Publications

Displaying 501 - 529 of 529
  • Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., Geschwind, D., & Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. American Journal of Human Genetics, 81(6), 1232-1250. doi:10.1086/522238.

    Abstract

    We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders.
  • Vernes, S. C., & Fisher, S. E. (2009). Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions (London), 37, 1263-1269. doi:10.1042/BST0371263.

    Abstract

    Childhood syndromes disturbing language development are common and display high degrees of heritability. In most cases, the underlying genetic architecture is likely to be complex, involving multiple chromosomal loci and substantial heterogeneity, which makes it difficult to track down the crucial genomic risk factors. Investigation of rare Mendelian phenotypes offers a complementary route for unravelling key neurogenetic pathways. The value of this approach is illustrated by the discovery that heterozygous FOXP2 (where FOX is forkhead box) mutations cause an unusual monogenic disorder, characterized by problems with articulating speech along with deficits in expressive and receptive language. FOXP2 encodes a regulatory protein, belonging to the forkhead box family of transcription factors, known to play important roles in modulating gene expression in development and disease. Functional genetics using human neuronal models suggest that the different FOXP2 isoforms generated by alternative splicing have distinct properties and may act to regulate each other's activity. Such investigations have also analysed the missense and nonsense mutations found in cases of speech and language disorder, showing that they alter intracellular localization, DNA binding and transactivation capacity of the mutated proteins. Moreover, in the brains of mutant mice, aetiological mutations have been found to disrupt the synaptic plasticity of Foxp2-expressing circuitry. Finally, although mutations of FOXP2 itself are rare, the downstream networks which it regulates in the brain appear to be broadly implicated in typical forms of language impairment. Thus, through ongoing identification of regulated targets and interacting co-factors, this gene is providing the first molecular entry points into neural mechanisms that go awry in language-related disorders
  • De Vignemont, F., Majid, A., Jola, C., & Haggard, P. (2009). Segmenting the body into parts: Evidence from biases in tactile perception. Quarterly Journal of Experimental Psychology, 62, 500-512. doi:10.1080/17470210802000802.

    Abstract

    How do we individuate body parts? Here, we investigated the effect of body segmentation between hand and arm in tactile and visual perception. In a first experiment, we showed that two tactile stimuli felt farther away when they were applied across the wrist than when they were applied within a single body part (palm or forearm), indicating a “category boundary effect”. In the following experiments, we excluded two hypotheses, which attributed tactile segmentation to other, nontactile factors. In Experiment 2, we showed that the boundary effect does not arise from motor cues. The effect was reduced during a motor task involving flexion and extension movements of the wrist joint. Action brings body parts together into functional units, instead of pulling them apart. In Experiments 3 and 4, we showed that the effect does not arise from perceptual cues of visual discontinuities. We did not find any segmentation effect for the visual percept of the body in Experiment 3, nor for a neutral shape in Experiment 4. We suggest that the mental representation of the body is structured in categorical body parts delineated by joints, and that this categorical representation modulates tactile spatial perception.
  • Vonk, W., & Cozijn, R. (2007). Psycholinguïstiek: Een kwantitatieve wetenschap. Tijdschrift voor Nederlandse Taal- en Letterkunde, 123, 55-69.
  • De Vos, C. (2009). [Review of the book Language complexity as an evolving variable ed. by Geoffrey Sampson, David Gil and Peter Trudgill]. LINGUIST List, 20.4275. Retrieved from http://linguistlist.org/issues/20/20-4275.html.
  • De Vos, C., Van der Kooij, E., & Crasborn, O. (2009). Mixed signals: Combining linguistic and affective functions of eyebrows in questions in Sign Language of the Netherlands. Language and Speech, 52(2/3), 315-339. doi:10.1177/0023830909103177.

