or to changes in EF and concomitant effects on perspective-taking across the lifespan. To address this, we assessed whether individual differences in inhibition and attentional switching in healthy adults (ages 17–84) predict performance on a task in which speakers identified targets for a listener with size-contrasting competitors in common or privileged ground. Modification differences across conditions decreased with age. Further, perspective taking interacted with EF measures: youngest adults’ sensitivity to perspective was best captured by their inhibitory performance; oldest adults’ sensitivity was best captured by switching performance. Perspective-taking likely involves multiple aspects of EF, as revealed by considering a wider range of EF tasks and individual capacities across the lifespan.
  • Long, M. (2018). The lifelong interplay between language and cognition: From language learning to perspective-taking, new insights into the ageing mind. PhD Thesis, University of Edinburgh, Edinburgh.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Lumaca, M., Ravignani, A., & Baggio, G. (2018). Music evolution in the laboratory: Cultural transmission meets neurophysiology. Frontiers in Neuroscience, 12: 246. doi:10.3389%2Ffnins.2018.00246.

    Abstract

    In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.
  • Lupyan, G., Wendorf, A., Berscia, L. M., & Paul, J. (2018). Core knowledge or language-augmented cognition? The case of geometric reasoning. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 252-254). Toruń, Poland: NCU Press. doi:10.12775/3991-1.062.
  • Lutzenberger, H. (2018). Manual and nonmanual features of name signs in Kata Kolok and sign language of the Netherlands. Sign Language Studies, 18(4), 546-569. doi:10.1353/sls.2018.0016.

    Abstract

    Name signs are based on descriptions, initialization, and loan translations. Nyst and Baker (2003) have found crosslinguistic similarities in the phonology of name signs, such as a preference for one-handed signs and for the head location. Studying Kata Kolok (KK), a rural sign language without indigenous fingerspelling, strongly suggests that one-handedness is not correlated to initialization, but represents a more general feature of name sign phonology. Like in other sign languages, the head location is used frequently in both KK and Sign Language of the Netherlands (NGT) name signs. The use of nonmanuals, however, is strikingly different. NGT name signs are always accompanied by mouthings, which are absent in KK. Instead, KK name signs may use mouth gestures; these may disambiguate manually identical name signs, and even form independent name signs without any manual features
  • Mai, F., Galke, L., & Scherp, A. (2019). CBOW is not all you need: Combining CBOW with the compositional matrix space model. In Proceedings of the Seventh International Conference on Learning Representations (ICLR 2019). OpenReview.net.

    Abstract

    Continuous Bag of Words (CBOW) is a powerful text embedding method. Due to its strong capabilities to encode word content, CBOW embeddings perform well on a wide range of downstream tasks while being efficient to compute. However, CBOW is not capable of capturing the word order. The reason is that the computation of CBOW's word embeddings is commutative, i.e., embeddings of XYZ and ZYX are the same. In order to address this shortcoming, we propose a
    learning algorithm for the Continuous Matrix Space Model, which we call Continual Multiplication of Words (CMOW). Our algorithm is an adaptation of word2vec, so that it can be trained on large quantities of unlabeled text. We empirically show that CMOW better captures linguistic properties, but it is inferior to CBOW in memorizing word content. Motivated by these findings, we propose a hybrid model that combines the strengths of CBOW and CMOW. Our results show that the hybrid CBOW-CMOW-model retains CBOW's strong ability to memorize word content while at the same time substantially improving its ability to encode other linguistic information by 8%. As a result, the hybrid also performs better on 8 out of 11 supervised downstream tasks with an average improvement of 1.2%.
  • Mai, F., Galke, L., & Scherp, A. (2018). Using deep learning for title-based semantic subject indexing to reach competitive performance to full-text. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 169-178). New York: ACM.

    Abstract

    For (semi-)automated subject indexing systems in digital libraries, it is often more practical to use metadata such as the title of a publication instead of the full-text or the abstract. Therefore, it is desirable to have good text mining and text classification algorithms that operate well already on the title of a publication. So far, the classification performance on titles is not competitive with the performance on the full-texts if the same number of training samples is used for training. However, it is much easier to obtain title data in large quantities and to use it for training than full-text data. In this paper, we investigate the question how models obtained from training on increasing amounts of title training data compare to models from training on a constant number of full-texts. We evaluate this question on a large-scale dataset from the medical domain (PubMed) and from economics (EconBiz). In these datasets, the titles and annotations of millions of publications are available, and they outnumber the available full-texts by a factor of 20 and 15, respectively. To exploit these large amounts of data to their full potential, we develop three strong deep learning classifiers and evaluate their performance on the two datasets. The results are promising. On the EconBiz dataset, all three classifiers outperform their full-text counterparts by a large margin. The best title-based classifier outperforms the best full-text method by 9.4%. On the PubMed dataset, the best title-based method almost reaches the performance of the best full-text classifier, with a difference of only 2.9%.
  • Mainz, N. (2018). Vocabulary knowledge and learning: Individual differences in adult native speakers. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Majid, A. (2018). Cultural factors shape olfactory language [Reprint]. In D. Howes (Ed.), Senses and Sensation: Critical and Primary Sources. Volume 3 (pp. 307-310). London: Bloomsbury Publishing.
  • Majid, A., Roberts, S. G., Cilissen, L., Emmorey, K., Nicodemus, B., O'Grady, L., Woll, B., LeLan, B., De Sousa, H., Cansler, B. L., Shayan, S., De Vos, C., Senft, G., Enfield, N. J., Razak, R. A., Fedden, S., Tufvesson, S., Dingemanse, M., Ozturk, O., Brown, P. and 6 moreMajid, A., Roberts, S. G., Cilissen, L., Emmorey, K., Nicodemus, B., O'Grady, L., Woll, B., LeLan, B., De Sousa, H., Cansler, B. L., Shayan, S., De Vos, C., Senft, G., Enfield, N. J., Razak, R. A., Fedden, S., Tufvesson, S., Dingemanse, M., Ozturk, O., Brown, P., Hill, C., Le Guen, O., Hirtzel, V., Van Gijn, R., Sicoli, M. A., & Levinson, S. C. (2018). Differential coding of perception in the world’s languages. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11369-11376. doi:10.1073/pnas.1720419115.

    Abstract

    Is there a universal hierarchy of the senses, such that some senses (e.g., vision) are more accessible to consciousness and linguistic description than others (e.g., smell)? The long-standing presumption in Western thought has been that vision and audition are more objective than the other senses, serving as the basis of knowledge and understanding, whereas touch, taste, and smell are crude and of little value. This predicts that humans ought to be better at communicating about sight and hearing than the other senses, and decades of work based on English and related languages certainly suggests this is true. However, how well does this reflect the diversity of languages and communities worldwide? To test whether there is a universal hierarchy of the senses, stimuli from the five basic senses were used to elicit descriptions in 20 diverse languages, including 3 unrelated sign languages. We found that languages differ fundamentally in which sensory domains they linguistically code systematically, and how they do so. The tendency for better coding in some domains can be explained in part by cultural preoccupations. Although languages seem free to elaborate specific sensory domains, some general tendencies emerge: for example, with some exceptions, smell is poorly coded. The surprise is that, despite the gradual phylogenetic accumulation of the senses, and the imbalances in the neural tissue dedicated to them, no single hierarchy of the senses imposes itself upon language.
  • Majid, A. (2018). Humans are neglecting our sense of smell. Here's what we could gain by fixing that. Time, March 7, 2018: 5130634.
  • Majid, A., & Kruspe, N. (2018). Hunter-gatherer olfaction is special. Current Biology, 28(3), 409-413. doi:10.1016/j.cub.2017.12.014.

    Abstract

    People struggle to name odors, but this
    limitation is not universal. Majid and
    Kruspe investigate whether superior
    olfactory performance is due to
    subsistence, ecology, or language family.
    By comparing closely related
    communities in the Malay Peninsula, they
    find that only hunter-gatherers are
    proficient odor namers, suggesting that
    subsistence is crucial.

    Additional information

    The data are archived at RWAAI
  • Majid, A. (2018). Language and cognition. In H. Callan (Ed.), The International Encyclopedia of Anthropology. Hoboken: John Wiley & Sons Ltd.

    Abstract

    What is the relationship between the language we speak and the way we think? Researchers working at the interface of language and cognition hope to understand the complex interplay between linguistic structures and the way the mind works. This is thorny territory in anthropology and its closely allied disciplines, such as linguistics and psychology.

    Additional information

    home page encyclopedia
  • Majid, A., Burenhult, N., Stensmyr, M., De Valk, J., & Hansson, B. S. (2018). Olfactory language and abstraction across cultures. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 373: 20170139. doi:10.1098/rstb.2017.0139.

    Abstract

    Olfaction presents a particularly interesting arena to explore abstraction in language. Like other abstract domains, such as time, odours can be difficult to conceptualize. An odour cannot be seen or held, it can be difficult to locate in space, and for most people odours are difficult to verbalize. On the other hand, odours give rise to primary sensory experiences. Every time we inhale we are using olfaction to make sense of our environment. We present new experimental data from 30 Jahai hunter-gatherers from the Malay Peninsula and 30 matched Dutch participants from the Netherlands in an odour naming experiment. Participants smelled monomolecular odorants and named odours while reaction times, odour descriptors and facial expressions were measured. We show that while Dutch speakers relied on concrete descriptors, i.e. they referred to odour sources (e.g. smells like lemon), the Jahai used abstract vocabulary to name the same odours (e.g. musty). Despite this differential linguistic categorization, analysis of facial expressions showed that the two groups, nevertheless, had the same initial emotional reactions to odours. Critically, these cross-cultural data present a challenge for how to think about abstraction in language.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. doi:10.1080/23273798.2018.1552007.

