Publications

Displaying 501 - 600 of 774
  • Obleser, J., Eisner, F., & Kotz, S. A. (2008). Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. Journal of Neuroscience, 28(32), 8116-8124. doi:doi:10.1523/JNEUROSCI.1290-08.2008.

    Abstract

    Speech comprehension has been shown to be a strikingly bilateral process, but the differential contributions of the subfields of left and right auditory cortices have remained elusive. The hypothesis that left auditory areas engage predominantly in decoding fast temporal perturbations of a signal whereas the right areas are relatively more driven by changes of the frequency spectrum has not been directly tested in speech or music. This brain-imaging study independently manipulated the speech signal itself along the spectral and the temporal domain using noise-band vocoding. In a parametric design with five temporal and five spectral degradation levels in word comprehension, a functional distinction of the left and right auditory association cortices emerged: increases in the temporal detail of the signal were most effective in driving brain activation of the left anterolateral superior temporal sulcus (STS), whereas the right homolog areas exhibited stronger sensitivity to the variations in spectral detail. In accordance with behavioral measures of speech comprehension acquired in parallel, change of spectral detail exhibited a stronger coupling with the STS BOLD signal. The relative pattern of lateralization (quantified using lateralization quotients) proved reliable in a jack-knifed iterative reanalysis of the group functional magnetic resonance imaging model. This study supplies direct evidence to the often implied functional distinction of the two cerebral hemispheres in speech processing. Applying direct manipulations to the speech signal rather than to low-level surrogates, the results lend plausibility to the notion of complementary roles for the left and right superior temporal sulci in comprehending the speech signal.
  • O'Brien, D. P., & Bowerman, M. (1998). Martin D. S. Braine (1926–1996): Obituary. American Psychologist, 53, 563. doi:10.1037/0003-066X.53.5.563.

    Abstract

    Memorializes Martin D. S. Braine, whose research on child language acquisition and on both child and adult thinking and reasoning had a major influence on modern cognitive psychology. Addressing meaning as well as position, Braine argued that children start acquiring language by learning narrow-scope positional formulas that map components of meaning to positions in the utterance. These proposals were critical in starting discussions of the possible universality of the pivot-grammar stage and of the role of syntax, semantics,and pragmatics in children's early grammar and were pivotal to the rise of approaches in which cognitive development in language acquisition is stressed.
  • O'Connor, L. (2006). [Review of the book Toward a cognitive semantics: Concept structuring systems by Leonard Talmy]. Journal of Pragmatics, 38(7), 1126-1134. doi:10.1016/j.pragma.2005.08.007.
  • Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., Van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J., & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13 [Letter to the editor]. Molecular Psychiatry, 11, 5-8. doi:10.1038/sj.mp.4001760.
  • Ostarek, M., Ishag, I., Joosen, D., & Huettig, F. (2018). Saccade trajectories reveal dynamic interactions of semantic and spatial information during the processing of implicitly spatial words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(10), 1658-1670. doi:10.1037/xlm0000536.

    Abstract

    Implicit up/down words, such as bird and foot, systematically influence performance on visual tasks involving immediately following targets in compatible vs. incompatible locations. Recent studies have observed that the semantic relation between prime words and target pictures can strongly influence the size and even the direction of the effect: Semantically related targets are processed faster in congruent vs. incongruent locations (location-specific priming), whereas unrelated targets are processed slower in congruent locations. Here, we used eye-tracking to investigate the moment-to-moment processes underlying this pattern. Our reaction time results for related targets replicated the location-specific priming effect and showed a trend towards interference for unrelated targets. We then used growth curve analysis to test how up/down words and their match vs. mismatch with immediately following targets in terms of semantics and vertical location influences concurrent saccadic eye movements. There was a strong main effect of spatial association on linear growth with up words biasing changes in y-coordinates over time upwards relative to down words (and vice versa). Similar to the RT data, this effect was strongest for semantically related targets and reversed for unrelated targets. Intriguingly, all conditions showed a bias in the congruent direction in the initial stage of the saccade. Then, at around halfway into the saccade the effect kept increasing in the semantically related condition, and reversed in the unrelated condition. These results suggest that online processing of up/down words triggers direction-specific oculomotor processes that are dynamically modulated by the semantic relation between prime words and targets.
  • Otten, M., & Van Berkum, J. J. A. (2008). Discourse-based word anticipation during language processing: Prediction of priming? Discourse Processes, 45, 464-496. doi:10.1080/01638530802356463.

    Abstract

    Language is an intrinsically open-ended system. This fact has led to the widely shared assumption that readers and listeners do not predict upcoming words, at least not in a way that goes beyond simple priming between words. Recent evidence, however, suggests that readers and listeners do anticipate upcoming words “on the fly” as a text unfolds. In 2 event-related potentials experiments, this study examined whether these predictions are based on the exact message conveyed by the prior discourse or on simpler word-based priming mechanisms. Participants read texts that strongly supported the prediction of a specific word, mixed with non-predictive control texts that contained the same prime words. In Experiment 1A, anomalous words that replaced a highly predictable (as opposed to a non-predictable but coherent) word elicited a long-lasting positive shift, suggesting that the prior discourse had indeed led people to predict specific words. In Experiment 1B, adjectives whose suffix mismatched the predictable noun's syntactic gender elicited a short-lived late negativity in predictive stories but not in prime control stories. Taken together, these findings reveal that the conceptual basis for predicting specific upcoming words during reading is the exact message conveyed by the discourse and not the mere presence of prime words.
  • Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Converging evidence from electrocorticography and BOLD fMRI for a sharp functional boundary in superior temporal gyrus related to multisensory speech processing. Frontiers in Human Neuroscience, 12: 141. doi:10.3389/fnhum.2018.00141.

    Abstract

    Although humans can understand speech using the auditory modality alone, in noisy environments visual speech information from the talker’s mouth can rescue otherwise unintelligible auditory speech. To investigate the neural substrates of multisensory speech perception, we compared neural activity from the human superior temporal gyrus (STG) in two datasets. One dataset consisted of direct neural recordings (electrocorticography, ECoG) from surface electrodes implanted in epilepsy patients (this dataset has been previously published). The second dataset consisted of indirect measures of neural activity using blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). Both ECoG and fMRI participants viewed the same clear and noisy audiovisual speech stimuli and performed the same speech recognition task. Both techniques demonstrated a sharp functional boundary in the STG, spatially coincident with an anatomical boundary defined by the posterior edge of Heschl’s gyrus. Cortex on the anterior side of the boundary responded more strongly to clear audiovisual speech than to noisy audiovisual speech while cortex on the posterior side of the boundary did not. For both ECoG and fMRI measurements, the transition between the functionally distinct regions happened within 10 mm of anterior-to-posterior distance along the STG. We relate this boundary to the multisensory neural code underlying speech perception and propose that it represents an important functional division within the human speech perception network.
  • Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Frontal cortex selects representations of the talker’s mouth to aid in speech perception. eLife, 7: e30387. doi:10.7554/eLife.30387.
  • Ozyurek, A., Kita, S., Allen, S., Brown, A., Furman, R., & Ishizuka, T. (2008). Development of cross-linguistic variation in speech and gesture: motion events in English and Turkish. Developmental Psychology, 44(4), 1040-1054. doi:10.1037/0012-1649.44.4.1040.

    Abstract

    The way adults express manner and path components of a motion event varies across typologically different languages both in speech and cospeech gestures, showing that language specificity in event encoding influences gesture. The authors tracked when and how this multimodal cross-linguistic variation develops in children learning Turkish and English, 2 typologically distinct languages. They found that children learn to speak in language-specific ways from age 3 onward (i.e., English speakers used 1 clause and Turkish speakers used 2 clauses to express manner and path). In contrast, English- and Turkish-speaking children’s gestures looked similar at ages 3 and 5 (i.e., separate gestures for manner and path), differing from each other only at age 9 and in adulthood (i.e., English speakers used 1 gesture, but Turkish speakers used separate gestures for manner and path). The authors argue that this pattern of the development of cospeech gestures reflects a gradual shift to language-specific representations during speaking and shows that looking at speech alone may not be sufficient to understand the full process of language acquisition.
  • Palva, J. M., Wang, S. H., Palva, S., Zhigalov, A., Monto, S., Brookes, M. J., & Schoffelen, J.-M. (2018). Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. NeuroImage, 173, 632-643. doi:10.1016/j.neuroimage.2018.02.032.

    Abstract

    When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study
    long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is
    nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear
    correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear
    source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based
    connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed.
    Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular
    in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here,
    however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large
    numbers of spurious false positive connections through field spread in the vicinity of true interactions. This
    fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most
    importantly, beyond defining and illustrating the problem of spurious, or “ghost” interactions, we provide a
    rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal
    mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that
    spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when
    using measures that are immune to zero-lag correlations.
  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C., Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., LoTurco, J., & Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659-1666. doi:10.1093/hmg/ddl089.

    Abstract

    Dyslexia is one of the most prevalent childhood cognitive disorders, affecting approximately 5% of school-age children. We have recently identified a risk haplotype associated with dyslexia on chromosome 6p22.2 which spans the TTRAP gene and portions of THEM2 and KIAA0319. Here we show that in the presence of the risk haplotype, the expression of the KIAA0319 gene is reduced but the expression of the other two genes remains unaffected. Using in situ hybridization, we detect a very distinct expression pattern of the KIAA0319 gene in the developing cerebral neocortex of mouse and human fetuses. Moreover, interference with rat Kiaa0319 expression in utero leads to impaired neuronal migration in the developing cerebral neocortex. These data suggest a direct link between a specific genetic background and a biological mechanism leading to the development of dyslexia: the risk haplotype on chromosome 6p22.2 down-regulates the KIAA0319 gene which is required for neuronal migration during the formation of the cerebral neocortex.
  • Parkes, L. M., Bastiaansen, M. C. M., & Norris, D. G. (2006). Combining EEG and fMRI to investigate the postmovement beta rebound. NeuroImage, 29(3), 685-696. doi:10.1016/j.neuroimage.2005.08.018.

    Abstract

    The relationship between synchronous neuronal activity as measured with EEG and the blood oxygenation level dependent (BOLD) signal as measured during fMRI is not clear. This work investigates the relationship by combining EEG and fMRI measures of the strong increase in beta frequency power following movement, the so-called post-movement beta rebound (PMBR). The time course of the PMBR, as measured by EEG, was included as a regressor in the fMRI analysis, allowing identification of a region of associated BOLD signal increase in the sensorimotor cortex, with the most significant region in the post-central sulcus. The increase in the BOLD signal suggests that the number of active neurons and/or their synaptic rate is increased during the PMBR. The duration of the BOLD response curve in the PMBR region is significantly longer than in the activated motor region, and is well fitted by a model including both motor and PMBR regressors. An intersubject correlation between the BOLD signal amplitude associated with the PMBR regressor and the PMBR strength as measured with EEG provides further evidence that this region is a source of the PMBR. There is a strong intra-subject correlation between the BOLD signal amplitude in the sensorimotor cortex during movement and the PMBR strength as measured by EEG, suggesting either that the motor activity itself, or somatosensory inputs associated with the motor activity, influence the PMBR. This work provides further evidence for a BOLD signal change associated with changes in neuronal synchrony, so opening up the possibility of studying other event-related oscillatory changes using fMRI.
  • Pascucci, D., Hervais-Adelman, A., & Plomp, G. (2018). Gating by induced A-Gamma asynchrony in selective attention. Human Brain Mapping, 39(10), 3854-3870. doi:10.1002/hbm.24216.