    Abstract

    The eyebrows are used as conversational signals in face-to-face spoken interaction (Ekman, 1979). In Sign Language of the Netherlands (NGT), the eyebrows are typically furrowed in content questions, and raised in polar questions (Coerts, 1992). On the other hand, these eyebrow positions are also associated with anger and surprise, respectively, in general human communication (Ekman, 1993). This overlap in the functional load of the eyebrow positions results in a potential conflict for NGT signers when combining these functions simultaneously. In order to investigate the effect of the simultaneous realization of both functions on the eyebrow position we elicited instances of both question types with neutral affect and with various affective states. The data were coded using the Facial Action Coding System (FACS: Ekman, Friesen, & Hager, 2002) for type of brow movement as well as for intensity. FACS allows for the coding of muscle groups, which are termed Action Units (AUs) and which produce facial appearance changes. The results show that linguistic and affective functions of eyebrows may influence each other in NGT. That is, in surprised polar questions and angry content question a phonetic enhancement takes place of raising and furrowing, respectively. In the items with contrasting eyebrow movements, the grammatical and affective AUs are either blended (occur simultaneously) or they are realized sequentially. Interestingly, the absence of eyebrow raising (marked by AU 1+2) in angry polar questions, and the presence of eyebrow furrowing (realized by AU 4) in surprised content questions suggests that in general AU 4 may be phonetically stronger than AU 1 and AU 2, independent of its linguistic or affective function.
  • Vosse, T., & Kempen, G. (2009). In defense of competition during syntactic ambiguity resolution. Journal of Psycholinguistic Research, 38(1), 1-9. doi:10.1007/s10936-008-9075-1.

    Abstract

    In a recent series of publications (Traxler et al. J Mem Lang 39:558–592, 1998; Van Gompel et al. J Mem Lang 52:284–307, 2005; see also Van Gompel et al. (In: Kennedy, et al.(eds) Reading as a perceptual process, Oxford, Elsevier pp 621–648, 2000); Van Gompel et al. J Mem Lang 45:225–258, 2001) eye tracking data are reported showing that globally ambiguous (GA) sentences are read faster than locally ambiguous (LA) counterparts. They argue that these data rule out “constraint-based” models where syntactic and conceptual processors operate concurrently and syntactic ambiguity resolution is accomplished by competition. Such models predict the opposite pattern of reading times. However, this argument against competition is valid only in conjunction with two standard assumptions in current constraint-based models of sentence comprehension: (1) that syntactic competitions (e.g., Which is the best attachment site of the incoming constituent?) are pooled together with conceptual competitions (e.g., Which attachment site entails the most plausible meaning?), and (2) that the duration of a competition is a function of the overall (pooled) quality score obtained by each competitor. We argue that it is not necessary to abandon competition as a successful basis for explaining parsing phenomena and that the above-mentioned reading time data can be accounted for by a parallel-interactive model with conceptual and syntactic processors that do not pool their quality scores together. Within the individual linguistic modules, decision-making can very well be competition-based.
  • Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: A computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105-143.

    Abstract

    We present the design, implementation and simulation results of a psycholinguistic model of human syntactic processing that meets major empirical criteria. The parser operates in conjunction with a lexicalist grammar and is driven by syntactic information associated with heads of phrases. The dynamics of the model are based on competition by lateral inhibition ('competitive inhibition'). Input words activate lexical frames (i.e. elementary trees anchored to input words) in the mental lexicon, and a network of candidate 'unification links' is set up between frame nodes. These links represent tentative attachments that are graded rather than all-or-none. Candidate links that, due to grammatical or 'treehood' constraints, are incompatible, compete for inclusion in the final syntactic tree by sending each other inhibitory signals that reduce the competitor's attachment strength. The outcome of these local and simultaneous competitions is controlled by dynamic parameters, in particular by the Entry Activation and the Activation Decay rate of syntactic nodes, and by the Strength and Strength Build-up rate of Unification links. In case of a successful parse, a single syntactic tree is returned that covers the whole input string and consists of lexical frames connected by winning Unification links. Simulations are reported of a significant range of psycholinguistic parsing phenomena in both normal and aphasic speakers of English: (i) various effects of linguistic complexity (single versus double, center versus right-hand self-embeddings of relative clauses; the difference between relative clauses with subject and object extraction; the contrast between a complement clause embedded within a relative clause versus a relative clause embedded within a complement clause); (ii) effects of local and global ambiguity, and of word-class and syntactic ambiguity (including recency and length effects); (iii) certain difficulty-of-reanalysis effects (contrasts between local ambiguities that are easy to resolve versus ones that lead to serious garden-path effects); (iv) effects of agrammatism on parsing performance, in particular the performance of various groups of aphasic patients on several sentence types.
  • Vosse, T., & Kempen, G. (2009). The Unification Space implemented as a localist neural net: Predictions and error-tolerance in a constraint-based parser. Cognitive Neurodynamics, 3, 331-346. doi:10.1007/s11571-009-9094-0.