    Abstract

    People engage in simulation when reading literary narratives. In this study, we tried to pinpoint how different kinds of simulation (perceptual and motor simulation, mentalising) affect reading behaviour. Eye-tracking (gaze durations, regression probability) and questionnaire data were collected from 102 participants, who read three literary short stories. In a pre-test, 90 additional participants indicated which parts of the stories were high in one of the three kinds of simulation-eliciting content. The results show that motor simulation reduces gaze duration (faster reading), whereas perceptual simulation and mentalising increase gaze duration (slower reading). Individual differences in the effect of simulation on gaze duration were found, which were related to individual differences in aspects of story world absorption and story appreciation. These findings suggest fundamental differences between different kinds of simulation and confirm the role of simulation in absorption and appreciation.
  • Mamus, E., Rissman, L., Majid, A., & Ozyurek, A. (2019). Effects of blindfolding on verbal and gestural expression of path in auditory motion events. In A. K. Goel, C. M. Seifert, & C. C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2275-2281). Montreal, QB: Cognitive Science Society.

    Abstract

    Studies have claimed that blind people’s spatial representations are different from sighted people, and blind people display superior auditory processing. Due to the nature of auditory and haptic information, it has been proposed that blind people have spatial representations that are more sequential than sighted people. Even the temporary loss of sight—such as through blindfolding—can affect spatial representations, but not much research has been done on this topic. We compared blindfolded and sighted people’s linguistic spatial expressions and non-linguistic localization accuracy to test how blindfolding affects the representation of path in auditory motion events. We found that blindfolded people were as good as sighted people when localizing simple sounds, but they outperformed sighted people when localizing auditory motion events. Blindfolded people’s path related speech also included more sequential, and less holistic elements. Our results indicate that even temporary loss of sight influences spatial representations of auditory motion events
  • Mamus, E., & Karadöller, D. Z. (2018). Anıları Zihinde Canlandırma [Imagery in autobiographical memories]. In S. Gülgöz, B. Ece, & S. Öner (Eds.), Hayatı Hatırlamak: Otobiyografik Belleğe Bilimsel Yaklaşımlar [Remembering Life: Scientific Approaches to Autobiographical Memory] (pp. 185-200). Istanbul, Turkey: Koç University Press.
  • Mamus, E., & Boduroglu, A. (2018). The role of context on boundary extension. Visual Cognition, 26(2), 115-130. doi:10.1080/13506285.2017.1399947.

    Abstract

    Boundary extension (BE) is a memory error in which observers remember more of a scene than they actually viewed. This error reflects one’s prediction that a scene naturally continues and is driven by scene schema and contextual knowledge. In two separate experiments we investigated the necessity of context and scene schema in BE. In Experiment 1, observers viewed scenes that either contained semantically consistent or inconsistent objects as well as objects on white backgrounds. In both types of scenes and in the no-background condition there was a BE effect; critically, semantic inconsistency in scenes reduced the magnitude of BE. In Experiment 2 when we used abstract shapes instead of meaningful objects, there was no BE effect. We suggest that although scene schema is necessary to elicit BE, contextual consistency is not required.
  • Manahova, M. E., Mostert, P., Kok, P., Schoffelen, J.-M., & De Lange, F. P. (2018). Stimulus familiarity and expectation jointly modulate neural activity in the visual ventral stream. Journal of Cognitive Neuroscience, 30(9), 1366-1377. doi:10.1162/jocn_a_01281.

    Abstract

    Prior knowledge about the visual world can change how a visual stimulus is processed. Two forms of prior knowledge are often distinguished: stimulus familiarity (i.e., whether a stimulus has been seen before) and stimulus expectation (i.e., whether a stimulus is expected to occur, based on the context). Neurophysiological studies in monkeys have shown suppression of spiking activity both for expected and for familiar items in object-selective inferotemporal cortex. It is an open question, however, if and how these types of knowledge interact in their modulatory effects on the sensory response. To address this issue and to examine whether previous findings generalize to noninvasively measured neural activity in humans, we separately manipulated stimulus familiarity and expectation while noninvasively recording human brain activity using magnetoencephalography. We observed independent suppression of neural activity by familiarity and expectation, specifically in the lateral occipital complex, the putative human homologue of monkey inferotemporal cortex. Familiarity also led to sharpened response dynamics, which was predominantly observed in early visual cortex. Together, these results show that distinct types of sensory knowledge jointly determine the amount of neural resources dedicated to object processing in the visual ventral stream.
  • Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018). The development of autistic social traits across childhood and adolescence in males and females. The Journal of Child Psychology and Psychiatry, 59(11), 1143-1151. doi:10.1111/jcpp.12913.

    Abstract

    Background

    Autism is a dimensional condition, representing the extreme end of a continuum of social competence that extends throughout the general population. Currently, little is known about how autistic social traits (ASTs), measured across the full spectrum of severity, develop during childhood and adolescence, including whether there are developmental differences between boys and girls. Therefore, we sought to chart the trajectories of ASTs in the general population across childhood and adolescence, with a focus on gender differences.
    Methods

    Participants were 9,744 males (n = 4,784) and females (n = 4,960) from ALSPAC, a UK birth cohort study. ASTs were assessed when participants were aged 7, 10, 13 and 16 years, using the parent‐report Social Communication Disorders Checklist. Data were modelled using latent growth curve analysis.
    Results

    Developmental trajectories of males and females were nonlinear, showing a decline from 7 to 10 years, followed by an increase between 10 and 16 years. At 7 years, males had higher levels of ASTs than females (mean raw score difference = 0.88, 95% CI [.72, 1.04]), and were more likely (odds ratio [OR] = 1.99; 95% CI, 1.82, 2.16) to score in the clinical range on the SCDC. By 16 years this gender difference had disappeared: males and females had, on average, similar levels of ASTs (mean difference = 0.00, 95% CI [−0.19, 0.19]) and were equally likely to score in the SCDC's clinical range (OR = 0.91, 95% CI, 0.73, 1.10). This was the result of an increase in females’ ASTs between 10 and 16 years.
    Conclusions

    There are gender‐specific trajectories of autistic social impairment, with females more likely than males to experience an escalation of ASTs during early‐ and midadolescence. It remains to be discovered whether the observed female adolescent increase in ASTs represents the genuine late onset of social difficulties or earlier, subtle, pre‐existing difficulties becoming more obvious.

    Additional information

    jcpp12913-sup-0001-supinfo.docx
  • Mani, N., Mishra, R. K., & Huettig, F. (Eds.). (2018). The interactive mind: Language, vision and attention. Chennai: Macmillan Publishers India.
  • Mani, N., Mishra, R. K., & Huettig, F. (2018). Introduction to 'The Interactive Mind: Language, Vision and Attention'. In N. Mani, R. K. Mishra, & F. Huettig (Eds.), The Interactive Mind: Language, Vision and Attention (pp. 1-2). Chennai: Macmillan Publishers India.
  • Mantegna, F., Hintz, F., Ostarek, M., Alday, P. M., & Huettig, F. (2019). Distinguishing integration and prediction accounts of ERP N400 modulations in language processing through experimental design. Neuropsychologia, 134: 107199. doi:10.1016/j.neuropsychologia.2019.107199.

    Abstract

    Prediction of upcoming input is thought to be a main characteristic of language processing (e.g. Altmann & Mirkovic, 2009; Dell & Chang, 2014; Federmeier, 2007; Ferreira & Chantavarin, 2018; Pickering & Gambi, 2018; Hale, 2001; Hickok, 2012; Huettig 2015; Kuperberg & Jaeger, 2016; Levy, 2008; Norris, McQueen, & Cutler, 2016; Pickering & Garrod, 2013; Van Petten & Luka, 2012). One of the main pillars of experimental support for this notion comes from studies that have attempted to measure electrophysiological markers of prediction when participants read or listened to sentences ending in highly predictable words. The N400, a negative-going and centro-parietally distributed component of the ERP occurring approximately 400ms after (target) word onset, has been frequently interpreted as indexing prediction of the word (or the semantic representations and/or the phonological form of the predicted word, see Kutas & Federmeier, 2011; Nieuwland, 2019; Van Petten & Luka, 2012; for review). A major difficulty for interpreting N400 effects in language processing however is that it has been difficult to establish whether N400 target word modulations conclusively reflect prediction rather than (at least partly) ease of integration. In the present exploratory study, we attempted to distinguish lexical prediction (i.e. ‘top-down’ activation) from lexical integration (i.e. ‘bottom-up’ activation) accounts of ERP N400 modulations in language processing.
  • Marcoux, K., & Ernestus, M. (2019). Differences between native and non-native Lombard speech in terms of pitch range. In M. Ochmann, M. Vorländer, & J. Fels (Eds.), Proceedings of the ICA 2019 and EAA Euroregio. 23rd International Congress on Acoustics, integrating 4th EAA Euroregio 2019 (pp. 5713-5720). Berlin: Deutsche Gesellschaft für Akustik.