    Abstract

    Visual selective attention operates through top–down mechanisms of signal enhancement and suppression, mediated by a-band oscillations. The effects of such top–down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large-s cale interactions and local activity changes in V1 that orchestrat es selective attention, using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time-varying, directed connectivity analysis revealed frequency-specific effects of attentional selection: bottom–up g-band influences from visual areas increased rapidly in response to attended stimuli while distributed top–down a-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top–down parietal signals and a–g PAC in visual areas.
    Parietal a-band influences disrupted the a–g coupling in visual cortex, which in turn reduced the amount of g-band outflow from visual area s. Our results are a first demon stration of how directed interactions affect cross-frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling at target regions, which prevents them from propagating task-irrelevant information.
  • Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca's aphasia. Aphasiology, 22(7/8), 776-789. doi:10.1080/02687030701803804.

    Abstract

    Background: Growing evidence for overlap in the syntactic processing of language and music in non-brain-damaged individuals leads to the question of whether aphasic individuals with grammatical comprehension problems in language also have problems processing structural relations in music.

    Aims: The current study sought to test musical syntactic processing in individuals with Broca's aphasia and grammatical comprehension deficits, using both explicit and implicit tasks.

    Methods & Procedures: Two experiments were conducted. In the first experiment 12 individuals with Broca's aphasia (and 14 matched controls) were tested for their sensitivity to grammatical and semantic relations in sentences, and for their sensitivity to musical syntactic (harmonic) relations in chord sequences. An explicit task (acceptability judgement of novel sequences) was used. The second experiment, with 9 individuals with Broca's aphasia (and 12 matched controls), probed musical syntactic processing using an implicit task (harmonic priming).

    Outcomes & Results: In both experiments the aphasic group showed impaired processing of musical syntactic relations. Control experiments indicated that this could not be attributed to low-level problems with the perception of pitch patterns or with auditory short-term memory for tones.

    Conclusions: The results suggest that musical syntactic processing in agrammatic aphasia deserves systematic investigation, and that such studies could help probe the nature of the processing deficits underlying linguistic agrammatism. Methodological suggestions are offered for future work in this little-explored area.
  • Pederson, E., Danziger, E., Wilkins, D. G., Levinson, S. C., Kita, S., & Senft, G. (1998). Semantic typology and spatial conceptualization. Language, 74(3), 557-589. doi:10.2307/417793.
  • Peeters, D. (2018). A standardized set of 3D-objects for virtual reality research and applications. Behavior Research Methods, 50(3), 1047-1054. doi:10.3758/s13428-017-0925-3.

    Abstract

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theory in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3D-objects for virtual reality research is important, as reaching valid theoretical conclusions critically hinges on the use of well controlled experimental stimuli. Sharing standardized 3D-objects across different virtual reality labs will allow for science to move forward more quickly.
  • Peeters, D., & Dijkstra, T. (2018). Sustained inhibition of the native language in bilingual language production: A virtual reality approach. Bilingualism: Language and Cognition, 21(5), 1035-1061. doi:10.1017/S1366728917000396.

    Abstract

    Bilinguals often switch languages as a function of the language background of their addressee. The control mechanisms supporting bilinguals' ability to select the contextually appropriate language are heavily debated. Here we present four experiments in which unbalanced bilinguals named pictures in their first language Dutch and their second language English in mixed and blocked contexts. Immersive virtual reality technology was used to increase the ecological validity of the cued language-switching paradigm. Behaviorally, we consistently observed symmetrical switch costs, reversed language dominance, and asymmetrical mixing costs. These findings indicate that unbalanced bilinguals apply sustained inhibition to their dominant L1 in mixed language settings. Consequent enhanced processing costs for the L1 in a mixed versus a blocked context were reflected by a sustained positive component in event-related potentials. Methodologically, the use of virtual reality opens up a wide range of possibilities to study language and communication in bilingual and other communicative settings.
  • Perlman, M., Little, H., Thompson, B., & Thompson, R. L. (2018). Iconicity in signed and spoken vocabulary: A comparison between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9: 1433. doi:10.3389/fpsyg.2018.01433.

    Abstract

    Considerable evidence now shows that all languages, signed and spoken, exhibit a significant amount of iconicity. We examined how the visual-gestural modality of signed languages facilitates iconicity for different kinds of lexical meanings compared to the auditory-vocal modality of spoken languages. We used iconicity ratings of hundreds of signs and words to compare iconicity across the vocabularies of two signed languages – American Sign Language and British Sign Language, and two spoken languages – English and Spanish. We examined (1) the correlation in iconicity ratings between the languages; (2) the relationship between iconicity and an array of semantic variables (ratings of concreteness, sensory experience, imageability, perceptual strength of vision, audition, touch, smell and taste); (3) how iconicity varies between broad lexical classes (nouns, verbs, adjectives, grammatical words and adverbs); and (4) between more specific semantic categories (e.g., manual actions, clothes, colors). The results show several notable patterns that characterize how iconicity is spread across the four vocabularies. There were significant correlations in the iconicity ratings between the four languages, including English with ASL, BSL, and Spanish. The highest correlation was between ASL and BSL, suggesting iconicity may be more transparent in signs than words. In each language, iconicity was distributed according to the semantic variables in ways that reflect the semiotic affordances of the modality (e.g., more concrete meanings more iconic in signs, not words; more auditory meanings more iconic in words, not signs; more tactile meanings more iconic in both signs and words). Analysis of the 220 meanings with ratings in all four languages further showed characteristic patterns of iconicity across broad and specific semantic domains, including those that distinguished between signed and spoken languages (e.g., verbs more iconic in ASL, BSL, and English, but not Spanish; manual actions especially iconic in ASL and BSL; adjectives more iconic in English and Spanish; color words especially low in iconicity in ASL and BSL). These findings provide the first quantitative account of how iconicity is spread across the lexicons of signed languages in comparison to spoken languages
  • Perry, L. K., Perlman, M., Winter, B., Massaro, D. W., & Lupyan, G. (2018). Iconicity in the speech of children and adults. Developmental Science, 21: e12572. doi:10.1111/desc.12572.

    Abstract

    Iconicity – the correspondence between form and meaning – may help young children learn to use new words. Early-learned words are higher in iconicity than later learned words. However, it remains unclear what role iconicity may play in actual language use. Here, we ask whether iconicity relates not just to the age at which words are acquired, but also to how frequently children and adults use the words in their speech. If iconicity serves to bootstrap word learning, then we would expect that children should say highly iconic words more frequently than less iconic words, especially early in development. We would also expect adults to use iconic words more often when speaking to children than to other adults. We examined the relationship between frequency and iconicity for approximately 2000 English words. Replicating previous findings, we found that more iconic words are learned earlier. Moreover, we found that more iconic words tend to be used more by younger children, and adults use more iconic words when speaking to children than to other adults. Together, our results show that young children not only learn words rated high in iconicity earlier than words low in iconicity, but they also produce these words more frequently in conversation – a pattern that is reciprocated by adults when speaking with children. Thus, the earliest conversations of children are relatively higher in iconicity, suggesting that this iconicity scaffolds the production and comprehension of spoken language during early development.
  • Petersson, K. M. (1998). Comments on a Monte Carlo approach to the analysis of functional neuroimaging data. NeuroImage, 8, 108-112.
  • Petersson, K. M., Gisselgard, J., Gretzer, M., & Ingvar, M. (2006). Interaction between a verbal working memory network and the medial temporal lobe. NeuroImage, 33(4), 1207-1217. doi:10.1016/j.neuroimage.2006.07.042.

    Abstract

    The irrelevant speech effect illustrates that sounds that are irrelevant to a visually presented short-term memory task still interfere with neuronal function. In the present study we explore the functional and effective connectivity of such interference. The functional connectivity analysis suggested an interaction between the level of irrelevant speech and the correlation between in particular the left superior temporal region, associated with verbal working memory, and the left medial temporal lobe. Based on this psycho-physiological interaction, and to broaden the understanding of this result, we performed a network analysis, using a simple network model for verbal working memory, to analyze its interaction with the medial temporal lobe memory system. The results showed dissociations in terms of network interactions between frontal as well as parietal and temporal areas in relation to the medial temporal lobe. The results of the present study suggest that a transition from phonological loop processing towards an engagement of episodic processing might take place during the processing of interfering irrelevant sounds. We speculate that, in response to the irrelevant sounds, this reflects a dynamic shift in processing as suggested by a closer interaction between a verbal working memory system and the medial temporal lobe memory system.
  • Piai, V., Rommers, J., & Knight, R. T. (2018). Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production. European Journal of Neuroscience, 48(7), 2622-2629. doi:10.1111/ejn.13695.

    Abstract

    Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested
    that alpha–beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear
    lead-in sentences that either constrain the final word (‘He locked the door with the’) or not (‘She walked in here with the’). The last
    word is shown as a picture to be named. Previous studies have consistently found alpha–beta power decreases prior to picture
    onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However,
    the relative contribution of temporal versus frontal areas to alpha–beta power decreases is unknown. We recorded the electroencephalogram
    from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral
    frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect
    in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the
    alpha–beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior
    lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical
    clustering analyses of all patients’ lesion profiles, and behavioural and electrophysiological effects identified those two
    patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left
    lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha–beta power decreases underlying context-
    driven word production.
  • Piekema, C., Kessels, R. P. C., Mars, R. B., Petersson, K. M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. NeuroImage, 33(1), 374-382. doi:10.1016/j.neuroimage.2006.06.035.

    Abstract

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance. Furthermore, a recent study in hippocampally lesioned patients has shown that the hippocampus is critically involved in associating objects and their locations, even when the delay period lasts only 8 s. However, the critical feature that causes the medial temporal lobe, and in particular the hippocampus, to participate in active maintenance is still unknown. This study was designed in order to explore hippocampal involvement in active maintenance of spatial and non-spatial associations. Eighteen participants performed a delayed-match-to-sample task in which they had to maintain either object–location associations, color–number association, single colors, or single locations. Whole-brain activity was measured using event-related functional magnetic resonance imaging and analyzed using a random effects model. Right lateralized hippocampal activity was evident when participants had to maintain object–location associations, but not when they had to maintain object–color associations or single items. The present results suggest a hippocampal involvement in active maintenance when feature combinations that include spatial information have to be maintained online.
  • Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communication. Proceedings of the Royal Society B: Biological Sciences, 285(1880): 20180598. doi:10.1098/rspb.2018.0598.