    Abstract

    We introduce a novel computer implementation of the Unification-Space parser (Vosse & Kempen 2000) in the form of a localist neural network whose dynamics is based on interactive activation and inhibition. The wiring of the network is determined by Performance Grammar (Kempen & Harbusch 2003), a lexicalist formalism with feature unification as binding operation. While the network is processing input word strings incrementally, the evolving shape of parse trees is represented in the form of changing patterns of activation in nodes that code for syntactic properties of words and phrases, and for the grammatical functions they fulfill. The system is capable, at least in a qualitative and rudimentary sense, of simulating several important dynamic aspects of human syntactic parsing, including garden-path phenomena and reanalysis, effects of complexity (various types of clause embeddings), fault-tolerance in case of unification failures and unknown words, and predictive parsing (expectation-based analysis, surprisal effects). English is the target language of the parser described.
  • Wang, L., Hagoort, P., & Yang, Y. (2009). Semantic illusion depends on information structure: ERP evidence. Brain Research, 1282, 50-56. doi:10.1016/j.brainres.2009.05.069.

    Abstract

    Next to propositional content, speakers distribute information in their utterances in such a way that listeners can make a distinction between new (focused) and given (non-focused) information. This is referred to as information structure. We measured event-related potentials (ERPs) to explore the role of information structure in semantic processing. Following different questions in wh-question-answer pairs (e.g. What kind of vegetable did Ming buy for cooking today? /Who bought the vegetables for cooking today?), the answer sentences (e.g., Ming bought eggplant/beef to cook today.) contained a critical word, which was either semantically appropriate (eggplant) or inappropriate (beef), and either focus or non-focus. The results showed a full N400 effect only when the critical words were in focus position. In non-focus position a strongly reduced N400 effect was observed, in line with the well-known semantic illusion effect. The results suggest that information structure facilitates semantic processing by devoting more resources to focused information.
  • Warner, N., Fountain, A., & Tucker, B. V. (2009). Cues to perception of reduced flaps. Journal of the Acoustical Society of America, 125(5), 3317-3327. doi:10.1121/1.3097773.

    Abstract

    Natural, spontaneous speech (and even quite careful speech) often shows extreme reduction in many speech segments, even resulting in apparent deletion of consonants. Where the flap ([(sic)]) allophone of /t/ and /d/ is expected in American English, one frequently sees an approximant-like or even vocalic pattern, rather than a clear flap. Still, the /t/ or /d/ is usually perceived, suggesting the acoustic characteristics of a reduced flap are sufficient for perception of a consonant. This paper identifies several acoustic characteristics of reduced flaps based on previous acoustic research (size of intensity dip, consonant duration, and F4 valley) and presents phonetic identification data for continua that manipulate these acoustic characteristics of reduction. The results indicate that the most obvious types of acoustic variability seen in natural flaps do affect listeners' percept of a consonant, but not sufficiently to completely account for the percept. Listeners are affected by the acoustic characteristics of consonant reduction, but they are also very skilled at evaluating variability along the acoustic dimensions that realize reduction.

    Files private

    Request files
  • Warner, N., Luna, Q., Butler, L., & Van Volkinburg, H. (2009). Revitalization in a scattered language community: Problems and methods from the perspective of Mutsun language revitalization. International Journal of the Sociology of Language, 198, 135-148. doi:10.1515/IJSL.2009.031.

    Abstract

    This article addresses revitalization of a dormant language whose prospective speakers live in scattered geographical areas. In comparison to increasing the usage of an endangered language, revitalizing a dormant language (one with no living speakers) requires different methods to gain knowledge of the language. Language teaching for a dormant language with a scattered community presents different problems from other teaching situations. In this article, we discuss the types of tasks that must be accomplished for dormant-language revitalization, with particular focus on development of teaching materials. We also address the role of computer technologies, arguing that each use of technology should be evaluated for how effectively it increases fluency. We discuss methods for achieving semi-fluency for the first new speakers of a dormant language, and for spreading the language through the community.
  • Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence-picture matching electrified. Neuropsychologia, 45(4), 716-740. doi:10.1016/j.neuropsychologia.2006.08.016.