    Abstract

    Lombard speech, speech produced in noise, is acoustically different from speech produced in quiet (plain speech) in several ways, including having a higher and wider F0 range (pitch). Extensive research on native Lombard speech does not consider that non-natives experience a higher cognitive load while producing
    speech and that the native language may influence the non-native speech. We investigated pitch range in plain and Lombard speech in native and non-natives.
    Dutch and American-English speakers read contrastive question-answer pairs in quiet and in noise in English, while the Dutch also read Dutch sentence pairs. We found that Lombard speech is characterized by a wider pitch range than plain speech, for all speakers (native English, non-native English, and native Dutch).
    This shows that non-natives also widen their pitch range in Lombard speech. In sentences with early-focus, we see the same increase in pitch range when going from plain to Lombard speech in native and non-native English, but a smaller increase in native Dutch. In sentences with late-focus, we see the biggest increase for the native English, followed by non-native English and then native Dutch. Together these results indicate an effect of the native language on non-native Lombard speech.
  • Marcoux, K., & Ernestus, M. (2019). Pitch in native and non-native Lombard speech. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 2019) (pp. 2605-2609). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Lombard speech, speech produced in noise, is
    typically produced with a higher fundamental
    frequency (F0, pitch) compared to speech in quiet. This paper examined the potential differences in native and non-native Lombard speech by analyzing median pitch in sentences with early- or late-focus produced in quiet and noise. We found an increase in pitch in late-focus sentences in noise for Dutch speakers in both English and Dutch, and for American-English speakers in English. These results
    show that non-native speakers produce Lombard speech, despite their higher cognitive load. For the early-focus sentences, we found a difference between the Dutch and the American-English speakers. Whereas the Dutch showed an increased F0 in noise
    in English and Dutch, the American-English speakers did not in English. Together, these results suggest that some acoustic characteristics of Lombard speech, such as pitch, may be language-specific, potentially
    resulting in the native language influencing the non-native Lombard speech.
  • Martin, A. E. (2018). Cue integration during sentence comprehension: Electrophysiological evidence from ellipsis. PLoS One, 13(11): e0206616. doi:10.1371/journal.pone.0206616.

    Abstract

    Language processing requires us to integrate incoming linguistic representations with representations of past input, often across intervening words and phrases. This computational situation has been argued to require retrieval of the appropriate representations from memory via a set of features or representations serving as retrieval cues. However, even within in a cue-based retrieval account of language comprehension, both the structure of retrieval cues and the particular computation that underlies direct-access retrieval are still underspecified. Evidence from two event-related brain potential (ERP) experiments that show cue-based interference from different types of linguistic representations during ellipsis comprehension are consistent with an architecture wherein different cue types are integrated, and where the interaction of cue with the recent contents of memory determines processing outcome, including expression of the interference effect in ERP componentry. I conclude that retrieval likely includes a computation where cues are integrated with the contents of memory via a linear weighting scheme, and I propose vector addition as a candidate formalization of this computation. I attempt to account for these effects and other related phenomena within a broader cue-based framework of language processing.
  • Martin, A. E., & Baggio, G. (2019). Modeling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190298. doi:10.1098/rstb.2019.0298.

    Abstract

    Human thought and language have extraordinary expressive power because meaningful parts can be assembled into more complex semantic structures. This partly underlies our ability to compose meanings into endlessly novel configurations, and sets us apart from other species and current computing devices. Crucially, human behaviour, including language use and linguistic data, indicates that composing parts into complex structures does not threaten the existence of constituent parts as independent units in the system: parts and wholes exist simultaneously yet independently from one another in the mind and brain. This independence is evident in human behaviour, but it seems at odds with what is known about the brain's exquisite sensitivity to statistical patterns: everyday language use is productive and expressive precisely because it can go beyond statistical regularities. Formal theories in philosophy and linguistics explain this fact by assuming that language and thought are compositional: systems of representations that separate a variable (or role) from its values (fillers), such that the meaning of a complex expression is a function of the values assigned to the variables. The debate on whether and how compositional systems could be implemented in minds, brains and machines remains vigorous. However, it has not yet resulted in mechanistic models of semantic composition: how, then, are the constituents of thoughts and sentences put and held together? We review and discuss current efforts at understanding this problem, and we chart possible routes for future research.
  • Martin, A. E., & Doumas, L. A. A. (2019). Tensors and compositionality in neural systems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1791): 20190306. doi:10.1098/rstb.2019.0306.

    Abstract

    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system.

    Additional information

    Supplemental Material
  • Martin, A. E., & McElree, B. (2018). Retrieval cues and syntactic ambiguity resolution: Speed-accuracy tradeoff evidence. Language, Cognition and Neuroscience, 33(6), 769-783. doi:10.1080/23273798.2018.1427877.

    Abstract

    Language comprehension involves coping with ambiguity and recovering from misanalysis. Syntactic ambiguity resolution is associated with increased reading times, a classic finding that has shaped theories of sentence processing. However, reaction times conflate the time it takes a process to complete with the quality of the behavior-related information available to the system. We therefore used the speed-accuracy tradeoff procedure (SAT) to derive orthogonal estimates of processing time and interpretation accuracy, and tested whether stronger retrieval cues (via semantic relatedness: neighed->horse vs. fell->horse) aid interpretation during recovery. On average, ambiguous sentences took 250ms longer (SAT rate) to interpret than unambiguous controls, demonstrating veridical differences in processing time. Retrieval cues more strongly related to the true subject always increased accuracy, regardless of ambiguity. These findings are consistent with a language processing architecture where cue-driven operations give rise to interpretation, and wherein diagnostic cues aid retrieval, regardless of parsing difficulty or structural uncertainty.
  • Martin, A. E., & Doumas, L. A. A. (2019). Predicate learning in neural systems: Using oscillations to discover latent structure. Current Opinion in Behavioral Sciences, 29, 77-83. doi:10.1016/j.cobeha.2019.04.008.

    Abstract

    Humans learn to represent complex structures (e.g. natural language, music, mathematics) from experience with their environments. Often such structures are latent, hidden, or not encoded in statistics about sensory representations alone. Accounts of human cognition have long emphasized the importance of structured representations, yet the majority of contemporary neural networks do not learn structure from experience. Here, we describe one way that structured, functionally symbolic representations can be instantiated in an artificial neural network. Then, we describe how such latent structures (viz. predicates) can be learned from experience with unstructured data. Our approach exploits two principles from psychology and neuroscience: comparison of representations, and the naturally occurring dynamic properties of distributed computing across neuronal assemblies (viz. neural oscillations). We discuss how the ability to learn predicates from experience, to represent information compositionally, and to extrapolate knowledge to unseen data is core to understanding and modeling the most complex human behaviors (e.g. relational reasoning, analogy, language processing, game play).
  • Martinez-Conde, S., Alexander, R. G., Blum, D., Britton, N., Lipska, B. K., Quirk, G. J., Swiss, J. I., Willems, R. M., & Macknik, S. L. (2019). The storytelling brain: How neuroscience stories help bridge the gap between research and society. The Journal of Neuroscience, 39(42), 8285-8290. doi:10.1523/JNEUROSCI.1180-19.2019.

    Abstract

    Active communication between researchers and society is necessary for the scientific community’s involvement in developing sciencebased
    policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement
    and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people’s imagination
    and emotions. Yet, many researchers are uncertain about how to approach scientific storytelling, or feel they lack the tools to
    undertake it. Here we explore some of the techniques intrinsic to crafting scientific narratives, as well as the reasons why scientific
    storytellingmaybe an optimal way of communicating research to nonspecialists.Wealso point out current communication gaps between
    science and society, particularly in the context of neurodiverse audiences and those that include neurological and psychiatric patients.
    Present shortcomings may turn into areas of synergy with the potential to link neuroscience education, research, and advocacy
  • Maslowski, M. (2019). Fast speech can sound slow: Effects of contextual speech rate on word recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). How the tracking of habitual rate influences speech perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1), 128-138. doi:10.1037/xlm0000579.

    Abstract

    Listeners are known to track statistical regularities in speech. Yet, which temporal cues
    are encoded is unclear. This study tested effects of talker-specific habitual speech rate
    and talker-independent average speech rate (heard over a longer period of time) on
    the perception of the temporal Dutch vowel contrast /A/-/a:/. First, Experiment 1
    replicated that slow local (surrounding) speech contexts induce fewer long /a:/
    responses than faster contexts. Experiment 2 tested effects of long-term habitual
    speech rate. One high-rate group listened to ambiguous vowels embedded in `neutral'
    speech from talker A, intermixed with speech from fast talker B. Another low-rate group
    listened to the same `neutral' speech from talker A, but to talker B being slow.
    Between-group comparison of the `neutral' trials showed that the high-rate group
    demonstrated a lower proportion of /a:/ responses, indicating that talker A's habitual
    speech rate sounded slower when B was faster. In Experiment 3, both talkers
    produced speech at both rates, removing the different habitual speech rates of talker A
    and B, while maintaining the average rate differing between groups. This time no
    global rate effect was observed. Taken together, the present experiments show that a
    talker's habitual rate is encoded relative to the habitual rate of another talker, carrying
    implications for episodic and constraint-based models of speech perception.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188. doi:10.1121/1.5116004.