    Abstract

    Language, humans’ most distinctive trait, still remains a ‘mystery’ for evolutionary theory. It is underpinned by a universal infrastructure—cooperative turn-taking—which has been suggested as an ancient mechanism bridging the existing gap between the articulate human species and their inarticulate primate cousins. However, we know remarkably little about turn-taking systems of non-human animals, and methodological confounds have often prevented meaningful cross-species comparisons. Thus, the extent to which cooperative turn-taking is uniquely human or represents a homologous and/or analogous trait is currently unknown. The present paper draws attention to this promising research avenue by providing an overview of the state of the art of turn-taking in four animal taxa—birds, mammals, insects and anurans. It concludes with a new comparative framework to spur more research into this research domain and to test which elements of the human turn-taking system are shared across species and taxa.
  • Pine, J. M., Lieven, E. V., & Rowland, C. F. (1998). Comparing different models of the development of the English verb category. Linguistics, 36(4), 807-830. doi:10.1515/ling.1998.36.4.807.

    Abstract

    In this study data from the first six months of 12 children s multiword speech were used to test the validity of Valian's (1991) syntactic perfor-mance-limitation account and Tomasello s (1992) verb-island account of early multiword speech with particular reference to the development of the English verb category. The results provide evidence for appropriate use of verb morphology, auxiliary verb structures, pronoun case marking, and SVO word order from quite early in development. However, they also demonstrate a great deal of lexical specificity in the children's use of these systems, evidenced by a lack of overlap in the verbs to which different morphological markers were applied, a lack of overlap in the verbs with which different auxiliary verbs were used, a disproportionate use of the first person singular nominative pronoun I, and a lack of overlap in the lexical items that served as the subjects and direct objects of transitive verbs. These findings raise problems for both a syntactic performance-limitation account and a strong verb-island account of the data and suggest the need to develop a more general lexiealist account of early multiword speech that explains why some words come to function as "islands" of organization in the child's grammar and others do not.
  • Poletiek, F. H. (2006). De dwingende macht van een Goed Verhaal [Boekbespreking van Vincent plast op de grond:Nachtmerries in het Nederlands recht door W.A. Wagenaar]. De Psycholoog, 41, 460-462.
  • Poletiek, F. H. (1998). De geest van de jury. Psychologie en Maatschappij, 4, 376-378.
  • Poletiek, F. H. (2008). Het probleem van escalerende beschuldigingen [Boekbespreking van Kindermishandeling door H. Crombag en den Hartog]. Maandblad voor Geestelijke Volksgezondheid, (2), 163-166.
  • Poletiek, F. H., Conway, C. M., Ellefson, M. R., Lai, J., Bocanegra, B. R., & Christiansen, M. H. (2018). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Cognitive Science, 42(8), 2855-2889. doi:10.1111/cogs.12685.

    Abstract

    It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right‐branching and center‐embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center‐embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input “grew” according to structural complexity, compared to when it “grew” according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center‐embedded structures when the input is organized according to structural complexity.
  • Popov, T., Jensen, O., & Schoffelen, J.-M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 178, 277-286. doi:10.1016/j.neuroimage.2018.05.054.

    Abstract

    Oscillatory activity in the alpha and gamma bands is considered key in shaping functional brain architecture. Power
    increases in the high-frequency gamma band are typically reported in parallel to decreases in the low-frequency alpha
    band. However, their functional significance and in particular their interactions are not well understood. The present
    study shows that, in the context of an N-backworking memory task, alpha power decreases in the dorsal visual stream
    are related to gamma power increases in early visual areas. Granger causality analysis revealed directed interregional
    interactions from dorsal to ventral stream areas, in accordance with task demands. Present results reveal a robust,
    behaviorally relevant, and architectonically decisive power-to-power relationship between alpha and gamma activity.
    This relationship suggests that anatomically distant power fluctuations in oscillatory activity can link cerebral network
    dynamics on trial-by-trial basis during cognitive operations such as working memory
  • Popov, T., Oostenveld, R., & Schoffelen, J.-M. (2018). FieldTrip made easy: An analysis protocol for group analysis of the auditory steady state brain response in time, frequency, and space. Frontiers in Neuroscience, 12: 711. doi:10.3389/fnins.2018.00711.

    Abstract

    The auditory steady state evoked response (ASSR) is a robust and frequently utilized
    phenomenon in psychophysiological research. It reflects the auditory cortical response
    to an amplitude-modulated constant carrier frequency signal. The present report
    provides a concrete example of a group analysis of the EEG data from 29 healthy human
    participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we
    demonstrate sensor-level analysis in the time domain, allowing for a description of the
    event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency
    analysis is applied to describe the spectral characteristics of the ASSR, followed by
    group level statistical analysis in the frequency domain. Third, we show how timeand
    frequency-domain analysis approaches can be combined in order to describe
    the temporal and spectral development of the ASSR. Finally, we demonstrate source
    reconstruction techniques to characterize the primary neural generators of the ASSR.
    Throughout, we pay special attention to explaining the design of the analysis pipeline
    for single subjects and for the group level analysis. The pipeline presented here can be
    adjusted to accommodate other experimental paradigms and may serve as a template
    for similar analyses.
  • Popov, V., Ostarek, M., & Tenison, C. (2018). Practices and pitfalls in inferring neural representations. NeuroImage, 174, 340-351. doi:10.1016/j.neuroimage.2018.03.041.

    Abstract

    A key challenge for cognitive neuroscience is deciphering the representational schemes of the brain. Stimulus-feature-based encoding models are becoming increasingly popular for inferring the dimensions of neural representational spaces from stimulus-feature spaces. We argue that such inferences are not always valid because successful prediction can occur even if the two representational spaces use different, but correlated, representational schemes. We support this claim with three simulations in which we achieved high prediction accuracy despite systematic differences in the geometries and dimensions of the underlying representations. Detailed analysis of the encoding models' predictions showed systematic deviations from ground-truth, indicating that high prediction accuracy is insufficient for making representational inferences. This fallacy applies to the prediction of actual neural patterns from stimulus-feature spaces and we urge caution in inferring the nature of the neural code from such methods. We discuss ways to overcome these inferential limitations, including model comparison, absolute model performance, visualization techniques and attentional modulation.
  • St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Smith, G. D. (2018). Developmental changes within the genetic architecture of social communication behaviour: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598-606. doi:10.1016/j.biopsych.2017.09.020.

    Abstract

    Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct sets of genes that exert their maximum influence during different periods of development. This includes analyses of social-communciation difficulties that share, depending on their developmental stage, stronger genetic links with either Autism Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in unrelated individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as social-communication difficulties, during a ~10-year period spanning childhood and adolescence. Methods: Longitudinally assessed quantitative social-communication problems (N ≤ 5,551) were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using standardised measures, genetic architectures were investigated with novel multivariate genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome genotyping information. Analogous to twin research, GSEM included Cholesky decomposition, common pathway and independent pathway models. Results: A 2-factor Cholesky decomposition model described the data best. One genetic factor was common to SCDC measures across development, the other accounted for independent variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% of the genetic variation at 17 years. Conclusion: Using latent factor models, we identified developmental changes in the genetic architecture of social-communication difficulties that enhance the understanding of ASD and schizophrenia-related dimensions. More generally, GSEM present a framework for modelling shared genetic aetiologies between phenotypes and can provide prior information with respect to patterns and continuity of trait-disorder overlap
  • St Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D. and 3 moreSt Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D., Mortensen, P. B., Daly, M., & Davey Smith, G. (2018). ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, 23, 263-270. doi:10.1038/mp.2016.198.

    Abstract

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and
    schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on
    the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth
    (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social
    Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases,
    11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the
    Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social
    communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of
    genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms

    Additional information

    mp2016198x1.docx
  • Pouw, W., Van Gog, T., Zwaan, R. A., Agostinho, S., & Paas, F. (2018). Co-thought gestures in children's mental problem solving: Prevalence and effects on subsequent performance. Applied Cognitive Psychology, 32(1), 66-80. doi:10.1002/acp.3380.

    Abstract

    Co-thought gestures are understudied as compared to co-speech gestures yet, may provide insight into cognitive functions of gestures that are independent of speech processes. A recent study with adults showed that co-thought gesticulation occurred spontaneously during mental preparation of problem solving. Moreover, co-thought gesturing (either spontaneous or instructed) during mental preparation was effective for subsequent solving of the Tower of Hanoi under conditions of high cognitive load (i.e., when visual working memory capacity was limited and when the task was more difficult). In this preregistered study (), we investigated whether co-thought gestures would also spontaneously occur and would aid problem-solving processes in children (N=74; 8-12years old) under high load conditions. Although children also spontaneously used co-thought gestures during mental problem solving, this did not aid their subsequent performance when physically solving the problem. If these null results are on track, co-thought gesture effects may be different in adults and children.

    Files private

    Request files
  • Praamstra, P., Stegeman, D. F., Cools, A. R., Meyer, A. S., & Horstink, M. W. I. M. (1998). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements: A PET study. Brain, 121, 769-772. doi:10.1093/brain/121.4.769.
  • Proios, H., Asaridou, S. S., & Brugger, P. (2008). Random number generation in patients with aphasia: A test of executive functions. Acta Neuropsychologica, 6(2), 157-168.

    Abstract

    Randomization performance was studied using the "Mental Dice Task" in 20 patients with aphasia (APH) and 101 elderly normal control subjects (NC). The produced sequences were compared to 100 computer-generated pseudorandom sequences with respect to 7 measures of sequential bias. The performance of APH differed significantly from NC participants, according to all but one measure, i.e. Turning Point Index (points of change between ascending and descending sequences). NC participants differed significantly from the computer generated sequences, according to all measures of randomness. Finally, APH differed significantly from the computer simulator, according to all measures but mean Repetition Gap score (gap between a digit and its reoccurrence). Despite the heterogeneity of our APH group, there were no significant differences in randomization performance between patients with different language impairments. All the APH displayed a distinct performance profile, with more response stereotypy, counting tendencies, and inhibition problems, as hypothesised, while at the same time responding more randomly than NC by showing less of a cycling strategy and more number repetitions.
  • Protopapas, A., Gerakaki, S., & Alexandri, S. (2006). Lexical and default stress assignment in reading Greek. Journal of research in reading, 29(4), 418-432. doi:10.1111/j.1467-9817.2006.00316.x.

    Abstract

    Greek is a language with lexical stress that marks stress orthographically with a special diacritic. Thus, the orthography and the lexicon constitute potential sources of stress assignment information in addition to any possible general default metrical pattern. Here, we report two experiments with secondary education children reading aloud pseudo-word stimuli, in which we manipulated the availability of lexical (using stimuli resembling particular words) and visual (existence and placement of the diacritic) information. The reliance on the diacritic was found to be imperfect. Strong lexical effects as well as a default metrical pattern stressing the penultimate syllable were revealed. Reading models must be extended to account for multisyllabic word reading including, in particular, stress assignment based on the interplay among multiple possible sources of information.
  • Quinn, S., Donnelly, S., & Kidd, E. (2018). The relationship between symbolic play and language acquisition: A meta-analytic review. Developmental Review, 49, 121-135. doi:10.1016/j.dr.2018.05.005.