    Abstract

    An event-related brain potential experiment was carried out to investigate on-line thematic role assignment during sentence–picture matching in patients with Broca's aphasia. Subjects were presented with a picture that was followed by an auditory sentence. The sentence either matched the picture or mismatched the visual information depicted. Sentences differed in complexity, and ranged from simple active semantically irreversible sentences to passive semantically reversible sentences. ERPs were recorded while subjects were engaged in sentence–picture matching. In addition, reaction time and accuracy were measured. Three groups of subjects were tested: Broca patients (N = 10), non-aphasic patients with a right hemisphere (RH) lesion (N = 8), and healthy aged-matched controls (N = 15). The results of this study showed that, in neurologically unimpaired individuals, thematic role assignment in the context of visual information was an immediate process. This in contrast to patients with Broca's aphasia who demonstrated no signs of on-line sensitivity to the picture–sentence mismatches. The syntactic contribution to the thematic role assignment process seemed to be diminished given the reduction and even absence of P600 effects. Nevertheless, Broca patients showed some off-line behavioral sensitivity to the sentence–picture mismatches. The long response latencies of Broca's aphasics make it likely that off-line response strategies were used.
  • Weber, K., & Indefrey, P. (2009). Syntactic priming in German–English bilinguals during sentence comprehension. Neuroimage, 46, 1164-1172. doi:10.1016/j.neuroimage.2009.03.040.

    Abstract

    A longstanding question in bilingualism is whether syntactic information is shared between the two language processing systems. We used an fMRI repetition suppression paradigm to investigate syntactic priming in reading comprehension in German–English late-acquisition bilinguals. In comparison to conventional subtraction analyses in bilingual experiments, repetition suppression has the advantage of being able to detect neuronal populations that are sensitive to properties that are shared by consecutive stimuli. In this study, we manipulated the syntactic structure between prime and target sentences. A sentence with a passive sentence structure in English was preceded either by a passive or by an active sentence in English or German. We looked for repetition suppression effects in left inferior frontal, left precentral and left middle temporal regions of interest. These regions were defined by a contrast of all non-target sentences in German and English versus the baseline of sentence-format consonant strings. We found decreases in activity (repetition suppression effects) in these regions of interest following the repetition of syntactic structure from the first to the second language and within the second language.
    Moreover, a separate behavioural experiment using a word-by-word reading paradigm similar to the fMRI experiment showed faster reading times for primed compared to unprimed English target sentences regardless of whether they were preceded by an English or a German sentence of the same structure.
    We conclude that there is interaction between the language processing systems and that at least some syntactic information is shared between a bilingual's languages with similar syntactic structures.

    Files private

    Request files
  • De Weert, C., & Levelt, W. J. M. (1976). Comparison of normal and dichoptic colour mixing. Vision Research, 16, 59-70. doi:10.1016/0042-6989(76)90077-8.

    Abstract

    Dichoptic mixtures of equiluminous components of different wavelengths were matched with a binocularly presented "monocular" mixture of appropriate chosen amounts of the same colour components. Stimuli were chosen from the region of 490-630 nm. Although satisfactory colour matches could be obtained, dichoptic mixtures differed from normal mixtures to a considerable extent. Midspectral stimuli tended to be more dominant in the dichoptic mixtures than either short or long wavelength stimuli. An attempt was made to describe the relation between monocular and dichoptic mixtures with one function containing a wavelength variable and an eye dominance parameter.
  • De Weert, C., & Levelt, W. J. M. (1976). Dichoptic brightness combinations for unequally coloured lights. Vision Research, 16, 1077-1086.
  • Wells, J. B., Christiansen, M. H., Race, D. S., Acheson, D. J., & MacDonald, M. C. (2009). Experience and sentence processing: Statistical learning and relative clause comprehension. Cognitive Psychology, 58(2), 250-271. doi:10.1016/j.cogpsych.2008.08.002.

    Abstract

    Many explanations of the difficulties associated with interpreting object relative clauses appeal to the demands that object relatives make on working memory. MacDonald and Christiansen [MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109, 35-54] pointed to variations in reading experience as a source of differences, arguing that the unique word order of object relatives makes their processing more difficult and more sensitive to the effects of previous experience than the processing of subject relatives. This hypothesis was tested in a large-scale study manipulating reading experiences of adults over several weeks. The group receiving relative clause experience increased reading speeds for object relatives more than for subject relatives, whereas a control experience group did not. The reading time data were compared to performance of a computational model given different amounts of experience. The results support claims for experience-based individual differences and an important role for statistical learning in sentence comprehension processes.
  • Weterman, M. A. J., Wilbrink, M. J. M., Janssen, I. M., Janssen, H. A. P., Berg, E. v. d., Fisher, S. E., Craig, I., & Geurts van Kessel, A. H. M. (1996). Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1)(p11;q21) breakpoint. Cytogenetic and genome research, 75(1), 2-6. doi:10.1159/000134444.

