Publications

Displaying 601 - 641 of 641
  • Van der Werff, J., Ravignani, A., & Jadoul, Y. (2024). thebeat: A Python package for working with rhythms and other temporal sequences. Behavior Research Methods, 56, 3725-3736. doi:10.3758/s13428-023-02334-8.

    Abstract

    thebeat is a Python package for working with temporal sequences and rhythms in the behavioral and cognitive sciences, as well as in bioacoustics. It provides functionality for creating experimental stimuli, and for visualizing and analyzing temporal data. Sequences, sounds, and experimental trials can be generated using single lines of code. thebeat contains functions for calculating common rhythmic measures, such as interval ratios, and for producing plots, such as circular histograms. thebeat saves researchers time when creating experiments, and provides the first steps in collecting widely accepted methods for use in timing research. thebeat is an open-source, on-going, and collaborative project, and can be extended for use in specialized subfields. thebeat integrates easily with the existing Python ecosystem, allowing one to combine our tested code with custom-made scripts. The package was specifically designed to be useful for both skilled and novice programmers. thebeat provides a foundation for working with temporal sequences onto which additional functionality can be built. This combination of specificity and plasticity should facilitate research in multiple research contexts and fields of study.
  • Vanlangendonck, F., Peeters, D., Rüschemeyer, S.-A., & Dijkstra, T. (2020). Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects. Bilingualism: Language and Cognition, 23(4), 836-844. doi:10.1017/S1366728919000531.

    Abstract

    To test the BIA+ and Multilink models’ accounts of how bilinguals process words with different degrees of cross-linguistic orthographic and semantic overlap, we conducted two experiments manipulating stimulus list composition. Dutch-English late bilinguals performed two English lexical decision tasks including the same set of cognates, interlingual homographs, English control words, and pseudowords. In one task, half of the pseudowords were replaced with Dutch words, requiring a ‘no’ response. This change from pure to mixed language list context was found to turn cognate facilitation effects into inhibition. Relative to control words, larger effects were found for cognate pairs with an increasing cross-linguistic form overlap. Identical cognates produced considerably larger effects than non-identical cognates, supporting their special status in the bilingual lexicon. Response patterns for different item types are accounted for in terms of the items’ lexical representation and their binding to ‘yes’ and ‘no’ responses in pure vs mixed lexical decision.

    Additional information

    S1366728919000531sup001.pdf
  • Verdonschot, R. G., & Masuda, H. (2020). Sumacku or Smack? The value of analyzing acoustic signals when investigating the fundamental phonological unit of language production. Psychological Research, 84(3), 547-557. doi:10.1007/s00426-018-1073-9.

    Abstract

    An ongoing debate in the speech production literature suggests that the initial building block to build up speech sounds differs between languages. That is, Germanic languages are suggested to use the phoneme, but Japanese and Chinese are proposed to use the mora or syllable, respectively. Several studies investigated this matter from a chronometric perspective (i.e., RTs and accuracy). However, a less attention has been paid to the actual acoustic utterances. The current study investigated the verbal responses of two Japanese-English bilingual groups of different proficiency levels (i.e., high and low) when naming English words and found that the presence or absence of vowel epenthesis depended on proficiency. The results indicate that: (1) English word pronunciation by low-proficient Japanese English bilinguals is likely based on their L1 (Japanese) building block and (2) that future studies would benefit from analyzing the acoustic data as well when making inferences from chronometric data.
  • Verheijen, J., Wong, S. Y., Rowe, J. H., Raymond, K., Stoddard, J., Delmonte, O. M., Bosticardo, M., Dobbs, K., Niemela, J., Calzoni, E., Pai, S.-Y., Choi, U., Yamazaki, Y., Comeau, A. M., Janssen, E., Henderson, L., Hazen, M., Berry, G., Rosenzweig, S. D., Aldhekri, H. H. and 3 moreVerheijen, J., Wong, S. Y., Rowe, J. H., Raymond, K., Stoddard, J., Delmonte, O. M., Bosticardo, M., Dobbs, K., Niemela, J., Calzoni, E., Pai, S.-Y., Choi, U., Yamazaki, Y., Comeau, A. M., Janssen, E., Henderson, L., Hazen, M., Berry, G., Rosenzweig, S. D., Aldhekri, H. H., He, M., Notarangelo, L. D., & Morava, E. (2020). Defining a new immune deficiency syndrome: MAN2B2-CDG. Journal of Allergy and Clinical Immunology, 145(3), 1008-1011. doi:10.1016/j.jaci.2019.11.016.
  • Verheijen, J., Tahata, S., Kozicz, T., Witters, P., & Morava, E. (2020). Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: An update. Genetics in Medicine, 22(2), 268-279. doi:10.1038/s41436-019-0647-2.