    Abstract

    A developmental relationship between symbolic play and language has been long proposed, going as far back as the writings of Piaget and Vygotsky. In the current paper we build on recent qualitative reviews of the literature by reporting the first quantitative analysis of the relationship. We conducted a three-level meta-analysis of past studies that have investigated the relationship between symbolic play and language acquisition. Thirty-five studies (N = 6848) met the criteria for inclusion. Overall, we observed a significant small-to-medium association between the two domains (r = .35). Several moderating variables were included in the analyses, including: (i) study design (longitudinal, concurrent), (ii) the manner in which language was measured (comprehension, production), and (iii) the age at which this relationship is measured. The effect was weakly moderated by these three variables, but overall the association was robust, suggesting that symbolic play and language are closely related in development.

    Additional information

    Quinn_Donnelly_Kidd_2018sup.docx
  • Rapold, C. J., & Widlok, T. (2008). Dimensions of variability in Northern Khoekhoe language and culture. Southern African Humanities, 20, 133-161. Retrieved from http://www.sahumanities.org.za/RapoldWidlok_203.aspx.

    Abstract

    This article takes an interdisciplinary route towards explaining the complex history of Hai//om culture and language. We begin this article with a short review of ideas relating to 'origins' and historical reconstructions as they are currently played out among Khoekhoe groups in Namibia, in particular with regard to the Hai//om. We then take a comparative look at parts of the kinship system and the tonology of ≠Âkhoe Hai//om and other variants of Khoekhoe. With regard to the kinship and naming system, we see patterns that show similarities with Nama and Damara on the one hand but also with 'San' groups on the other hand. With regard to tonology, new data from three northern Khoekoe varieties shows similarities as well as differences with Standard Namibian Khoekhoe and Ju and Tuu varieties. The historical scenarios that might explain these facts suggest different centres of innovations and opposite directions of diffusion. The anthropological and linguistic data demonstrates that only a fine-grained and multi-layered approach that goes far beyond any simplistic dichotomies can do justice to the Hai//om riddle.
  • Ravignani, A. (2018). Darwin, sexual selection, and the origins of music. Trends in Ecology and Evolution, 33(10), 716-719. doi:10.1016/j.tree.2018.07.006.

    Abstract

    Humans devote ample time to produce and perceive music. How and why this behavioral propensity originated in our species is unknown. For centuries, speculation dominated the study of the evolutionary origins of musicality. Following Darwin’s early intuitions, recent empirical research is opening a new chapter to tackle this mystery.
  • Ravignani, A. (2018). Comment on “Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia” [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. The Journal of the Acoustical Society of America, 143, 504-508. doi:10.1121/1.5021770.

    Abstract

    In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range—as opposed to circadian and seasonal rhythms—has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
  • Ravignani, A., Chiandetti, C., & Gamba, M. (2018). L'evoluzione del ritmo. Le Scienze, (04 maggio 2018).
  • Ravignani, A., Thompson, B., Grossi, T., Delgado, T., & Kirby, S. (2018). Evolving building blocks of rhythm: How human cognition creates music via cultural transmission. Annals of the New York Academy of Sciences, 1423(1), 176-187. doi:10.1111/nyas.13610.

    Abstract

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits
    commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists
    focused onmusicality, namely the human biocognitive predispositions formusic, with an emphasis on cross-cultural
    similarities. Other scholars investigatedmusic, seen as a cultural product, focusing on the variation in worldmusical
    cultures.Recent experiments founddeep connections betweenmusicandmusicality, reconciling theseopposing views.
    Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music.
    Data from two experiments are analyzed using two complementary techniques. In the experiments, participants
    hear drumming patterns and imitate them. These patterns are then given to the same or another participant to
    imitate. The structure of these initially random patterns is tracked along experimental “generations.” Frequentist
    statistics show how participants’ biases are amplified by cultural transmission, making drumming patterns more
    structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model
    approximates the motif structures participants learned and created. Our data and models suggest that individual
    biases for musicality may shape the cultural transmission of musical rhythm.

    Additional information

    nyas13610-sup-0001-suppmat.pdf
  • Ravignani, A., Thompson, B., & Filippi, P. (2018). The evolution of musicality: What can be learned from language evolution research? Frontiers in Neuroscience, 12: 20. doi:10.3389/fnins.2018.00020.

    Abstract

    Language and music share many commonalities, both as natural phenomena and as subjects of intellectual inquiry. Rather than exhaustively reviewing these connections, we focus on potential cross-pollination of methodological inquiries and attitudes. We highlight areas in which scholarship on the evolution of language may inform the evolution of music. We focus on the value of coupled empirical and formal methodologies, and on the futility of mysterianism, the declining view that the nature, origins and evolution of language cannot be addressed empirically. We identify key areas in which the evolution of language as a discipline has flourished historically, and suggest ways in which these advances can be integrated into the study of the evolution of music.
  • Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC Research Notes, 11: 3. doi:10.1186/s13104-017-3107-6.

    Abstract

    Objectives: Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description: The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
  • Ravignani, A., & Verhoef, T. (2018). Which melodic universals emerge from repeated signaling games?: A Note on Lumaca and Baggio (2017). Artificial Life, 24(2), 149-153. doi:10.1162/ARTL_a_00259.

    Abstract

    Music is a peculiar human behavior, yet we still know little as to why and how music emerged. For centuries, the study of music has been the sole prerogative of the humanities. Lately, however, music is being increasingly investigated by psychologists, neuroscientists, biologists, and computer scientists. One approach to studying the origins of music is to empirically test hypotheses about the mechanisms behind this structured behavior. Recent lab experiments show how musical rhythm and melody can emerge via the process of cultural transmission. In particular, Lumaca and Baggio (2017) tested the emergence of a sound system at the boundary between music and language. In this study, participants were given random pairs of signal-meanings; when participants negotiated their meaning and played a “ game of telephone ” with them, these pairs became more structured and systematic. Over time, the small biases introduced in each artificial transmission step accumulated, displaying quantitative trends, including the emergence, over the course of artificial human generations, of features resembling properties of language and music. In this Note, we highlight the importance of Lumaca and Baggio ʼ s experiment, place it in the broader literature on the evolution of language and music, and suggest refinements for future experiments. We conclude that, while psychological evidence for the emergence of proto-musical features is accumulating, complementary work is needed: Mathematical modeling and computer simulations should be used to test the internal consistency of experimentally generated hypotheses and to make new predictions.
  • Ravignani, A., Thompson, B., Lumaca, M., & Grube, M. (2018). Why do durations in musical rhythms conform to small integer ratios? Frontiers in Computational Neuroscience, 12: 86. doi:10.3389/fncom.2018.00086.

    Abstract

    One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given a randomly timed drum pattern to reproduce, participants subconsciously transform it toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon are little understood, but might be explained by combining two theoretical frameworks from psychophysics. The scalar expectancy theory describes time interval perception and reproduction in terms of Weber's law: just detectable durational differences equal a constant fraction of the reference duration. The notion of categorical perception emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception and production might arise from the interaction of the scalar property of timing with the categorical perception of time intervals, and that neurally it can plausibly be related to oscillatory activity. We support our integrative approach with mathematical derivations to formalize assumptions and provide testable predictions. We present equations to calculate durational ratios by: (i) parameterizing the relationship between durational categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category of ratios. Our derivations provide the basis for future computational, behavioral, and neurophysiological work to test our model.
  • Raviv, L., & Arnon, I. (2018). Systematicity, but not compositionality: Examining the emergence of linguistic structure in children and adults using iterated learning. Cognition, 181, 160-173. doi:10.1016/j.cognition.2018.08.011.

    Abstract

    Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date no published study has demonstrated a similar emergence of linguistic structure in children. The lack of evidence from child learners constitutes a problematic
    2
    gap in the literature: if such learning biases impact the emergence of linguistic structure, they should also be found in children, who are the primary learners in real-life language transmission. However, children may differ from adults in their biases given age-related differences in general cognitive skills. Moreover, adults’ performance on iterated learning tasks may reflect existing (and explicit) linguistic biases, partially undermining the generality of the results. Examining children’s performance can also help evaluate contrasting predictions about their role in emerging languages: do children play a larger or smaller role than adults in the creation of structure? Here, we report a series of four iterated artificial language learning studies (based on Kirby, Cornish & Smith, 2008) with both children and adults, using a novel child-friendly paradigm. Our results show that linguistic structure does not emerge more readily in children compared to adults, and that adults are overall better in both language learning and in creating linguistic structure. When languages could become underspecified (by allowing homonyms), children and adults were similar in developing consistent mappings between meanings and signals in the form of structured ambiguities. However, when homonimity was not allowed, only adults created compositional structure. This study is a first step in using iterated language learning paradigms to explore child-adult differences. It provides the first demonstration that cultural transmission has a different effect on the languages produced by children and adults: While children were able to develop systematicity, their languages did not show compositionality. We focus on the relation between learning and structure creation as a possible explanation for our findings and discuss implications for children’s role in the emergence of linguistic structure.

    Additional information

    results A results B results D stimuli
  • Raviv, L., & Arnon, I. (2018). The developmental trajectory of children’s auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4): e12593. doi:10.1111/desc.12593.

    Abstract

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5–12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw.

    Additional information

    Video abstract of the article
  • Redl, T., Eerland, A., & Sanders, T. J. M. (2018). The processing of the Dutch masculine generic zijn ‘his’ across stereotype contexts: An eye-tracking study. PLoS One, 13(10): e0205903. doi:10.1371/journal.pone.0205903.

    Abstract

    Language users often infer a person’s gender when it is not explicitly mentioned. This information is included in the mental model of the described situation, giving rise to expectations regarding the continuation of the discourse. Such gender inferences can be based on two types of information: gender stereotypes (e.g., nurses are female) and masculine generics, which are grammatically masculine word forms that are used to refer to all genders in certain contexts (e.g., To each his own). In this eye-tracking experiment (N = 82), which is the first to systematically investigate the online processing of masculine generic pronouns, we tested whether the frequently used Dutch masculine generic zijn ‘his’ leads to a male bias. In addition, we tested the effect of context by introducing male, female, and neutral stereotypes. We found no evidence for the hypothesis that the generically-intended masculine pronoun zijn ‘his’ results in a male bias. However, we found an effect of stereotype context. After introducing a female stereotype, reading about a man led to an increase in processing time. However, the reverse did not hold, which parallels the finding in social psychology that men are penalized more for gender-nonconforming behavior. This suggests that language processing is not only affected by the strength of stereotype contexts; the associated disapproval of violating these gender stereotypes affects language processing, too.

    Additional information

    pone.0205903.s001.pdf data files
  • Reis, A., Faísca, L., Ingvar, M., & Petersson, K. M. (2006). Color makes a difference: Two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60, 49-54. doi:10.1016/j.bandc.2005.09.012.