    Abstract

    Speech can be produced at different rates. Listeners take this rate variation into account by normalizing vowel duration for contextual speech rate: An ambiguous Dutch word /m?t/ is perceived as short /mAt/ when embedded in a slow context, but long /ma:t/ in a fast context. Whilst some have argued that this rate normalization involves low-level automatic perceptual processing, there is also evidence that it arises at higher-level cognitive processing stages, such as decision making. Prior research on rate-dependent speech perception has only used explicit recognition tasks to investigate the phenomenon, involving both perceptual processing and decision making. This study tested whether speech rate normalization can be observed without explicit decision making, using a cross-modal repetition priming paradigm. Results show that a fast precursor sentence makes an embedded ambiguous prime (/m?t/) sound (implicitly) more /a:/-like, facilitating lexical access to the long target word "maat" in a (explicit) lexical decision task. This result suggests that rate normalization is automatic, taking place even in the absence of an explicit recognition task. Thus, rate normalization is placed within the realm of everyday spoken conversation, where explicit categorization of ambiguous sounds is rare.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2018). Listening to yourself is special: Evidence from global speech rate tracking. PLoS One, 13(9): e0203571. doi:10.1371/journal.pone.0203571.

    Abstract

    Listeners are known to use adjacent contextual speech rate in processing temporally ambiguous speech sounds. For instance, an ambiguous vowel between short /A/ and long /a:/ in Dutch sounds relatively long (i.e., as /a:/) embedded in a fast precursor sentence, but short in a slow sentence. Besides the local speech rate, listeners also track talker-specific global speech rates. However, it is yet unclear whether other talkers' global rates are encoded with reference to a listener's self-produced rate. Three experiments addressed this question. In Experiment 1, one group of participants was instructed to speak fast, whereas another group had to speak slowly. The groups were compared on their perception of ambiguous /A/-/a:/ vowels embedded in neutral rate speech from another talker. In Experiment 2, the same participants listened to playback of their own speech and again evaluated target vowels in neutral rate speech. Neither of these experiments provided support for the involvement of self-produced speech in perception of another talker's speech rate. Experiment 3 repeated Experiment 2 but with a new participant sample that was unfamiliar with the participants from Experiment 2. This experiment revealed fewer /a:/ responses in neutral speech in the group also listening to a fast rate, suggesting that neutral speech sounds slow in the presence of a fast talker and vice versa. Taken together, the findings show that self-produced speech is processed differently from speech produced by others. They carry implications for our understanding of the perceptual and cognitive mechanisms involved in rate-dependent speech perception in dialogue settings.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McKone, E., Wan, L., Pidcock, M., Crookes, K., Reynolds, K., Dawel, A., Kidd, E., & Fiorentini, C. (2019). A critical period for faces: Other-race face recognition is improved by childhood but not adult social contact. Scientific Reports, 9: 12820. doi:10.1038/s41598-019-49202-0.

    Abstract

    Poor recognition of other-race faces is ubiquitous around the world. We resolve a longstanding contradiction in the literature concerning whether interracial social contact improves the other-race effect. For the first time, we measure the age at which contact was experienced. taking advantage of
    unusual demographics allowing dissociation of childhood from adult contact, results show sufficient childhood contact eliminated poor other-race recognition altogether (confirming inter-country adoption
    studies). Critically, however, the developmental window for easy acquisition of other-race faces closed by approximately 12 years of age and social contact as an adult — even over several years and involving many other-race friends — produced no improvement. Theoretically, this pattern of developmental change in plasticity mirrors that found in language, suggesting a shared origin grounded in the
    functional importance of both skills to social communication. Practically, results imply that, where parents wish to ensure their offspring develop the perceptual skills needed to recognise other-race people easily, childhood experience should be encouraged: just as an English-speaking person who moves to France as a child (but not an adult) can easily become a native speaker of French, we can easily
    become “native recognisers” of other-race faces via natural social exposure obtained in childhood, but not later
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Mei, C., Fedorenko, E., Amor, D. J., Boys, A., Hoeflin, C., Carew, P., Burgess, T., Fisher, S. E., & Morgan, A. T. (2018). Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion. European journal of human genetics, 26(5), 676-686. doi:10.1038/s41431-018-0102-x.

    Abstract

    Recurrent deletions of a ~600-kb region of 16p11.2 have been associated with a highly penetrant form of childhood apraxia of speech (CAS). Yet prior findings have been based on a small, potentially biased sample using retrospectively collected data. We examine the prevalence of CAS in a larger cohort of individuals with 16p11.2 deletion using a prospectively designed assessment battery. The broader speech and language phenotype associated with carrying this deletion was also examined. 55 participants with 16p11.2 deletion (47 children, 8 adults) underwent deep phenotyping to test for the presence of CAS and other speech and language diagnoses. Standardized tests of oral motor functioning, speech production, language, and non-verbal IQ were conducted. The majority of children (77%) and half of adults (50%) met criteria for CAS. Other speech outcomes were observed including articulation or phonological errors (i.e., phonetic and cognitive-linguistic errors, respectively), dysarthria (i.e., neuromuscular speech disorder), minimal verbal output, and even typical speech in some. Receptive and expressive language impairment was present in 73% and 70% of children, respectively. Co-occurring neurodevelopmental conditions (e.g., autism) and non-verbal IQ did not correlate with the presence of CAS. Findings indicate that CAS is highly prevalent in children with 16p11.2 deletion with symptoms persisting into adulthood for many. Yet CAS occurs in the context of a broader speech and language profile and other neurobehavioral deficits. Further research will elucidate specific genetic and neural pathways leading to speech and language deficits in individuals with 16p11.2 deletions, resulting in more targeted speech therapies addressing etiological pathways.
  • Merkx, D., Frank, S., & Ernestus, M. (2019). Language learning using speech to image retrieval. In Proceedings of Interspeech 2019 (pp. 1841-1845). doi:10.21437/Interspeech.2019-3067.

    Abstract

    Humans learn language by interaction with their environment and listening to other humans. It should also be possible for computational models to learn language directly from speech but so far most approaches require text. We improve on existing neural network approaches to create visually grounded embeddings for spoken utterances. Using a combination of a multi-layer GRU, importance sampling, cyclic learning rates, ensembling and vectorial self-attention our results show a remarkable increase in image-caption retrieval performance over previous work. Furthermore, we investigate which layers in the model learn to recognise words in the input. We find that deeper network layers are better at encoding word presence, although the final layer has slightly lower performance. This shows that our visually grounded sentence encoder learns to recognise words from the input even though it is not explicitly trained for word recognition.
  • Merkx, D., & Frank, S. L. (2019). Learning semantic sentence representations from visually grounded language without lexical knowledge. Natural Language Engineering, 25, 451-466. doi:10.1017/S1351324919000196.

    Abstract

    Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state of the art on two popular image-caption retrieval benchmark datasets: Microsoft Common Objects in Context (MSCOCO) and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity (STS) benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
  • Merkx, D., & Scharenborg, O. (2018). Articulatory feature classification using convolutional neural networks. In Proceedings of Interspeech 2018 (pp. 2142-2146). doi:10.21437/Interspeech.2018-2275.

    Abstract

    The ultimate goal of our research is to improve an existing speech-based computational model of human speech recognition on the task of simulating the role of fine-grained phonetic information in human speech processing. As part of this work we are investigating articulatory feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. Articulatory feature (AF) modelling of speech has received a considerable amount of attention in automatic speech recognition research. Different approaches have been used to build AF classifiers, most notably multi-layer perceptrons. Recently, deep neural networks have been applied to the task of AF classification. This paper aims to improve AF classification by investigating two different approaches: 1) investigating the usefulness of a deep Convolutional neural network (CNN) for AF classification; 2) integrating the Mel filtering operation into the CNN architecture. The results showed a remarkable improvement in classification accuracy of the CNNs over state-of-the-art AF classification results for Dutch, most notably in the minority classes. Integrating the Mel filtering operation into the CNN architecture did not further improve classification performance.
  • Meyer, A. S., & Levelt, W. J. M. (2000). Merging speech perception and production [Comment on Norris, McQueen and Cutler]. Behavioral and Brain Sciences, 23(3), 339-340. doi:10.1017/S0140525X00373241.

    Abstract

    A comparison of Merge, a model of comprehension, and WEAVER, a model of production, raises five issues: (1) merging models of comprehension and production necessarily creates feedback; (2) neither model is a comprehensive account of word processing; (3) the models are incomplete in different ways; (4) the models differ in their handling of competition; (5) as opposed to WEAVER, Merge is a model of metalinguistic behavior.
  • Meyer, A. S., & Van der Meulen, F. (2000). Phonological priming effects on speech onset latencies and viewing times in object naming. Psychonomic Bulletin & Review, 7, 314-319.
  • Meyer, A. S., Roelofs, A., & Brehm, L. (2019). Thirty years of Speaking: An introduction to the special issue. Language, Cognition and Neuroscience, 34(9), 1073-1084. doi:10.1080/23273798.2019.1652763.

    Abstract

    Thirty years ago, Pim Levelt published Speaking. During the 10th International Workshop on Language Production held at the Max Planck Institute for Psycholinguistics in Nijmegen in July 2018, researchers reflected on the impact of the book in the field, developments since its publication, and current research trends. The contributions in this Special Issue are closely related to the presentations given at the workshop. In this editorial, we sketch the research agenda set by Speaking, review how different aspects of this agenda are taken up in the papers in this volume and outline directions for further research.
  • Meyer, A. S., Alday, P. M., Decuyper, C., & Knudsen, B. (2018). Working together: Contributions of corpus analyses and experimental psycholinguistics to understanding conversation. Frontiers in Psychology, 9: 525. doi:10.3389/fpsyg.2018.00525.

    Abstract

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

    Additional information

    Data_Sheet_1.pdf
  • Meyer, A. S., Sleiderink, A. M., & Levelt, W. J. M. (1998). Viewing and naming objects: Eye movements during noun phrase production. Cognition, 66(2), B25-B33. doi:10.1016/S0010-0277(98)00009-2.