    Abstract

    Congenital disorders of glycosylation (CDG) are a group of clinically and genetically heterogeneous metabolic disorders. Over 150 CDG types have been described. Most CDG types are ultrarare disorders. CDG types affecting N-glycosylation are the most common type of CDG with emerging therapeutic possibilities. This review is an update on the available therapies for disorders affecting the N-linked glycosylation pathway. In the first part of the review, we highlight the clinical presentation, general principles of management, and disease-specific therapies for N-linked glycosylation CDG types, organized by organ system. The second part of the review focuses on the therapeutic strategies currently available and under development. We summarize the successful (pre-) clinical application of nutritional therapies, transplantation, activated sugars, gene therapy, and pharmacological chaperones and outline the anticipated expansion of the therapeutic possibilities in CDG. We aim to provide a comprehensive update on the treatable aspects of CDG types involving N-linked glycosylation, with particular emphasis on disease-specific treatment options for the involved organ systems; call for natural history studies; and present current and future therapeutic strategies for CDG.
  • Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O. Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O., Saffery, R., Bønnelykke, K., Reilly, S., Pennell, C. E., Wake, M., Cecil, C. A., Plomin, R., Fisher, S. E., & St Pourcain, B. (2024). Genome-wide analyses of vocabulary size in infancy and toddlerhood: Associations with Attention-Deficit/Hyperactivity Disorder and cognition-related traits. Biological Psychiatry, 95(1), 859-869. doi:10.1016/j.biopsych.2023.11.025.

    Abstract

    Background

    The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD).

    Methods

    We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models.

    Results

    Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity.

    Conclusions

    The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.
  • Vernes, S. C., & Wilkinson, G. S. (2020). Behaviour, biology, and evolution of vocal learning in bats. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1789): 20190061. doi:10.1098/rstb.2019.0061.

    Abstract

    The comparative approach can provide insight into the evolution of human speech, language and social communication by studying relevant traits in animal systems. Bats are emerging as a model system with great potential to shed light on these processes given their learned vocalizations, close social interactions, and mammalian brains and physiology. A recent framework outlined the multiple levels of investigation needed to understand vocal learning across a broad range of non-human species, including cetaceans, pinnipeds, elephants, birds and bats. Here, we apply this framework to the current state-of-the-art in bat research. This encompasses our understanding of the abilities bats have displayed for vocal learning, what is known about the timing and social structure needed for such learning, and current knowledge about the prevalence of the trait across the order. It also addresses the biology (vocal tract morphology, neurobiology and genetics) and evolution of this trait. We conclude by highlighting some key questions that should be answered to advance our understanding of the biological encoding and evolution of speech and spoken communication. This article is part of the theme issue 'What can animal communication teach us about human language?'

    Additional information

    earlier version of article on BioRxiv
  • Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., Geschwind, D., & Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. American Journal of Human Genetics, 81(6), 1232-1250. doi:10.1086/522238.

    Abstract

    We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders.
  • Vogels, J., Howcroft, D. M., Tourtouri, E. N., & Demberg, V. (2020). How speakers adapt object descriptions to listeners under load. Language, Cognition and Neuroscience, 35(1), 78-92. doi:10.1080/23273798.2019.1648839.

    Abstract

    A controversial issue in psycholinguistics is the degree to which speakers employ audience design during language production. Hypothesising that a consideration of the listener’s needs is particularly relevant when the listener is under cognitive load, we had speakers describe objects for a listener performing an easy or a difficult simulated driving task. We predicted that speakers would introduce more redundancy in their descriptions in the difficult driving task, thereby accommodating the listener’s reduced cognitive capacity. The results showed that speakers did not adapt their descriptions to a change in the listener’s cognitive load. However, speakers who had experienced the driving task themselves before and who were presented with the difficult driving task first were more redundant than other speakers. These findings may suggest that speakers only consider the listener’s needs in the presence of strong enough cues, and do not update their beliefs about these needs during the task.
  • Vonk, W., & Cozijn, R. (2007). Psycholinguïstiek: Een kwantitatieve wetenschap. Tijdschrift voor Nederlandse Taal- en Letterkunde, 123, 55-69.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2020). Does study language (Dutch versus English) influence study success of Dutch and German students in theNetherlands? Dutch Journal of Applied Linguistics, 9, 60-78. doi:10.1075/dujal.19008.dev.