    Abstract

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this study, we investigated whether the surface texture and/or color of objects is used to access stored object knowledge in illiterate subjects. A group of illiterate subjects and a matched literate control group were compared on an immediate object naming task with four conditions: color and black and white (i.e., grey-scaled) photos, as well as color and black and white (i.e., grey-scaled) drawings of common everyday objects. The results show that illiterate subjects perform significantly better when the stimuli are colored and this effect is independent of the photographic detail. In addition, there were significant differences between the literacy groups in the black and white condition for both drawings and photos. These results suggest that color object information contributes to object recognition. This effect was particularly prominent in the illiterate group
  • Rey, A., & Schiller, N. O. (2006). A case of normal word reading but impaired letter naming. Journal of Neurolinguistics, 19(2), 87-95. doi:10.1016/j.jneuroling.2005.09.003.

    Abstract

    A case of a word/letter dissociation is described. The present patient has a quasi-normal word reading performance (both at the level of speed and accuracy) while he has major problems in nonword and letter reading. More specifically, he has strong difficulties in retrieving letter names but preserved abilities in letter identification. This study complements previous cases reporting a similar word/letter dissociation by focusing more specifically on word reading and letter naming latencies. The results provide new constraints for modeling the role of letter knowledge within reading processes and during reading acquisition or rehabilitation.
  • Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 191, 124-130. doi:10.1016/j.actpsy.2018.09.008.

    Abstract

    It is unclear whether cognitive and motor control are parallel and interactive or serial and independent processes. According to one view, cognitive control refers to a set of modality-nonspecific processes that act on supramodal representations and precede response modality-specific motor processes. An alternative view is that cognitive control represents a set of modality-specific operations that act directly on motor-related representations, implying dependence of cognitive control on motor control. Here, we examined the influence of response modality (vocal vs. manual) on three well-established subcomponent processes of cognitive control: shifting, inhibiting, and updating. We observed effects of all subcomponent processes in reaction times. The magnitude of these effects did not differ between response modalities for shifting and inhibiting, in line with a serial, supramodal view. However, the magnitude of the updating effect differed between modalities, in line with an interactive, modality-specific view. These results suggest that updating represents a modality-specific operation that depends on motor control, whereas shifting and inhibiting represent supramodal operations that act independently of motor control.
  • Roberts, L., Gullberg, M., & Indefrey, P. (2008). Online pronoun resolution in L2 discourse: L1 influence and general learner effects. Studies in Second Language Acquisition, 30(3), 333-357. doi:10.1017/S0272263108080480.

    Abstract

    This study investigates whether advanced second language (L2) learners of a nonnull subject language (Dutch) are influenced by their null subject first language (L1) (Turkish) in their offline and online resolution of subject pronouns in L2 discourse. To tease apart potential L1 effects from possible general L2 processing effects, we also tested a group of German L2 learners of Dutch who were predicted to perform like the native Dutch speakers. The two L2 groups differed in their offline interpretations of subject pronouns. The Turkish L2 learners exhibited a L1 influence, because approximately half the time they interpreted Dutch subject pronouns as they would overt pronouns in Turkish, whereas the German L2 learners performed like the Dutch controls, interpreting pronouns as coreferential with the current discourse topic. This L1 effect was not in evidence in eye-tracking data, however. Instead, the L2 learners patterned together, showing an online processing disadvantage when two potential antecedents for the pronoun were grammatically available in the discourse. This processing disadvantage was in evidence irrespective of the properties of the learners' L1 or their final interpretation of the pronoun. Therefore, the results of this study indicate both an effect of the L1 on the L2 in offline resolution and a general L2 processing effect in online subject pronoun resolution.
  • Roberts, L. (2008). Processing temporal constraints and some implications for the investigation of second language sentence processing and acquisition. Commentary on Baggio. Language Learning, 58(suppl. 1), 57-61. doi:10.1111/j.1467-9922.2008.00461.x.
  • Robinson, S. (2006). The phoneme inventory of the Aita dialect of Rotokas. Oceanic Linguistics, 45(1), 206-209.

    Abstract

    Rotokas is famous for possessing one of the world’s smallest phoneme inventories. According to one source, the Central dialect of Rotokas possesses only 11 segmental phonemes (five vowels and six consonants) and lacks nasals while the Aita dialect possesses a similar-sized inventory in which nasals replace voiced stops. However, recent fieldwork reveals that the Aita dialect has, in fact, both voiced and nasal stops, making for an inventory of 14 segmental phonemes (five vowels and nine consonants). The correspondences between Central and Aita Rotokas suggest that the former is innovative with respect to its consonant inventory and the latter conservative, and that the small inventory of Central Rotokas arose by collapsing the distinction between voiced and nasal stops.
  • Roby, A. C., & Kidd, E. (2008). The referential communication skills of children with imaginary companions. Developmental Science, 11(4), 531-40. doi:10.1111/j.1467-7687.2008.00699.x.

    Abstract

    he present study investigated the referential communication skills of children with imaginary companions (ICs). Twenty-two children with ICs aged between 4 and 6 years were compared to 22 children without ICs (NICs). The children were matched for age, gender, birth order, number of siblings, and parental education. All children completed the Test of Referential Commu- nication (Camaioni, Ercolani & Lloyd, 1995). The results showed that the children with ICs performed better than the children without ICs on the speaker component of the task. In particular, the IC children were better able to identify a specific referen t to their interlocutor than were the NIC children. Furthermore, the IC children described less redundant features of the target picture than did the NIC children. The children did not differ in the listening comprehension component of the task. Overall, the results suggest that the IC children had a better understanding of their interlocutor’s information requirements in convers ation. The role of pretend play in the development of communicative competence is discussed in light of these results.
  • Rodenas-Cuadrado, P., Mengede, J., Baas, L., Devanna, P., Schmid, T. A., Yartsev, M., Firzlaff, U., & Vernes, S. C. (2018). Mapping the distribution of language related genes FoxP1, FoxP2 and CntnaP2 in the brains of vocal learning bat species. Journal of Comparative Neurology, 526(8), 1235-1266. doi:10.1002/cne.24385.

    Abstract

    Genes including FOXP2, FOXP1 and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique human phenotypes, a comparative approach is possible by addressing language-relevant traits in animal model systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalisations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1 and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult Phyllostomus discolor bat, which showed low levels of FoxP2 expression in the cortex, contrasting with patterns found in rodents and non-human primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviours in a mammalian model system.
  • Roelofs, A. (2006). The influence of spelling on phonological encoding in word reading, object naming, and word generation. Psychonomic Bulletin & Review, 13(1), 33-37.

    Abstract

    Does the spelling of a word mandatorily constrain spoken word production, or does it do so only
    when spelling is relevant for the production task at hand? Damian and Bowers (2003) reported spelling
    effects in spoken word production in English using a prompt–response word generation task. Preparation
    of the response words was disrupted when the responses shared initial phonemes that differed
    in spelling, suggesting that spelling constrains speech production mandatorily. The present experiments,
    conducted in Dutch, tested for spelling effects using word production tasks in which spelling
    was clearly relevant (oral reading in Experiment 1) or irrelevant (object naming and word generation
    in Experiments 2 and 3, respectively). Response preparation was disrupted by spelling inconsistency
    only with the word reading, suggesting that the spelling of a word constrains spoken word production
    in Dutch only when it is relevant for the word production task at hand.
  • Roelofs, A., Meyer, A. S., & Levelt, W. J. M. (1998). A case for the lemma/lexeme distinction in models of speaking: Comment on Caramazza and Miozzo (1997). Cognition, 69(2), 219-230. doi:10.1016/S0010-0277(98)00056-0.

    Abstract

    In a recent series of papers, Caramazza and Miozzo [Caramazza, A., 1997. How many levels of processing are there in lexical access? Cognitive Neuropsychology 14, 177-208; Caramazza, A., Miozzo, M., 1997. The relation between syntactic and phonological knowledge in lexical access: evidence from the 'tip-of-the-tongue' phenomenon. Cognition 64, 309-343; Miozzo, M., Caramazza, A., 1997. On knowing the auxiliary of a verb that cannot be named: evidence for the independence of grammatical and phonological aspects of lexical knowledge. Journal of Cognitive Neuropsychology 9, 160-166] argued against the lemma/lexeme distinction made in many models of lexical access in speaking, including our network model [Roelofs, A., 1992. A spreading-activation theory of lemma retrieval in speaking. Cognition 42, 107-142; Levelt, W.J.M., Roelofs, A., Meyer, A.S., 1998. A theory of lexical access in speech production. Behavioral and Brain Sciences, (in press)]. Their case was based on the observations that grammatical class deficits of brain-damaged patients and semantic errors may be restricted to either spoken or written forms and that the grammatical gender of a word and information about its form can be independently available in tip-of-the-tongue stales (TOTs). In this paper, we argue that though our model is about speaking, not taking position on writing, extensions to writing are possible that are compatible with the evidence from aphasia and speech errors. Furthermore, our model does not predict a dependency between gender and form retrieval in TOTs. Finally, we argue that Caramazza and Miozzo have not accounted for important parts of the evidence motivating the lemma/lexeme distinction, such as word frequency effects in homophone production, the strict ordering of gender and pho neme access in LRP data, and the chronometric and speech error evidence for the production of complex morphology.
  • Roelofs, A. (2006). Context effects of pictures and words in naming objects, reading words, and generating simple phrases. Quarterly Journal of Experimental Psychology, 59(10), 1764-1784. doi:10.1080/17470210500416052.

    Abstract

    In five language production experiments it was examined which aspects of words are activated in memory by context pictures and words. Context pictures yielded Stroop-like and semantic effects on response times when participants generated gender-marked noun phrases in response to written words (Experiment 1A). However, pictures yielded no such effects when participants simply read aloud the noun phrases (Experiment 2). Moreover, pictures yielded a gender congruency effect in generating gender-marked noun phrases in response to the written words (Experiments 3A and 3B). These findings suggest that context pictures activate lemmas (i.e., representations of syntactic properties), which leads to effects only when lemmas are needed to generate a response (i.e., in Experiments 1A, 3A, and 3B, but not in Experiment 2). Context words yielded Stroop-like and semantic effects in picture naming (Experiment 1B). Moreover, words yielded Stroop-like but no semantic effects in reading nouns (Experiment 4) and in generating noun phrases (Experiment 5). These findings suggest that context words activate the lemmas and forms of their names, which leads to semantic effects when lemmas are required for responding (Experiment 1B) but not when only the forms are required (Experiment 4). WEAVER++ simulations of the results are presented.
  • Roelofs, A., Van Turennout, M., & Coles, M. G. H. (2006). Anterior cingulate cortex activity can be independent of response conflict in stroop-like tasks. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13884-13889. doi:10.1073/pnas.0606265103.