    Abstract

    Eye movements have been shown to reflect word recognition and language comprehension processes occurring during reading and auditory language comprehension. The present study examines whether the eye movements speakers make during object naming similarly reflect speech planning processes. In Experiment 1, speakers named object pairs saying, for instance, 'scooter and hat'. The objects were presented as ordinary line drawings or with partly dele:ed contours and had high or low frequency names. Contour type and frequency both significantly affected the mean naming latencies and the mean time spent looking at the objects. The frequency effects disappeared in Experiment 2, in which the participants categorized the objects instead of naming them. This suggests that the frequency effects of Experiment 1 arose during lexical retrieval. We conclude that eye movements during object naming indeed reflect linguistic planning processes and that the speakers' decision to move their eyes from one object to the next is contingent upon the retrieval of the phonological form of the object names.
  • Mickan, A., McQueen, J. M., & Lemhöfer, K. (2019). Bridging the gap between second language acquisition research and memory science: The case of foreign language attrition. Frontiers in Human Neuroscience, 13: 397. doi:10.3389/fnhum.2019.00397.

    Abstract

    The field of second language acquisition (SLA) is by nature of its subject a highly interdisciplinary area of research. Learning a (foreign) language, for example, involves encoding new words, consolidating and committing them to long-term memory, and later retrieving them. All of these processes have direct parallels in the domain of human memory and have been thoroughly studied by researchers in that field. Yet, despite these clear links, the two fields have largely developed in parallel and in isolation from one another. The present paper aims to promote more cross-talk between SLA and memory science. We focus on foreign language (FL) attrition as an example of a research topic in SLA where the parallels with memory science are especially apparent. We discuss evidence that suggests that competition between languages is one of the mechanisms of FL attrition, paralleling the interference process thought to underlie forgetting in other domains of human memory. Backed up by concrete suggestions, we advocate the use of paradigms from the memory literature to study these interference effects in the language domain. In doing so, we hope to facilitate future cross-talk between the two fields, and to further our understanding of FL attrition as a memory phenomenon.
  • Micklos, A., Macuch Silva, V., & Fay, N. (2018). The prevalence of repair in studies of language evolution. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 316-318). Toruń, Poland: NCU Press. doi:10.12775/3991-1.075.
  • Middeldorp, C. M., Felix, J. F., Mahajan, A., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Early Growth Genetics (EGG) consortium, & McCarthy, M. I. (2019). The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: Design, results and future prospects. European Journal of Epidemiology, 34(3), 279-300. doi:10.1007/s10654-019-00502-9.

    Abstract

    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  • Minutjukur, M., Tjitayi, K., Tjitayi, U., & Defina, R. (2019). Pitjantjatjara language change: Some observations and recommendations. Australian Aboriginal Studies, (1), 82-91.
  • Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical gender in German influences how role-nouns are interpreted: Evidence from ERPs. Discourse Processes, 56(8), 643-654. doi:10.1080/0163853X.2018.1541382.

    Abstract

    Grammatically masculine role-nouns (e.g., Studenten-masc.‘students’) can refer to men and women, but may favor an interpretation where only men are considered the referent. If true, this has implications for a society aiming to achieve equal representation in the workplace since, for example, job adverts use such role descriptions. To investigate the interpretation of role-nouns, the present ERP study assessed grammatical gender processing in German. Twenty participants read sentences where a role-noun (masculine or feminine) introduced a group of people, followed by a congruent (masculine–men, feminine–women) or incongruent (masculine–women, feminine–men) continuation. Both for feminine-men and masculine-women continuations a P600 (500 to 800 ms) was observed; another positivity was already present from 300 to 500 ms for feminine-men continuations, but critically not for masculine-women continuations. The results imply a male-biased rather than gender-neutral interpretation of the masculine—despite widespread usage of the masculine as a gender-neutral form—suggesting masculine forms are inadequate for representing genders equally.
  • Mitterer, H., Reinisch, E., & McQueen, J. M. (2018). Allophones, not phonemes in spoken-word recognition. Journal of Memory and Language, 98, 77-92. doi:10.1016/j.jml.2017.09.005.

    Abstract

    What are the phonological representations that listeners use to map information about the segmental content of speech onto the mental lexicon during spoken-word recognition? Recent evidence from perceptual-learning paradigms seems to support (context-dependent) allophones as the basic representational units in spoken-word recognition. But recent evidence from a selective-adaptation paradigm seems to suggest that context-independent phonemes also play a role. We present three experiments using selective adaptation that constitute strong tests of these representational hypotheses. In Experiment 1, we tested generalization of selective adaptation using different allophones of Dutch /r/ and /l/ – a case where generalization has not been found with perceptual learning. In Experiments 2 and 3, we tested generalization of selective adaptation using German back fricatives in which allophonic and phonemic identity were varied orthogonally. In all three experiments, selective adaptation was observed only if adaptors and test stimuli shared allophones. Phonemic identity, in contrast, was neither necessary nor sufficient for generalization of selective adaptation to occur. These findings and other recent data using the perceptual-learning paradigm suggest that pre-lexical processing during spoken-word recognition is based on allophones, and not on context-independent phonemes
  • Mitterer, H., Brouwer, S., & Huettig, F. (2018). How important is prediction for understanding spontaneous speech? In N. Mani, R. K. Mishra, & F. Huettig (Eds.), The Interactive Mind: Language, Vision and Attention (pp. 26-40). Chennai: Macmillan Publishers India.
  • Moisik, S. R., Zhi Yun, D. P., & Dediu, D. (2019). Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 864-868). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    The anterior lordosis of the cervical spine is thought
    to contribute to pitch (fo) production by influencing
    cricoid rotation as a function of larynx height. This
    study examines the matter of inter-individual
    variation in cervical spine shape and whether this has
    an influence on how fo is produced along increasing
    or decreasing scales, using the ArtiVarK dataset,
    which contains real-time MRI pitch production data.
    We find that the cervical spine actively participates in
    fo production, but the amount of displacement
    depends on individual shape. In general, anterior
    spine motion (tending toward cervical lordosis)
    occurs for low fo, while posterior movement (tending
    towards cervical kyphosis) occurs for high fo.
  • Monaghan, P., & Fletcher, M. (2019). Do sound symbolism effects for written words relate to individual phonemes or to phoneme features? Language and Cognition, 11(2), 235-255. doi:10.1017/langcog.2019.20.

    Abstract

    The sound of words has been shown to relate to the meaning that the words denote, an effect that extends beyond morphological properties of the word. Studies of these sound-symbolic relations have described this iconicity in terms of individual phonemes, or alternatively due to acoustic properties (expressed in phonological features) relating to meaning. In this study, we investigated whether individual phonemes or phoneme features best accounted for iconicity effects. We tested 92 participants’ judgements about the appropriateness of 320 nonwords presented in written form, relating to 8 different semantic attributes. For all 8 attributes, individual phonemes fitted participants’ responses better than general phoneme features. These results challenge claims that sound-symbolic effects for visually presented words can access broad, cross-modal associations between sound and meaning, instead the results indicate the operation of individual phoneme to meaning relations. Whether similar effects are found for nonwords presented auditorially remains an open question.
  • Monaghan, P., & Roberts, S. G. (2019). Cognitive influences in language evolution: Psycholinguistic predictors of loan word borrowing. Cognition, 186, 147-158. doi:10.1016/j.cognition.2019.02.007.

    Abstract

    Languages change due to social, cultural, and cognitive influences. In this paper, we provide an assessment of these cognitive influences on diachronic change in the vocabulary. Previously, tests of stability and change of vocabulary items have been conducted on small sets of words where diachronic change is imputed from cladistics studies. Here, we show for a substantially larger set of words that stability and change in terms of documented borrowings of words into English and into Dutch can be predicted by psycholinguistic properties of words that reflect their representational fidelity. We found that grammatical category, word length, age of acquisition, and frequency predict borrowing rates, but frequency has a non-linear relationship. Frequency correlates negatively with probability of borrowing for high-frequency words, but positively for low-frequency words. This borrowing evidence documents recent, observable diachronic change in the vocabulary enabling us to distinguish between change associated with transmission during language acquisition and change due to innovations by proficient speakers.
  • Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.

    Abstract

    How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing.
  • Monster, I., & Lev-Ari, S. (2018). The effect of social network size on hashtag adoption on Twitter. Cognitive Science, 42(8), 3149-3158. doi:10.1111/cogs.12675.

    Abstract

    Propagation of novel linguistic terms is an important aspect of language use and language
    change. Here, we test how social network size influences people’s likelihood of adopting novel
    labels by examining hashtag use on Twitter. Specifically, we test whether following fewer Twitter
    users leads to more varied and malleable hashtag use on Twitter , because each followed user is
    ascribed greater weight and thus exerts greater influence on the following user. Focusing on Dutch
    users tweeting about the terrorist attack in Brussels in 2016, we show that people who follow
    fewer other users use a larger number of unique hashtags to refer to the event, reflecting greater
    malleability and variability in use. These results have implications for theories of language learning, language use, and language change.
  • Morgan, T. J. H., Acerbi, A., & Van Leeuwen, E. J. C. (2019). Copy-the-majority of instances or individuals? Two approaches to the majority and their consequences for conformist decision-making. PLoS One, 14(1): e021074. doi:10.1371/journal.pone.0210748.