    Abstract

    We investigated whether the language of instruction (Dutch or English) influenced the study success of 614 Dutch and German first-year psychology students in the Netherlands. The Dutch students who were instructed in Dutch studied in their native language (L1), the other students in a second language (L2). In addition, only the Dutch students studied in their home country. Both these variables could potentially influence study success, operationalised as the number of European Credits (ECs) the students obtained, their grades, and drop-out rates. The L1 group outperformed the three L2 groups with respect to grades, but there were no significant differences in ECs and drop-out rates (although descriptively, the L1 group still performed best). In conclusion, this study shows an advantage of studying in the L1 when it comes to grades, and thereby contributes to the current debate in the Dutch media regarding the desirability of offering degrees taught in English.
  • Wang, M.-Y., Korbmacher, M., Eikeland, R., Craven, A. R., & Specht, K. (2024). The intra‐individual reliability of1H‐MRSmeasurement in the anterior cingulate cortex across 1 year. Human Brain Mapping, 45(1): e26531. doi:10.1002/hbm.26531.

    Abstract

    Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.

    Additional information

    tables and figures data
  • Wang, X., Jahagirdar, S., Bakker, W., Lute, C., Kemp, B., Knegsel, A. v., & Saccenti, E. (2024). Discrimination of Lipogenic or Glucogenic Diet Effects in Early-Lactation Dairy Cows Using Plasma Metabolite Abundances and Ratios in Combination with Machine Learning. Metabolites, 14(4): 230. doi:10.3390/metabo14040230.

    Abstract

    During early lactation, dairy cows have a negative energy balance since their energy demands exceed their energy intake: in this study, we aimed to investigate the association between diet and plasma metabolomics profiles and how these relate to energy unbalance of course in the early-lactation stage. Holstein-Friesian cows were randomly assigned to a glucogenic (n = 15) or lipogenic (n = 15) diet in early lactation. Blood was collected in week 2 and week 4 after calving. Plasma metabolite profiles were detected using liquid chromatography–mass spectrometry (LC-MS), and a total of 39 metabolites were identified. Two plasma metabolomic profiles were available every week for each cow. Metabolite abundance and metabolite ratios were used for the analysis using the XGboost algorithm to discriminate between diet treatment and lactation week. Using metabolite ratios resulted in better discrimination performance compared with the metabolite abundances in assigning cows to a lipogenic diet or a glucogenic diet. The quality of the discrimination of performance of lipogenic diet and glucogenic diet effects improved from 0.606 to 0.753 and from 0.696 to 0.842 in week 2 and week 4 (as measured by area under the curve, AUC), when the metabolite abundance ratios were used instead of abundances. The top discriminating ratios for diet were the ratio of arginine to tyrosine and the ratio of aspartic acid to valine in week 2 and week 4, respectively. For cows fed the lipogenic diet, choline and the ratio of creatinine to tryptophan were top features to discriminate cows in week 2 vs. week 4. For cows fed the glucogenic diet, methionine and the ratio of 4-hydroxyproline to choline were top features to discriminate dietary effects in week 2 or week 4. This study shows the added value of using metabolite abundance ratios to discriminate between lipogenic and glucogenic diet and lactation weeks in early-lactation cows when using metabolomics data. The application of this research will help to accurately regulate the nutrition of lactating dairy cows and promote sustainable agricultural development.
  • Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence-picture matching electrified. Neuropsychologia, 45(4), 716-740. doi:10.1016/j.neuropsychologia.2006.08.016.

    Abstract

    An event-related brain potential experiment was carried out to investigate on-line thematic role assignment during sentence–picture matching in patients with Broca's aphasia. Subjects were presented with a picture that was followed by an auditory sentence. The sentence either matched the picture or mismatched the visual information depicted. Sentences differed in complexity, and ranged from simple active semantically irreversible sentences to passive semantically reversible sentences. ERPs were recorded while subjects were engaged in sentence–picture matching. In addition, reaction time and accuracy were measured. Three groups of subjects were tested: Broca patients (N = 10), non-aphasic patients with a right hemisphere (RH) lesion (N = 8), and healthy aged-matched controls (N = 15). The results of this study showed that, in neurologically unimpaired individuals, thematic role assignment in the context of visual information was an immediate process. This in contrast to patients with Broca's aphasia who demonstrated no signs of on-line sensitivity to the picture–sentence mismatches. The syntactic contribution to the thematic role assignment process seemed to be diminished given the reduction and even absence of P600 effects. Nevertheless, Broca patients showed some off-line behavioral sensitivity to the sentence–picture mismatches. The long response latencies of Broca's aphasics make it likely that off-line response strategies were used.
  • Waymel, A., Friedrich, P., Bastian, P.-A., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Anchoring the human olfactory system within a functional gradient. NeuroImage, 216: 116863. doi:10.1016/j.neuroimage.2020.116863.