    Abstract

    Cognitive control includes the ability to formulate goals and plans of action and to follow these while facing distraction. Previous neuroimaging studies have shown that the presence of conflicting response alternatives in Stroop-like tasks increases activity in dorsal anterior cingulate cortex (ACC), suggesting that the ACC is involved in cognitive control. However, the exact nature of ACC function is still under debate. The prevailing conflict detection hypothesis maintains that the ACC is involved in performance monitoring. According to this view, ACC activity reflects the detection of response conflict and acts as a signal that engages regulative processes subserved by lateral prefrontal brain regions. Here, we provide evidence from functional MRI that challenges this view and favors an alternative view, according to which the ACC has a role in regulation itself. Using an arrow–word Stroop task, subjects responded to incongruent, congruent, and neutral stimuli. A critical prediction made by the conflict detection hypothesis is that ACC activity should be increased only when conflicting response alternatives are present. Our data show that ACC responses are larger for neutral than for congruent stimuli, in the absence of response conflict. This result demonstrates the engagement of the ACC in regulation itself. A computational model of Stroop-like performance instantiating a version of the regulative hypothesis is shown to account for our findings.
  • Roelofs, A. (2006). Functional architecture of naming dice, digits, and number words. Language and Cognitive Processes, 21(1/2/3), 78-111. doi:10.1080/01690960400001846.

    Abstract

    Five chronometric experiments examined the functional architecture of naming dice, digits, and number words. Speakers named pictured dice, Arabic digits, or written number words, while simultaneously trying to ignore congruent or incongruent dice, digit, or number word distractors presented at various stimulus onset asynchronies (SOAs). Stroop-like interference and facilitation effects were obtained from digits and words on dice naming latencies, but not from dice on digit and word naming latencies. In contrast, words affected digit naming latencies and digits affected word naming latencies to the same extent. The peak of the interference was always around SOA = 0 ms, whereas facilitation was constant across distractor-first SOAs. These results suggest that digit naming is achieved like word naming rather than dice naming. WEAVER++simulations of the results are reported.
  • Roelofs, A. (2006). Modeling the control of phonological encoding in bilingual speakers. Bilingualism: Language and Cognition, 9(2), 167-176. doi:10.1017/S1366728906002513.

    Abstract

    Phonological encoding is the process by which speakers retrieve phonemic segments for morphemes from memory and use
    the segments to assemble phonological representations of words to be spoken. When conversing in one language, bilingual
    speakers have to resist the temptation of encoding word forms using the phonological rules and representations of the other
    language. We argue that the activation of phonological representations is not restricted to the target language and that the
    phonological representations of languages are not separate. We advance a view of bilingual control in which condition-action
    rules determine what is done with the activated phonological information depending on the target language. This view is
    computationally implemented in the WEAVER++ model. We present WEAVER++ simulations of the cognate facilitation effect
    (Costa, Caramazza and Sebasti´an-Gall´es, 2000) and the between-language phonological facilitation effect of spoken
    distractor words in object naming (Hermans, Bongaerts, de Bot and Schreuder, 1998).
  • Roelofs, A., & Meyer, A. S. (1998). Metrical structure in planning the production of spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 922-939. doi:10.1037/0278-7393.24.4.922.

    Abstract

    According to most models of speech production, the planning of spoken words involves the independent retrieval of segments and metrical frames followed by segment-to-frame association. In some models, the metrical frame includes a specification of the number and ordering of consonants and vowels, but in the word-form encoding by activation and verification (WEAVER) model (A. Roelofs, 1997), the frame specifies only the stress pattern across syllables. In 6 implicit priming experiments, on each trial, participants produced 1 word out of a small set as quickly as possible. In homogeneous sets, the response words shared word-initial segments, whereas in heterogeneous sets, they did not. Priming effects from shared segments depended on all response words having the same number of syllables and stress pattern, but not on their having the same number of consonants and vowels. No priming occurred when the response words had only the same metrical frame but shared no segments. Computer simulations demonstrated that WEAVER accounts for the findings.
  • Roelofs, A. (1998). Rightward incrementality in encoding simple phrasal forms in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 904-921. doi:10.1037/0278-7393.24.4.904.

    Abstract

    This article reports 7 experiments investigating whether utterances are planned in a parallel or rightward incremental fashion during language production. The experiments examined the role of linear order, length, frequency, and repetition in producing Dutch verb–particle combinations. On each trial, participants produced 1 utterance out of a set of 3 as quickly as possible. The responses shared part of their form or not. For particle-initial infinitives, facilitation was obtained when the responses shared the particle but not when they shared the verb. For verb-initial imperatives, however, facilitation was obtained for the verbs but not for the particles. The facilitation increased with length, decreased with frequency, and was independent of repetition. A simple rightward incremental model accounts quantitatively for the results.
  • Rohlfing, K., Loehr, D., Duncan, S., Brown, A., Franklin, A., Kimbara, I., Milde, J.-T., Parrill, F., Rose, T., Schmidt, T., Sloetjes, H., Thies, A., & Wellinghof, S. (2006). Comparison of multimodal annotation tools - workshop report. Gesprächforschung - Online-Zeitschrift zur Verbalen Interaktion, 7, 99-123.
  • Rommers, J., & Federmeier, K. D. (2018). Lingering expectations: A pseudo-repetition effect for words previously expected but not presented. NeuroImage, 183, 263-272. doi:10.1016/j.neuroimage.2018.08.023.

    Abstract

    Prediction can help support rapid language processing. However, it is unclear whether prediction has downstream
    consequences, beyond processing in the moment. In particular, when a prediction is disconfirmed, does it linger,
    or is it suppressed? This study manipulated whether words were actually seen or were only expected, and probed
    their fate in memory by presenting the words (again) a few sentences later. If disconfirmed predictions linger,
    subsequent processing of the previously expected (but never presented) word should be similar to actual word
    repetition. At initial presentation, electrophysiological signatures of prediction disconfirmation demonstrated that
    participants had formed expectations. Further downstream, relative to unseen words, repeated words elicited a
    strong N400 decrease, an enhanced late positive complex (LPC), and late alpha band power decreases. Critically,
    like repeated words, words previously expected but not presented also attenuated the N400. This “pseudorepetition
    effect” suggests that disconfirmed predictions can linger at some stages of processing, and demonstrates
    that prediction has downstream consequences beyond rapid on-line processing
  • Rommers, J., & Federmeier, K. D. (2018). Predictability's aftermath: Downstream consequences of word predictability as revealed by repetition effects. Cortex, 101, 16-30. doi:10.1016/j.cortex.2017.12.018.

    Abstract

    Stimulus processing in language and beyond is shaped by context, with predictability having a
    particularly well-attested influence on the rapid processes that unfold during the presentation
    of a word. But does predictability also have downstream consequences for the quality of the
    constructed representations? On the one hand, the ease of processing predictablewordsmight
    free up time or cognitive resources, allowing for relatively thorough processing of the input. On
    the other hand, predictabilitymight allowthe systemto run in a top-down “verificationmode”,
    at the expense of thorough stimulus processing. This electroencephalogram (EEG) study
    manipulated word predictability, which reduced N400 amplitude and inter-trial phase clustering
    (ITPC), and then probed the fate of the (un)predictable words in memory by presenting
    them again. More thorough processing of predictable words should increase repetition effects,
    whereas less thorough processing should decrease them. Repetition was reflected in N400 decreases,
    late positive complex (LPC) enhancements, and late alpha/beta band power decreases.
    Critically, prior predictability tended to reduce the repetition effect on the N400, suggesting less
    priming, and eliminated the repetition effect on the LPC, suggesting a lack of episodic recollection.
    These findings converge on a top-down verification account, on which the brain processes
    more predictable input less thoroughly. More generally, the results demonstrate that
    predictability hasmultifaceted downstreamconsequences beyond processing in the moment
  • Rossi, G. (2018). Composite social actions: The case of factual declaratives in everyday interaction. Research on Language and Social Interaction, 51(4), 379-397. doi:10.1080/08351813.2018.1524562.

    Abstract

    When taking a turn at talk, a speaker normally accomplishes a sequential action such as a question, answer, complaint, or request. Sometimes, however, a turn at talk may accomplish not a single but a composite action, involving a combination of more than one action. I show that factual declaratives (e.g., “the feed drip has finished”) are recurrently used to implement composite actions consisting of both an informing and a request or, alternatively, a criticism and a request. A key determinant between these is the recipient’s epistemic access to what the speaker is describing. Factual declaratives afford a range of possible responses, which can tell us how the composite action has been understood and give us insights into its underlying structure. Evidence for the stacking of composite actions, however, is not always directly available in the response and may need to be pieced together with the help of other linguistic and contextual considerations. Data are in Italian with English translation.
  • De Rover, M., Petersson, K. M., Van der Werf, S. P., Cools, A. R., Berger, H. J., & Fernández, G. (2008). Neural correlates of strategic memory retrieval: Differentiating between spatial-associative and temporal-associative strategies. Human Brain Mapping, 29, 1068-1079. doi:10.1002/hbm.20445.

    Abstract

    Remembering complex, multidimensional information typically requires strategic memory retrieval, during which information is structured, for instance by spatial- or temporal associations. Although brain regions involved in strategic memory retrieval in general have been identified, differences in retrieval operations related to distinct retrieval strategies are not well-understood. Thus, our aim was to identify brain regions whose activity is differentially involved in spatial-associative and temporal-associative retrieval. First, we showed that our behavioral paradigm probing memory for a set of object-location associations promoted the use of a spatial-associative structure following an encoding condition that provided multiple associations to neighboring objects (spatial-associative condition) and the use of a temporal- associative structure following another study condition that provided predominantly temporal associations between sequentially presented items (temporal-associative condition). Next, we used an adapted version of this paradigm for functional MRI, where we contrasted brain activity related to the recall of object-location associations that were either encoded in the spatial- or the temporal-associative condition. In addition to brain regions generally involved in recall, we found that activity in higher-order visual regions, including the fusiform gyrus, the lingual gyrus, and the cuneus, was relatively enhanced when subjects used a spatial-associative structure for retrieval. In contrast, activity in the globus pallidus and the thalamus was relatively enhanced when subjects used a temporal-associative structure for retrieval. In conclusion, we provide evidence for differential involvement of these brain regions related to different types of strategic memory retrieval and the neural structures described play a role in either spatial-associative or temporal-associative memory retrieval.
  • Rowland, C. F., & Fletcher, S. L. (2006). The effect of sampling on estimates of lexical specificity and error rates. Journal of Child Language, 33(4), 859-877. doi:10.1017/S0305000906007537.

    Abstract

    Studies based on naturalistic data are a core tool in the field of language acquisition research and have provided thorough descriptions of children's speech. However, these descriptions are inevitably confounded by differences in the relative frequency with which children use words and language structures. The purpose of the present work was to investigate the impact of sampling constraints on estimates of the productivity of children's utterances, and on the validity of error rates. Comparisons were made between five different sized samples of wh-question data produced by one child aged 2;8. First, we assessed whether sampling constraints undermined the claim (e.g. Tomasello, 2000) that the restricted nature of early child speech reflects a lack of adultlike grammatical knowledge. We demonstrated that small samples were equally likely to under- as overestimate lexical specificity in children's speech, and that the reliability of estimates varies according to sample size. We argued that reliable analyses require a comparison with a control sample, such as that from an adult speaker. Second, we investigated the validity of estimates of error rates based on small samples. The results showed that overall error rates underestimate the incidence of error in some rarely produced parts of the system and that analyses on small samples were likely to substantially over- or underestimate error rates in infrequently produced constructions. We concluded that caution must be used when basing arguments about the scope and nature of errors in children's early multi-word productions on analyses of samples of spontaneous speech.
  • Rowland, C. F. (2018). The principles of scientific inquiry. Linguistic Approaches to Bilingualism, 8(6), 770-775. doi:10.1075/lab.18056.row.
  • Rubio-Fernández, P. (2018). Trying to discredit the Duplo task with a partial replication: Reply to Paulus and Kammermeier (2018). Cognitive Development, 48, 286-288. doi:10.1016/j.cogdev.2018.07.006.