    Abstract

    Cultural evolution is the product of the psychological mechanisms that underlie individual decision making. One commonly studied learning mechanism is a disproportionate preference for majority opinions, known as conformist transmission. While most theoretical and experimental work approaches the majority in terms of the number of individuals that perform a behaviour or hold a belief, some recent experimental studies approach the majority in terms of the number of instances a behaviour is performed. Here, we use a mathematical model to show that disagreement between these two notions of the majority can arise when behavioural variants are performed at different rates, with different salience or in different contexts (variant overrepresentation) and when a subset of the population act as demonstrators to the whole population (model biases). We also show that because conformist transmission changes the distribution of behaviours in a population, how observers approach the majority can cause populations to diverge, and that this can happen even when the two approaches to the majority agree with regards to which behaviour is in the majority. We discuss these results in light of existing findings, ranging from political extremism on twitter to studies of animal foraging behaviour. We conclude that the factors we considered (variant overrepresentation and model biases) are plausibly widespread. As such, it is important to understand how individuals approach the majority in order to understand the effects of majority influence in cultural evolution.
  • Morgan, A. T., van Haaften, L., van Hulst, K., Edley, C., Mei, C., Tan, T. Y., Amor, D., Fisher, S. E., & Koolen, D. A. (2018). Early speech development in Koolen de Vries syndrome limited by oral praxis and hypotonia. European journal of human genetics, 26, 75-84. doi:10.1038/s41431-017-0035-9.

    Abstract

    Communication disorder is common in Koolen de Vries syndrome (KdVS), yet its specific symptomatology has not been examined, limiting prognostic counselling and application of targeted therapies. Here we examine the communication phenotype associated with KdVS. Twenty-nine participants (12 males, 4 with KANSL1 variants, 25 with 17q21.31 microdeletion), aged 1.0–27.0 years were assessed for oral-motor, speech, language, literacy, and social functioning. Early history included hypotonia and feeding difficulties. Speech and language development was delayed and atypical from onset of first words (2; 5–3; 5 years of age on average). Speech was characterised by apraxia (100%) and dysarthria (93%), with stuttering in some (17%). Speech therapy and multi-modal communication (e.g., sign-language) was critical in preschool. Receptive and expressive language abilities were typically commensurate (79%), both being severely affected relative to peers. Children were sociable with a desire to communicate, although some (36%) had pragmatic impairments in domains, where higher-level language was required. A common phenotype was identified, including an overriding ‘double hit’ of oral hypotonia and apraxia in infancy and preschool, associated with severely delayed speech development. Remarkably however, speech prognosis was positive; apraxia resolved, and although dysarthria persisted, children were intelligible by mid-to-late childhood. In contrast, language and literacy deficits persisted, and pragmatic deficits were apparent. Children with KdVS require early, intensive, speech motor and language therapy, with targeted literacy and social language interventions as developmentally appropriate. Greater understanding of the linguistic phenotype may help unravel the relevance of KANSL1 to child speech and language development.

    Additional information

    41431_2017_35_MOESM1_ESM.docx
  • Mostert, P., Albers, A. M., Brinkman, L., Todorova, L., Kok, P., & De Lange, F. P. (2018). Eye movement-related confounds in neural decoding of visual working memory representations. eNeuro, 5(4): ENEURO.0401-17.2018. doi:10.1523/ENEURO.0401-17.2018.

    Abstract

    A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds.
  • Mulder, K., Ten Bosch, L., & Boves, L. (2018). Analyzing EEG Signals in Auditory Speech Comprehension Using Temporal Response Functions and Generalized Additive Models. In Proceedings of Interspeech 2018 (pp. 1452-1456). doi:10.21437/Interspeech.2018-1676.

    Abstract

    Analyzing EEG signals recorded while participants are listening to continuous speech with the purpose of testing linguistic hypotheses is complicated by the fact that the signals simultaneously reflect exogenous acoustic excitation and endogenous linguistic processing. This makes it difficult to trace subtle differences that occur in mid-sentence position. We apply an analysis based on multivariate temporal response functions to uncover subtle mid-sentence effects. This approach is based on a per-stimulus estimate of the response of the neural system to speech input. Analyzing EEG signals predicted on the basis of the response functions might then bring to light conditionspecific differences in the filtered signals. We validate this approach by means of an analysis of EEG signals recorded with isolated word stimuli. Then, we apply the validated method to the analysis of the responses to the same words in the middle of meaningful sentences.
  • Mulder, K., Van Heuven, W. J., & Dijkstra, T. (2018). Revisiting the neighborhood: How L2 proficiency and neighborhood manipulation affect bilingual processing. Frontiers in Psychology, 9: 1860. doi:10.3389/fpsyg.2018.01860.

    Abstract

    We conducted three neighborhood experiments with Dutch-English bilinguals to test effects of L2 proficiency and neighborhood characteristics within and between languages. In the past 20 years, the English (L2) proficiency of this population has considerably increased. To consider the impact of this development on neighborhood effects, we conducted a strict replication of the English lexical decision task by van Heuven, Dijkstra, & Grainger (1998, Exp. 4). In line with our prediction, English characteristics (neighborhood size, word and bigram frequency) dominated the word and nonword responses, while the nonwords also revealed an interaction of English and Dutch neighborhood size.
    The prominence of English was tested again in two experiments introducing a stronger neighborhood manipulation. In English lexical decision and progressive demasking, English items with no orthographic neighbors at all were contrasted with items having neighbors in English or Dutch (‘hermits’) only, or in both languages. In both tasks, target processing was affected strongly by the presence of English neighbors, but only weakly by Dutch neighbors. Effects are interpreted in terms of two underlying processing mechanisms: language-specific global lexical activation and lexical competition.
  • Mulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S. and 31 moreMulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S., Roovers, J., Djemie, T., Barca, D., Ceulemans, B., Craiu, D., Lemke, J. R., Korff, C., Mefford, H. C., Meyers, C. T., Siegler, Z., Hiatt, S. M., Cooper, G. M., Bebin, E. M., Snijders Blok, L., Veenstra-Knol, H. E., Baugh, E. H., Brilstra, E. H., Volker-Touw, C. M. L., Van Binsbergen, E., Revah-Politi, A., Pereira, E., McBrian, D., Pacault, M., Isidor, B., Le Caignec, C., Gilbert-Dussardier, B., Bilan, F., Heinzen, E. L., Goldstein, D. B., Stevens, S. J. C., & Sands, T. T. (2018). NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Annals of Neurology, 84(5), 788-795. doi:10.1002/ana.25350.

    Abstract

    NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy–like phenotype in a subset of patients.

    Files private

    Request files
  • Nakamoto, T., Suei, Y., Konishi, M., Kanda, T., Verdonschot, R. G., & Kakimoto, N. (2019). Abnormal positioning of the common carotid artery clinically diagnosed as a submandibular mass. Oral Radiology, 35(3), 331-334. doi:10.1007/s11282-018-0355-7.

    Abstract

    The common carotid artery (CCA) usually runs along the long axis of the neck, although it is occasionally found in an abnormal position or is displaced. We report a case of an 86-year-old woman in whom the CCA was identified in the submandibular area. The patient visited our clinic and reported soft tissue swelling in the right submandibular area. It resembled a tumor mass or a swollen lymph node. Computed tomography showed that it was the right CCA that had been bent forward and was running along the submandibular subcutaneous area. Ultrasonography verified the diagnosis. No other lesions were found on the diagnostic images. Consequently, the patient was diagnosed as having abnormal CCA positioning. Although this condition generally requires no treatment, it is important to follow-up the abnormality with diagnostic imaging because of the risk of cerebrovascular disorders.
  • Nakamoto, T., Taguchi, A., Verdonschot, R. G., & Kakimoto, N. (2019). Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs. Oral Radiology, 35(2), 143-151. doi:10.1007/s11282-018-0330-3.

    Abstract

    ObjectivesPatients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.MethodsWe used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400x100-pixel ROI was automatically extracted and divided into four 100x100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.ResultsMost ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.ConclusionsPatients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care.
  • Nayernia, L., Van den Vijver, R., & Indefrey, P. (2019). The influence of orthography on phonemic knowledge: An experimental investigation on German and Persian. Journal of Psycholinguistic Research, 48(6), 1391-1406. doi:10.1007/s10936-019-09664-9.

    Abstract

    This study investigated whether the phonological representation of a word is modulated by its orthographic representation in case of a mismatch between the two representations. Such a mismatch is found in Persian, where short vowels are represented phonemically but not orthographically. Persian adult literates, Persian adult illiterates, and German adult literates were presented with two auditory tasks, an AX-discrimination task and a reversal task. We assumed that if orthographic representations influence phonological representations, Persian literates should perform worse than Persian illiterates or German literates on items with short vowels in these tasks. The results of the discrimination tasks showed that Persian literates and illiterates as well as German literates were approximately equally competent in discriminating short vowels in Persian words and pseudowords. Persian literates did not well discriminate German words containing phonemes that differed only in vowel length. German literates performed relatively poorly in discriminating German homographic words that differed only in vowel length. Persian illiterates were unable to perform the reversal task in Persian. The results of the other two participant groups in the reversal task showed the predicted poorer performance of Persian literates on Persian items containing short vowels compared to items containing long vowels only. German literates did not show this effect in German. Our results suggest two distinct effects of orthography on phonemic representations: whereas the lack of orthographic representations seems to affect phonemic awareness, homography seems to affect the discriminability of phonemic representations.
  • Nazzi, T., & Cutler, A. (2019). How consonants and vowels shape spoken-language recognition. Annual Review of Linguistics, 5, 25-47. doi:10.1146/annurev-linguistics-011718-011919.