    Abstract

    A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization techniques was used to map YACs, cosmids and DNA markers from the Xp11.2 region relative to the X chromosome breakpoint of the renal cell carcinoma-associated t(X;1)(p11;q21). The position of the breakpoint could be determined as follows: Xcen-OATL2-DXS146-DXS255-SYP-t(X;1)-TFE 3-OATL1-Xpter. Fluorescence in situ hybridization experiments using TFE3-containing YACs and cosmids revealed split signals indicating that the corresponding DNA inserts span the breakpoint region. Subsequent Southern blot analysis showed that a 2.3-kb EcoRI fragment which is present in all TFE3 cosmids identified, hybridizes to aberrant restriction fragments in three independent t(X;1)-positive renal cell carcinoma DNAs. The breakpoints in these tumors are not the same, but map within a region of approximately 6.5 kb. Through preparative gel electrophoresis an (X;1) chimaeric 4.4-kb EcoRI fragment could be isolated which encompasses the breakpoint region present on der(X). Preliminary characterization of this fragment revealed the presence of a 150-bp region with a strong homology to the 5' end of the mouse TFE3 cDNA in the X-chromosome part, and a 48-bp segment in the chromosome 1-derived part identical to the 5' end of a known EST (accession number R93849). These observations suggest that a fusion gene is formed between the two corresponding genes in t(X;1)(p11;q21)-positive papillary renal cell carcinomas.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.

    Abstract

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3: 39, pp. 39. doi:10.3389/neuro.09.039.2009.

    Abstract

    If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009). During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.
  • Willems, R. M., & Hagoort, P. (2009). Broca's region: Battles are not won by ignoring half of the facts. Trends in Cognitive Sciences, 13(3), 101. doi:10.1016/j.tics.2008.12.001.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage, 47, 1992-2004. doi:10.1016/j.neuroimage.2009.05.066.

    Abstract

    Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and language information. We exploited the fact that the semantic relationship between language and different forms of action (i.e. co-speech gestures and pantomimes) is radically different. Speech and co-speech gestures are always produced together, and gestures are not unambiguously understood without speech. On the contrary, pantomimes are not necessarily produced together with speech and can be easily understood without speech. We presented speech together with these two types of communicative hand actions in matching or mismatching combinations to manipulate semantic integration load. Left and right pSTS/MTG were only involved in semantic integration of speech and pantomimes. Left IFG on the other hand was involved in integration of speech and co-speech gestures as well as of speech and pantomimes. Effective connectivity analyses showed that depending upon the semantic relationship between language and action, LIFG modulates activation levels in left pSTS.

    This suggests that integration in pSTS/MTG involves the matching of two input streams for which there is a relatively stable common object representation, whereas integration in LIFG is better characterized as the on-line construction of a new and unified representation of the input streams. In conclusion, pSTS/MTG and LIFG are differentially involved in multimodal integration, crucially depending upon the semantic relationship between the input streams.

    Additional information

    Supplementary table S1
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.
  • Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90-104. doi:10.1016/j.brainres.2009.02.057.

    Abstract

    It has been argued that we map observed actions onto our own motor system. Here we added to this issue by investigating whether hand preference influences the neural correlates of action observation of simple, essentially meaningless hand actions. Such an influence would argue for an intricate neural coupling between action production and action observation, which goes beyond effects of motor repertoire or explicit motor training, as has been suggested before. Indeed, parts of the human motor system exhibited a close coupling between action production and action observation. Ventral premotor and inferior and superior parietal cortices showed differential activation for left- and right-handers that was similar during action production as well as during action observation. This suggests that mapping observed actions onto the observer's own motor system is a core feature of action observation - at least for actions that do not have a clear goal or meaning. Basic differences in the way we act upon the world are not only reflected in neural correlates of action production, but can also influence the brain basis of action observation.
  • Willems, R. M. (2007). The neural construction of a Tinkertoy [‘Journal club’ review]. The Journal of Neuroscience, 27, 1509-1510. doi:10.1523/JNEUROSCI.0005-07.2007.
  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612. doi:10.1126/science.1139597.

    Abstract

    Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups. Phase relations supporting interactions between the groups preceded those interactions by a few milliseconds, consistent with a mechanistic role. These effects were specific in time, frequency, and space, and we therefore propose that the pattern of synchronization flexibly determines the pattern of neuronal interactions.
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
  • Zwitserlood, I. (2009). Het Corpus NGT. Levende Talen Magazine, 6, 44-45.

    Abstract

    The Corpus NGT
  • Zwitserlood, I. (2009). Het Corpus NGT en de dagelijkse lespraktijk (1). Levende Talen Magazine, 8, 40-41.

Share this page