    Abstract

    Kammermeier and Paulus (2018) report a partial replication of the results of Rubio-Fernández and Geurts (2013) but present their study as a failed replication. Paulus and Kammermeier (2018) insist on a negative interpretation of their findings, discrediting the Duplo task against their own empirical evidence. Here I argue that Paulus and Kammermeier may try to make an impactful contribution to the field by adding to the growing skepticism towards early Theory of Mind studies, but fail to make any significant contribution to our understanding of young children’s Theory of Mind abilities.
  • Rubio-Fernández, P. (2018). What do failed (and successful) replications with the Duplo task show? Cognitive Development, 48, 316-320. doi:10.1016/j.cogdev.2018.07.004.
  • Rubio-Fernández, P. (2008). Concept narrowing: The role of context-independent information. Journal of Biomedical Semantics, 25(4), 381-409. doi:10.1093/jos/ffn004.

    Abstract

    The present study aims to investigate the extent to which the process of lexical interpretation is context dependent. It has been uncontroversially agreed in psycholinguistics that interpretation is always affected by sentential context. The major debate in lexical processing research has revolved around the question of whether initial semantic activation is context sensitive or rather exhaustive, that is, whether the effect of context occurs before or only after the information associated to a concept has been accessed from the mental lexicon. However, within post-lexical access processes, the question of whether the selection of a word's meaning components is guided exclusively by contextual relevance, or whether certain meaning components might be selected context independently, has not been such an important focus of research. I have investigated this question in the two experiments reported in this paper and, moreover, have analysed the role that context-independent information in concepts might play in word interpretation. This analysis differs from previous studies on lexical processing in that it places experimental work in the context of a theoretical model of lexical pragmatics.
  • De Ruiter, J. P., Mitterer, H., & Enfield, N. J. (2006). Projecting the end of a speaker's turn: A cognitive cornerstone of conversation. Language, 82(3), 515-535.

    Abstract

    A key mechanism in the organization of turns at talk in conversation is the ability to anticipate or PROJECT the moment of completion of a current speaker’s turn. Some authors suggest that this is achieved via lexicosyntactic cues, while others argue that projection is based on intonational contours. We tested these hypotheses in an on-line experiment, manipulating the presence of symbolic (lexicosyntactic) content and intonational contour of utterances recorded in natural conversations. When hearing the original recordings, subjects can anticipate turn endings with the same degree of accuracy attested in real conversation. With intonational contour entirely removed (leaving intact words and syntax, with a completely flat pitch), there is no change in subjects’ accuracy of end-of-turn projection. But in the opposite case (with original intonational contour intact, but with no recognizable words), subjects’ performance deteriorates significantly. These results establish that the symbolic (i.e. lexicosyntactic) content of an utterance is necessary (and possibly sufficient) for projecting the moment of its completion, and thus for regulating conversational turn-taking. By contrast, and perhaps surprisingly, intonational contour is neither necessary nor sufficient for end-of-turn projection.
  • De Ruiter, J. P., & Levinson, S. C. (2008). A biological infrastructure for communication underlies the cultural evolution of languages [Commentary on Christiansen & Chater: Language as shaped by the brain]. Behavioral and Brain Sciences, 31(5), 518-518. doi:10.1017/S0140525X08005086.

    Abstract

    Universal Grammar (UG) is indeed evolutionarily implausible. But if languages are just “adapted” to a large primate brain, it is hard to see why other primates do not have complex languages. The answer is that humans have evolved a specialized and uniquely human cognitive architecture, whose main function is to compute mappings between arbitrary signals and communicative intentions. This underlies the development of language in the human species.
  • De Ruiter, J. P. (2006). Can gesticulation help aphasic people speak, or rather, communicate? Advances in Speech-Language Pathology, 8(2), 124-127. doi:10.1080/14417040600667285.

    Abstract

    As Rose (2006) discusses in the lead article, two camps can be identified in the field of gesture research: those who believe that gesticulation enhances communication by providing extra information to the listener, and on the other hand those who believe that gesticulation is not communicative, but rather that it facilitates speaker-internal word finding processes. I review a number of key studies relevant for this controversy, and conclude that the available empirical evidence is supporting the notion that gesture is a communicative device which can compensate for problems in speech by providing information in gesture. Following that, I discuss the finding by Rose and Douglas (2001) that making gestures does facilitate word production in some patients with aphasia. I argue that the gestures produced in the experiment by Rose and Douglas are not guaranteed to be of the same kind as the gestures that are produced spontaneously under naturalistic, communicative conditions, which makes it difficult to generalise from that particular study to general gesture behavior. As a final point, I encourage researchers in the area of aphasia to put more emphasis on communication in naturalistic contexts (e.g., conversation) in testing the capabilities of people with aphasia.
  • San Roque, L., Kendrick, K. H., Norcliffe, E., & Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29, 371-406. doi:10.1515/cog-2017-0034.
  • Schaeffer, J., van Witteloostuijn, M., & Creemers, A. (2018). Article choice, theory of mind, and memory in children with high-functioning autism and children with specific language impairment. Applied Psycholinguistics, 39(1), 89-115. doi:10.1017/S0142716417000492.

    Abstract

    Previous studies show that young, typically developing (TD) children (age 5) make errors in the choice between a definite and an indefinite article. Suggested explanations for overgeneration of the definite article include failure to distinguish speaker from hearer assumptions, and for overgeneration of the indefinite article failure to draw scalar implicatures, and weak working memory. However, no direct empirical evidence for these accounts is available. In this study, 27 Dutch-speaking children with high-functioning autism, 27 children with SLI, and 27 TD children aged 5–14 were administered a pragmatic article choice test, a nonverbal theory of mind test, and three types of memory tests (phonological memory, verbal, and nonverbal working memory). The results show that the children with high-functioning autism and SLI (a) make similar errors, that is, they overgenerate the indefinite article; (b) are TD-like at theory of mind, but (c) perform significantly more poorly than the TD children on phonological memory and verbal working memory. We propose that weak memory skills prevent the integration of the definiteness scale with the preceding discourse, resulting in the failure to consistently draw the relevant scalar implicature. This in turn yields the occasional erroneous choice of the indefinite article a in definite contexts.
  • Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.

    Abstract

    We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity.
  • Schijven, D., Kofink, D., Tragante, V., Verkerke, M., Pulit, S. L., Kahn, R. S., Veldink, J. H., Vinkers, C. H., Boks, M. P., & Luykx, J. J. (2018). Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophrenia Research, 199, 195-202. doi:10.1016/j.schres.2018.03.032.

    Abstract

    Large-scale genome-wide association studies (GWAS) have implicated many low-penetrance loci in schizophrenia. However, its pathological mechanisms are poorly understood, which in turn hampers the development of novel pharmacological treatments. Pathway and gene set analyses carry the potential to generate hypotheses about disease mechanisms and have provided biological context to genome-wide data of schizophrenia. We aimed to examine which biological processes are likely candidates to underlie schizophrenia by integrating novel and powerful pathway analysis tools using data from the largest Psychiatric Genomics Consortium schizophrenia GWAS (N=79,845) and the most recent 2018 schizophrenia GWAS (N=105,318). By applying a primary unbiased analysis (Multi-marker Analysis of GenoMic Annotation; MAGMA) to weigh the role of biological processes from the Molecular Signatures Database (MSigDB), we identified enrichment of common variants in synaptic plasticity and neuron differentiation gene sets. We supported these findings using MAGMA, Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) and Interval Enrichment Analysis (INRICH) on detailed synaptic signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and found enrichment in mainly the dopaminergic and cholinergic synapses. Moreover, shared genes involved in these neurotransmitter systems had a large contribution to the observed enrichment, protein products of top genes in these pathways showed more direct and indirect interactions than expected by chance, and expression profiles of these genes were largely similar among brain tissues. In conclusion, we provide strong and consistent genetics and protein-interaction informed evidence for the role of postsynaptic signaling processes in schizophrenia, opening avenues for future translational and psychopharmacological studies.
  • Schilberg, L., Engelen, T., Ten Oever, S., Schuhmann, T., De Gelder, B., De Graaf, T. A., & Sack, A. T. (2018). Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex, 103, 142-152. doi:10.1016/j.cortex.2018.03.001.

    Abstract

    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved.
  • Schiller, N. O., Schuhmann, T., Neyndorff, A. C., & Jansma, B. M. (2006). The influence of semantic category membership on syntactic decisions: A study using event-related brain potentials. Brain Research, 1082(1), 153-164. doi:10.1016/j.brainres.2006.01.087.

    Abstract

    An event-related brain potentials (ERP) experiment was carried out to investigate the influence of semantic category membership on syntactic decision-making. Native speakers of German viewed a series of words that were semantically marked or unmarked for gender and made go/no-go decisions about the grammatical gender of those words. The electrophysiological results indicated that participants could make a gender decision earlier when words were semantically gender-marked than when they were semantically gender-unmarked. Our data provide evidence for the influence of semantic category membership on the decision of the syntactic gender of a visually presented German noun. More specifically, our results support models of language comprehension in which semantic information processing of words is initiated prior to syntactic information processing is finalized.
  • Schiller, N. O., & Costa, A. (2006). Different selection principles of freestanding and bound morphemes in language production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 1201-1207. doi:10.1037/0278-7393.32.5.1201.

    Abstract

    Freestanding and bound morphemes differ in many (psycho)linguistic aspects. Some theorists have claimed that the representation and retrieval of freestanding and bound morphemes in the course of language production are governed by similar processing mechanisms. Alternatively, it has been proposed that both types of morphemes may be selected for production in different ways. In this article, the authors first review the available experimental evidence related to this topic and then present new experimental data pointing to the notion that freestanding and bound morphemes are retrieved following distinct processing principles: freestanding morphemes are subject to competition, bound morphemes not.
  • Schiller, N. O. (2006). Lexical stress encoding in single word production estimated by event-related brain potentials. Brain Research, 1112(1), 201-212. doi:10.1016/j.brainres.2006.07.027.