    Abstract

    All languages instantiate a consonant/vowel contrast. This contrast has processing consequences at different levels of spoken-language recognition throughout the lifespan. In adulthood, lexical processing is more strongly associated with consonant than with vowel processing; this has been demonstrated across 13 languages from seven language families and in a variety of auditory lexical-level tasks (deciding whether a spoken input is a word, spotting a real word embedded in a minimal context, reconstructing a word minimally altered into a pseudoword, learning new words or the “words” of a made-up language), as well as in written-word tasks involving phonological processing. In infancy, a consonant advantage in word learning and recognition is found to emerge during development in some languages, though possibly not in others, revealing that the stronger lexicon–consonant association found in adulthood is learned. Current research is evaluating the relative contribution of the early acquisition of the acoustic/phonetic and lexical properties of the native language in the emergence of this association
  • Niermann, H. C. M., Tyborowska, A., Cillessen, A. H. N., Van Donkelaar, M. M. J., Lammertink, F., Gunnar, M. R., Franke, B., Figner, B., & Roelofs, K. (2019). The relation between infant freezing and the development of internalizing symptoms in adolescence: A prospective longitudinal study. Developmental Science, 22(3): e12763. doi:10.1111/desc.12763.

    Abstract

    Given the long-lasting detrimental effects of internalizing symptoms, there is great need for detecting early risk markers. One promising marker is freezing behavior. Whereas initial freezing reactions are essential for coping with threat, prolonged freezing has been associated with internalizing psychopathology. However, it remains unknown whether early life alterations in freezing reactions predict changes in internalizing symptoms during adolescent development. In a longitudinal study (N = 116), we tested prospectively whether observed freezing in infancy predicted the development of internalizing symptoms from childhood through late adolescence (until age 17). Both longer and absent infant freezing behavior during a standard challenge (robot-confrontation task) were associated with internalizing symptoms in adolescence. Specifically, absent infant freezing predicted a relative increase in internalizing symptoms consistently across development from relatively low symptom levels in childhood to relatively high levels in late adolescence. Longer infant freezing also predicted a relative increase in internalizing symptoms, but only up until early adolescence. This latter effect was moderated by peer stress and was followed by a later decrease in internalizing symptoms. The findings suggest that early deviations in defensive freezing responses signal risk for internalizing symptoms and may constitute important markers in future stress vulnerability and resilience studies.
  • Nieuwland, M. S., Coopmans, C. W., & Sommers, R. P. (2019). Distinguishing old from new referents during discourse comprehension: Evidence from ERPs and oscillations. Frontiers in Human Neuroscience, 13: 398. doi:10.3389/fnhum.2019.00398.

    Abstract

    In this EEG study, we used pre-registered and exploratory ERP and time-frequency analyses to investigate the resolution of anaphoric and non-anaphoric noun phrases during discourse comprehension. Participants listened to story contexts that described two antecedents, and subsequently read a target sentence with a critical noun phrase that lexically matched one antecedent (‘old’), matched two antecedents (‘ambiguous’), partially matched one antecedent in terms of semantic features (‘partial-match’), or introduced another referent (non-anaphoric, ‘new’). After each target sentence, participants judged whether the noun referred back to an antecedent (i.e., an ‘old/new’ judgment), which was easiest for ambiguous nouns and hardest for partially matching nouns. The noun-elicited N400 ERP component demonstrated initial sensitivity to repetition and semantic overlap, corresponding to repetition and semantic priming effects, respectively. New and partially matching nouns both elicited a subsequent frontal positivity, which suggested that partially matching anaphors may have been processed as new nouns temporarily. ERPs in an even later time window and ERPs time-locked to sentence-final words suggested that new and partially matching nouns had different effects on comprehension, with partially matching nouns incurring additional processing costs up to the end of the sentence. In contrast to the ERP results, the time-frequency results primarily demonstrated sensitivity to noun repetition, and did not differentiate partially matching anaphors from new nouns. In sum, our results show the ERP and time-frequency effects of referent repetition during discourse comprehension, and demonstrate the potentially demanding nature of establishing the anaphoric meaning of a novel noun.
  • Nieuwland, M. S. (2019). Do ‘early’ brain responses reveal word form prediction during language comprehension? A critical review. Neuroscience and Biobehavioral Reviews, 96, 367-400. doi:10.1016/j.neubiorev.2018.11.019.

    Abstract

    Current theories of language comprehension posit that readers and listeners routinely try to predict the meaning but also the visual or sound form of upcoming words. Whereas
    most neuroimaging studies on word rediction focus on the N400 ERP or its magnetic equivalent, various studies claim that word form prediction manifests itself in ‘early’, pre
    N400 brain responses (e.g., ELAN, M100, P130, N1, P2, N200/PMN, N250). Modulations of these components are often taken as evidence that word form prediction impacts early sensory processes (the sensory hypothesis) or, alternatively, the initial stages of word recognition before word meaning is integrated with sentence context (the recognition hypothesis). Here, I
    comprehensively review studies on sentence- or discourse-level language comprehension that report such effects of prediction on early brain responses. I conclude that the reported evidence for the sensory hypothesis or word recognition hypothesis is weak and inconsistent,
    and highlight the urgent need for replication of previous findings. I discuss the implications and challenges to current theories of linguistic prediction and suggest avenues for future research.
  • Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I. and 3 moreNieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I., Kohút, Z., Rueschemeyer, S.-A., & Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. eLife, 7: e33468. doi:10.7554/eLife.33468.

    Abstract

    Do people routinely pre-activate the meaning and even the phonological form of upcoming words? The most acclaimed evidence for phonological prediction comes from a 2005 Nature Neuroscience publication by DeLong, Urbach and Kutas, who observed a graded modulation of electrical brain potentials (N400) to nouns and preceding articles by the probability that people use a word to continue the sentence fragment (‘cloze’). In our direct replication study spanning 9 laboratories (N=334), pre-registered replication-analyses and exploratory Bayes factor analyses successfully replicated the noun-results but, crucially, not the article-results. Pre-registered single-trial analyses also yielded a statistically significant effect for the nouns but not the articles. Exploratory Bayesian single-trial analyses showed that the article-effect may be non-zero but is likely far smaller than originally reported and too small to observe without very large sample sizes. Our results do not support the view that readers routinely pre-activate the phonological form of predictable words.

    Additional information

    Data sets
  • Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B. and 159 moreNievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B., Avdibegovic, E., Babić, D., Bækvad-Hansen, M., Baker, D. G., Beckham, J. C., Bierut, L. J., Bisson, J. I., Boks, M. P., Bolger, E. A., Børglum, A. D., Bradley, B., Brashear, M., Breen, G., Bryant, R. A., Bustamante, A. C., Bybjerg-Grauholm, J., Calabrese, J. R., Caldas- de- Almeida, J. M., Dale, A. M., Daly, M. J., Daskalakis, N. P., Deckert, J., Delahanty, D. L., Dennis, M. F., Disner, S. G., Domschke, K., Dzubur-Kulenovic, A., Erbes, C. R., Evans, A., Farrer, L. A., Feeny, N. C., Flory, J. D., Forbes, D., Franz, C. E., Galea, S., Garrett, M. E., Gelaye, B., Geuze, E., Gillespie, C., Uka, A. G., Gordon, S. D., Guffanti, G., Hammamieh, R., Harnal, S., Hauser, M. A., Heath, A. C., Hemmings, S. M. J., Hougaard, D. M., Jakovljevic, M., Jett, M., Johnson, E. O., Jones, I., Jovanovic, T., Qin, X.-J., Junglen, A. G., Karstoft, K.-I., Kaufman, M. L., Kessler, R. C., Khan, A., Kimbrel, N. A., King, A. P., Koen, N., Kranzler, H. R., Kremen, W. S., Lawford, B. R., Lebois, L. A. M., Lewis, C. E., Linnstaedt, S. D., Lori, A., Lugonja, B., Luykx, J. J., Lyons, M. J., Maples-Keller, J., Marmar, C., Martin, A. R., Martin, N. G., Maurer, D., Mavissakalian, M. R., McFarlane, A., McGlinchey, R. E., McLaughlin, K. A., McLean, S. A., McLeay, S., Mehta, D., Milberg, W. P., Miller, M. W., Morey, R. A., Morris, C. P., Mors, O., Mortensen, P. B., Neale, B. M., Nelson, E. C., Nordentoft, M., Norman, S. B., O’Donnell, M., Orcutt, H. K., Panizzon, M. S., Peters, E. S., Peterson, A. L., Peverill, M., Pietrzak, R. H., Polusny, M. A., Rice, J. P., Ripke, S., Risbrough, V. B., Roberts, A. L., Rothbaum, A. O., Rothbaum, B. O., Roy-Byrne, P., Ruggiero, K., Rung, A., Rutten, B. P. F., Saccone, N. L., Sanchez, S. E., Schijven, D., Seedat, S., Seligowski, A. V., Seng, J. S., Sheerin, C. M., Silove, D., Smith, A. K., Smoller, J. W., Sponheim, S. R., Stein, D. J., Stevens, J. S., Sumner, J. A., Teicher, M. H., Thompson, W. K., Trapido, E., Uddin, M., Ursano, R. J., van den Heuvel, L. L., Van Hooff, M., Vermetten, E., Vinkers, C. H., Voisey, J., Wang, Y., Wang, Z., Werge, T., Williams, M. A., Williamson, D. E., Winternitz, S., Wolf, C., Wolf, E. J., Wolff, J. D., Yehuda, R., Young, R. M., Young, K. A., Zhao, H., Zoellner, L. A., Liberzon, I., Ressler, K. J., Haas, M., & Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1): 4558. doi:10.1038/s41467-019-12576-w.