    Abstract

    An event-related brain potentials (ERPs) experiment was carried out to investigate the time course of lexical stress encoding in language production. Native speakers of Dutch viewed a series of pictures corresponding to bisyllabic names which were either stressed on the first or on the second syllable and made go/no-go decisions on the lexical stress location of those picture names. Behavioral results replicated a pattern that was observed earlier, i.e. faster button-press latencies to initial as compared to final stress targets. The electrophysiological results indicated that participants could make a lexical stress decision significantly earlier when picture names had initial than when they had final stress. Moreover, the present data suggest the time course of lexical stress encoding during single word form formation in language production. When word length is corrected for, the temporal interval for lexical stress encoding specified by the current ERP results falls into the time window previously identified for phonological encoding in language production.
  • Schiller, N. O., Jansma, B. M., Peters, J., & Levelt, W. J. M. (2006). Monitoring metrical stress in polysyllabic words. Language and Cognitive Processes, 21(1/2/3), 112-140. doi:10.1080/01690960400001861.

    Abstract

    This study investigated the monitoring of metrical stress information in internally generated speech. In Experiment 1, Dutch participants were asked to judge whether bisyllabic picture names had initial or final stress. Results showed significantly faster decision times for initially stressed targets (e.g., KAno ‘‘canoe’’) than for targets with final stress (e.g., kaNON ‘‘cannon’’; capital letters indicate stressed syllables). It was demonstrated that monitoring latencies are not a function of the picture naming or object recognition latencies to the same pictures. Experiments 2 and 3 replicated the outcome of the first experiment with trisyllabic picture names. These results are similar to the findings of Wheeldon and Levelt (1995) in a segment monitoring task. The outcome might be interpreted to demonstrate that phonological encoding in speech production is a rightward incremental process. Alternatively, the data might reflect the sequential nature of a perceptual mechanism used to monitor lexical stress.
  • Schiller, N. O., & Caramazza, A. (2006). Grammatical gender selection and the representation of morphemes: The production of Dutch diminutives. Language and Cognitive Processes, 21, 945-973. doi:10.1080/01690960600824344.

    Abstract

    In this study, we investigated grammatical feature selection during noun phrase production in Dutch. More specifically, we studied the conditions under which different grammatical genders select either the same or different determiners. Pictures of simple objects paired with a gender-congruent or a gender-incongruent distractor word were presented. Participants named the pictures using a noun phrase with the appropriate gender-marked determiner. Auditory (Experiment 1) or visual cues (Experiment 2) indicated whether the noun was to be produced in its standard or diminutive form. Results revealed a cost in naming latencies when target and distractor take different determiner forms independent of whether or not they have the same gender. This replicates earlier results showing that congruency effects are due to competition during the selection of determiner forms rather than gender features. The overall pattern of results supports the view that grammatical feature selection is an automatic consequence of lexical node selection and therefore not subject to interference from incongruent grammatical features. Selection of the correct determiner form, however, is a competitive process, implying that lexical node and grammatical feature selection operate with distinct principles.
  • Schiller, N. O. (1998). The effect of visually masked syllable primes on the naming latencies of words and pictures. Journal of Memory and Language, 39, 484-507. doi:10.1006/jmla.1998.2577.

    Abstract

    To investigate the role of the syllable in Dutch speech production, five experiments were carried out to examine the effect of visually masked syllable primes on the naming latencies for written words and pictures. Targets had clear syllable boundaries and began with a CV syllable (e.g., ka.no) or a CVC syllable (e.g., kak.tus), or had ambiguous syllable boundaries and began with a CV[C] syllable (e.g., ka[pp]er). In the syllable match condition, bisyllabic Dutch nouns or verbs were preceded by primes that were identical to the target’s first syllable. In the syllable mismatch condition, the prime was either shorter or longer than the target’s first syllable. A neutral condition was also included. None of the experiments showed a syllable priming effect. Instead, all related primes facilitated the naming of the targets. It is concluded that the syllable does not play a role in the process of phonological encoding in Dutch. Because the amount of facilitation increased with increasing overlap between prime and target, the priming effect is accounted for by a segmental overlap hypothesis.
  • Schillingmann, L., Ernst, J., Keite, V., Wrede, B., Meyer, A. S., & Belke, E. (2018). AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes. Behavior Research Methods, 50(2), 466-489. doi:10.3758/s13428-017-1002-7.

    Abstract

    In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-word and four-word utterances as well as semi-spontaneous speech. AlignTool performs well with audio signals with an excellent signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language production research.
  • Schimke, S., Verhagen, J., & Dimroth, C. (2008). Particules additives et finitude en néerlandais et allemand L2: Étude expérimentale. Acquisition et Interaction en Language Etrangère, 26, 191-210.

    Abstract

    Cette étude traite de la question de savoir s’il y a une relation entre les équivalents des particules additives ‘aussi’ et ‘de nouveau’ portant sur le topique et la finitude dans la variété des apprenants turcophones du néerlandais et de l’allemand. Dans les données obtenues avec une tâche contrôlée, nous observons que la finitude est moins fréquemment marquée dans les énoncés contenant ces particules que les énoncés comparables qui ne contiennent pas ces particules. Ceci est vrai pour le marquage de la finitude sur les verbes lexicaux ainsi que pour la présence de verbes conjugués sans contenu lexical comme la copule. De plus, nous montrons que les particules peuvent précéder le verbe conjugué dans la langue des apprenants. Ces résultats peuvent être expliqués par la similarité fonctionnelle entre la finitude et les particules portant sur le topique.
  • Schoenmakers, G.-J., & Piepers, J. (2018). Echter kan het wel. Levende Talen Magazine, 105(4), 10-13.
  • Schoffelen, J.-M., Oostenveld, R., & Fries, P. (2008). Imaging the human motor system's beta-band synchronization during isometric contraction. NeuroImage, 41, 437-447. doi:10.1016/j.neuroimage.2008.01.045.

    Abstract

    Rhythmic synchronization likely subserves interactions among neuronal groups. One of the best studied rhythmic synchronization phenomena in the human nervous system is the beta-band (15-30 Hz) synchronization in the motor system. In this study, we imaged structures across the human brain that are synchronized to the motor system's beta rhythm. We recorded whole-head magnetoencephalograms (MEG) and electromyograms (EMG) of left/right extensor carpi radialis muscle during left/right wrist extension. We analyzed coherence, on the one hand between the EMG and neuronal sources in the brain, and on the other hand between different brain sources, using a spatial filtering approach. Cortico-muscular coherence analysis revealed a spatial maximum of coherence to the muscle in motor cortex contralateral to the muscle in accordance with earlier findings. Moreover, by applying a two-dipole source model, we unveiled significantly coherent clusters of voxels in the ipsilateral cerebellar hemisphere and ipsilateral cerebral motor regions. The spatial pattern of coherence to the right and left arm EMG was roughly mirror reversed across the midline, in agreement with known physiology. Subsequently, we analyzed the brain-wide pattern of beta-band coherence to the motor cortex contralateral to the contracting muscle. This analysis did not reveal any convincing pattern. Because the prior cortico-muscular analysis had demonstrated the expected pattern in our data, this negative finding demonstrates a current limitation of the applied method for cortico-cortical coherence analysis. We conclude that during an isometric muscle contraction, several distributed brain regions form a brain-wide beta-band network for motor control.
  • De Schryver, J., Neijt, A., Ghesquière, P., & Ernestus, M. (2008). Analogy, frequency, and sound change: The case of Dutch devoicing. Journal of Germanic Linguistics, 20(2), 159-195. doi:10.1017/S1470542708000056.

    Abstract

    This study investigates the roles of phonetic analogy and lexical frequency in an ongoing sound change, the devoicing of fricatives in Dutch, which occurs mainly in the Netherlands and to a lesser degree in Flanders. In the experiment, Dutch and Flemish students read two variants of 98 words: the standard and a nonstandard form with the incorrect voice value of the fricative. Dutch students chose the non-standard forms with devoiced fricatives more often than Flemish students. Moreover, devoicing, though a gradual process, appeared lexically diffused, affecting first the words that are low in frequency and phonetically similar to words with voiceless fricatives.
  • Schulte im Walde, S., Melinger, A., Roth, M., & Weber, A. (2008). An empirical characterization of response types in German association norms. Research on Language and Computation, 6, 205-238. doi:10.1007/s11168-008-9048-4.

    Abstract

    This article presents a study to distinguish and quantify the various types of semantic associations provided by humans, to investigate their properties, and to discuss the impact that our analyses may have on NLP tasks. Specifically, we concentrate on two issues related to word properties and word relations: (1) We address the task of modelling word meaning by empirical features in data-intensive lexical semantics. Relying on large-scale corpus-based resources, we identify the contextual categories and functions that are activated by the associates and therefore contribute to the salient meaning components of individual words and across words. As a result, we discuss conceptual roles and present evidence for the usefulness of co-occurrence information in distributional descriptions. (2) We assume that semantic associates provide a means to investigate the range of semantic relations between words and contexts, and we provide insight into which types of semantic relations are treated as important or salient by the speakers of the language.

    Files private

    Request files
  • Schwager, W., & Zeshan, U. (2008). Word classes in sign languages: Criteria and classifications. Studies in Language, 32(3), 509-545. doi:10.1075/sl.32.3.03sch.

    Abstract

    The topic of word classes remains curiously under-represented in the sign language literature due to many theoretical and methodological problems in sign linguistics. This article focuses on language-specific classifications of signs into word classes in two different sign languages: German Sign Language and Kata Kolok, the sign language of a village community in Bali. The article discusses semantic and structural criteria for identifying word classes in the target sign languages. On the basis of a data set of signs, these criteria are systematically tested out as a first step towards an inductive classification of signs. Approaches and analyses relating to the problem of word classes in linguistic typology are used for shedding new light on the issue of word class distinctions in sign languages
  • Schweinfurth, M. K., De Troy, S. E., Van Leeuwen, E. J. C., Call, J., & Haun, D. B. M. (2018). Spontaneous social tool use in Chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 132(4), 455-463. doi:10.1037/com0000127.

    Abstract

    Although there is good evidence that social animals show elaborate cognitive skills to deal with others, there are few reports of animals physically using social agents and their respective responses as means to an end—social tool use. In this case study, we investigated spontaneous and repeated social tool use behavior in chimpanzees (Pan troglodytes). We presented a group of chimpanzees with an apparatus, in which pushing two buttons would release juice from a distantly located fountain. Consequently, any one individual could only either push the buttons or drink from the fountain but never push and drink simultaneously. In this scenario, an adult male attempted to retrieve three other individuals and push them toward the buttons that, if pressed, released juice from the fountain. With this strategy, the social tool user increased his juice intake 10-fold. Interestingly, the strategy was stable over time, which was possibly enabled by playing with the social tools. With over 100 instances, we provide the biggest data set on social tool use recorded among nonhuman animals so far. The repeated use of other individuals as social tools may represent a complex social skill linked to Machiavellian intelligence.
  • Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S. E., & Van Gerven, M. A. J. (2018). Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage, 180, 253-266. doi:10.1016/j.neuroimage.2017.07.018.

    Abstract

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely
    investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance
    imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in
    the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain
    signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we
    addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG).
    Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled
    their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward
    sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade
    was captured by the network layer representations, where the increasingly abstract stimulus representation in the
    hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral
    stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out
    validation set of viewed objects, achieving state-of-the-art decoding accuracy.

Share this page