    Abstract

    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.

    Additional information

    Supplementary information
  • Nijveld, A., Ten Bosch, L., & Ernestus, M. (2019). ERP signal analysis with temporal resolution using a time window bank. In Proceedings of Interspeech 2019 (pp. 1208-1212). doi:10.21437/Interspeech.2019-2729.

    Abstract

    In order to study the cognitive processes underlying speech comprehension, neuro-physiological measures (e.g., EEG and MEG), or behavioural measures (e.g., reaction times and response accuracy) can be applied. Compared to behavioural measures, EEG signals can provide a more fine-grained and complementary view of the processes that take place during the unfolding of an auditory stimulus.

    EEG signals are often analysed after having chosen specific time windows, which are usually based on the temporal structure of ERP components expected to be sensitive to the experimental manipulation. However, as the timing of ERP components may vary between experiments, trials, and participants, such a-priori defined analysis time windows may significantly hamper the exploratory power of the analysis of components of interest. In this paper, we explore a wide-window analysis method applied to EEG signals collected in an auditory repetition priming experiment.

    This approach is based on a bank of temporal filters arranged along the time axis in combination with linear mixed effects modelling. Crucially, it permits a temporal decomposition of effects in a single comprehensive statistical model which captures the entire EEG trace.
  • Nijveld, A. (2019). The role of exemplars in speech comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N., Jas, M., Litvak, V., Moreau, J. T., Oostenveld, R., Schoffelen, J.-M., Tadel, F., Wexler, J., & Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5: 180110. doi:10.1038/sdata.2018.110.

    Abstract

    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific
    aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond
    temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise
    magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data
    are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a
    principled solution to store, organise, process and share the multidimensional data volumes produced
    by the modality. The standard also includes well-defined metadata, to facilitate future data
    harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging
    community and paves the way to further integration of other techniques in electrophysiology. MEGBIDS
    builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several dataanalytics
    software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data
    resources available to everyone.
  • Noble, C., Sala, G., Peter, M., Lingwood, J., Rowland, C. F., Gobet, F., & Pine, J. (2019). The impact of shared book reading on children's language skills: A meta-analysis. Educational Research Review, 28: 100290. doi:10.1016/j.edurev.2019.100290.

    Abstract

    Shared book reading is thought to have a positive impact on young children's language development, with shared reading interventions often run in an attempt to boost children's language skills. However, despite the volume of research in this area, a number of issues remain outstanding. The current meta-analysis explored whether shared reading interventions are equally effective (a) across a range of study designs; (b) across a range of different outcome variables; and (c) for children from different SES groups. It also explored the potentially moderating effects of intervention duration, child age, use of dialogic reading techniques, person delivering the intervention and mode of intervention delivery.

    Our results show that, while there is an effect of shared reading on language development, this effect is smaller than reported in previous meta-analyses (
     = 0.194, p = .002). They also show that this effect is moderated by the type of control group used and is negligible in studies with active control groups (  = 0.028, p = .703). Finally, they show no significant effects of differences in outcome variable (ps ≥ .286), socio-economic status (p = .658), or any of our other potential moderators (ps ≥ .077), and non-significant effects for studies with follow-ups (  = 0.139, p = .200). On the basis of these results, we make a number of recommendations for researchers and educators about the design and implementation of future shared reading interventions.

    Additional information

    Supplementary data
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Noordman, L. G. M., & Vonk, W. (1998). Memory-based processing in understanding causal information. Discourse Processes, 191-212. doi:10.1080/01638539809545044.

    Abstract

    The reading process depends both on the text and on the reader. When we read a text, propositions in the current input are matched to propositions in the memory representation of the previous discourse but also to knowledge structures in long‐term memory. Therefore, memory‐based text processing refers both to the bottom‐up processing of the text and to the top‐down activation of the reader's knowledge. In this article, we focus on the role of cognitive structures in the reader's knowledge. We argue that causality is an important category in structuring human knowledge and that this property has consequences for text processing. Some research is discussed that illustrates that the more the information in the text reflects causal categories, the more easily the information is processed.
  • Noppeney, U., Jones, S. A., Rohe, T., & Ferrari, A. (2018). See what you hear – How the brain forms representations across the senses. Neuroforum, 24(4), 257-271. doi:10.1515/nf-2017-A066.

    Abstract

    Our senses are constantly bombarded with a myriad of signals. To make sense of this cacophony, the brain needs to integrate signals emanating from a common source, but segregate signals originating from the different sources. Thus, multisensory perception relies critically on inferring the world’s causal structure (i. e. one common vs. multiple independent sources). Behavioural research has shown that the brain arbitrates between sensory integration and segregation consistent with the principles of Bayesian Causal Inference. At the neural level, recent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) studies have shown that the brain accomplishes Bayesian Causal Inference by dynamically encoding multiple perceptual estimates across the sensory processing hierarchies. Only at the top of the hierarchy in anterior parietal cortices did the brain form perceptual estimates that take into account the observer’s uncertainty about the world’s causal structure consistent with Bayesian Causal Inference.
  • Norcliffe, E. (2018). Egophoricity and evidentiality in Guambiano (Nam Trik). In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 305-345). Amsterdam: Benjamins.

    Abstract

    Egophoric verbal marking is a typological feature common to Barbacoan languages, but otherwise unknown in the Andean sphere. The verbal systems of three out of the four living Barbacoan languages, Cha’palaa, Tsafiki and Awa Pit, have previously been shown to express egophoric contrasts. The status of Guambiano has, however, remained uncertain. In this chapter, I show that there are in fact two layers of egophoric or egophoric-like marking visible in Guambiano’s grammar. Guambiano patterns with certain other (non-Barbacoan) languages in having ego-categories which function within a broader evidential system. It is additionally possible to detect what is possibly a more archaic layer of egophoric marking in Guambiano’s verbal system. This marking may be inherited from a common Barbacoan system, thus pointing to a potential genealogical basis for the egophoric patterning common to these languages. The multiple formal expressions of egophoricity apparent both within and across the four languages reveal how egophoric contrasts are susceptible to structural renewal, suggesting a pan-Barbacoan preoccupation with the linguistic encoding of self-knowledge.
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Nuthmann, A., De Groot, F., Huettig, F., & Olivers, C. L. N. (2019). Extrafoveal attentional capture by object semantics. PLoS One, 14(5): e0217051. doi:10.1371/journal.pone.0217051.

    Abstract

    There is ongoing debate on whether object meaning can be processed outside foveal vision, making semantics available for attentional guidance. Much of the debate has centred on whether objects that do not fit within an overall scene draw attention, in complex displays that are often difficult to control. Here, we revisited the question by reanalysing data from three experiments that used displays consisting of standalone objects from a carefully controlled stimulus set. Observers searched for a target object, as per auditory instruction. On the critical trials, the displays contained no target but objects that were semantically related to the target, visually related, or unrelated. Analyses using (generalized) linear mixed-effects models showed that, although visually related objects attracted most attention, semantically related objects were also fixated earlier in time than unrelated objects. Moreover, semantic matches affected the very first saccade in the display. The amplitudes of saccades that first entered semantically related objects were larger than 5° on average, confirming that object semantics is available outside foveal vision. Finally, there was no semantic capture of attention for the same objects when observers did not actively look for the target, confirming that it was not stimulus-driven. We discuss the implications for existing models of visual cognition.
  • O'Brien, D. P., & Bowerman, M. (1998). Martin D. S. Braine (1926–1996): Obituary. American Psychologist, 53, 563. doi:10.1037/0003-066X.53.5.563.

    Abstract

    Memorializes Martin D. S. Braine, whose research on child language acquisition and on both child and adult thinking and reasoning had a major influence on modern cognitive psychology. Addressing meaning as well as position, Braine argued that children start acquiring language by learning narrow-scope positional formulas that map components of meaning to positions in the utterance. These proposals were critical in starting discussions of the possible universality of the pivot-grammar stage and of the role of syntax, semantics,and pragmatics in children's early grammar and were pivotal to the rise of approaches in which cognitive development in language acquisition is stressed.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • O’Meara, C., Kung, S. S., & Majid, A. (2019). The challenge of olfactory ideophones: Reconsidering ineffability from the Totonac-Tepehua perspective. International Journal of American Linguistics, 85(2), 173-212. doi:10.1086/701801.

    Abstract

    Olfactory impressions are said to be ineffable, but little systematic exploration has been done to substantiate this. We explored olfactory language in Huehuetla Tepehua—a Totonac-Tepehua language spoken in Hidalgo, Mexico—which has a large inventory of ideophones, words with sound-symbolic properties used to describe perceptuomotor experiences. A multi-method study found Huehuetla Tepehua has 45 olfactory ideophones, illustrating intriguing sound-symbolic alternation patterns. Elaboration in the olfactory domain is not unique to this language; related Totonac-Tepehua languages also have impressive smell lexicons. Comparison across these languages shows olfactory and gustatory terms overlap in interesting ways, mirroring the physiology of smelling and tasting. However, although cognate taste terms are formally similar, olfactory terms are less so. We suggest the relative instability of smell vocabulary in comparison with those of taste likely results from the more varied olfactory experiences caused by the mutability of smells in different environments.

Share this page