    Abstract

    Margulies et al. (2016) demonstrated the existence of at least five independent functional connectivity gradients in the human brain. However, it is unclear how these functional gradients might link to anatomy. The dual origin theory proposes that differences in cortical cytoarchitecture originate from two trends of progressive differentiation between the different layers of the cortex, referred to as the hippocampocentric and olfactocentric systems. When conceptualising the functional connectivity gradients within the evolutionary framework of the Dual Origin theory, the first gradient likely represents the hippocampocentric system anatomically. Here we expand on this concept and demonstrate that the fifth gradient likely links to the olfactocentric system. We describe the anatomy of the latter as well as the evidence to support this hypothesis. Together, the first and fifth gradients might help to model the Dual Origin theory of the human brain and inform brain models and pathologies.
  • Weissbart, H., Kandylaki, K. D., & Reichenbach, T. (2020). Cortical tracking of surprisal during continuous speech comprehension. Journal of Cognitive Neuroscience, 32, 155-166. doi:10.1162/jocn_a_01467.

    Abstract

    Speech comprehension requires rapid online processing of a continuous acoustic signal to extract structure and meaning. Previous studies on sentence comprehension have found neural correlates of the predictability of a word given its context, as well as of the precision of such a prediction. However, they have focused on single sentences and on particular words in those sentences. Moreover, they compared neural responses to words with low and high predictability, as well as with low and high precision. However, in speech comprehension, a listener hears many successive words whose predictability and precision vary over a large range. Here, we show that cortical activity in different frequency bands tracks word surprisal in continuous natural speech and that this tracking is modulated by precision. We obtain these results through quantifying surprisal and precision from naturalistic speech using a deep neural network and through relating these speech features to EEG responses of human volunteers acquired during auditory story comprehension. We find significant cortical tracking of surprisal at low frequencies, including the delta band as well as in the higher frequency beta and gamma bands, and observe that the tracking is modulated by the precision. Our results pave the way to further investigate the neurobiology of natural speech comprehension.
  • Wesseldijk, L. W., Henechowicz, T. L., Baker, D. J., Bignardi, G., Karlsson, R., Gordon, R. L., Mosing, M. A., Ullén, F., & Fisher, S. E. (2024). Notes from Beethoven’s genome. Current Biology, 34(6), R233-R234. doi:10.1016/j.cub.2024.01.025.

    Abstract

    Rapid advances over the last decade in DNA sequencing and statistical genetics enable us to investigate the genomic makeup of individuals throughout history. In a recent notable study, Begg et al.1 used Ludwig van Beethoven’s hair strands for genome sequencing and explored genetic predispositions for some of his documented medical issues. Given that it was arguably Beethoven’s skills as a musician and composer that made him an iconic figure in Western culture, we here extend the approach and apply it to musicality. We use this as an example to illustrate the broader challenges of individual-level genetic predictions.

    Additional information

    supplemental information
  • Whitaker, K., & Guest, O. (2020). #bropenscience is broken science: Kirstie Whitaker and Olivia Guest ask how open ‘open science’ really is. The Psychologist, 33, 34-37.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.

    Abstract

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.
  • Willems, R. M., Nastase, S. A., & Milivojevic, B. (2020). Narratives for Neuroscience. Trends in Neurosciences, 43(5), 271-273. doi:10.1016/j.tins.2020.03.003.

    Abstract

    People organize and convey their thoughts according to narratives. However, neuroscientists are often reluctant to incorporate narrative stimuli into their experiments. We argue that narratives deserve wider adoption in human neuroscience because they tap into the brain’s native machinery for representing the world and provide rich variability for testing hypotheses.
  • Willems, R. M. (2007). The neural construction of a Tinkertoy [‘Journal club’ review]. The Journal of Neuroscience, 27, 1509-1510. doi:10.1523/JNEUROSCI.0005-07.2007.
  • Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., Van der Kant, A., Smith, K., & Rey, A. (2020). Non‐adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12(3), 843-858. doi:10.1111/tops.12381.

    Abstract

    Learning and processing natural language requires the ability to track syntactic relationships between words and phrases in a sentence, which are often separated by intervening material. These nonadjacent dependencies can be studied using artificial grammar learning paradigms and structured sequence processing tasks. These approaches have been used to demonstrate that human adults, infants and some nonhuman animals are able to detect and learn dependencies between nonadjacent elements within a sequence. However, learning nonadjacent dependencies appears to be more cognitively demanding than detecting dependencies between adjacent elements, and only occurs in certain circumstances. In this review, we discuss different types of nonadjacent dependencies in language and in artificial grammar learning experiments, and how these differences might impact learning. We summarize different types of perceptual cues that facilitate learning, by highlighting the relationship between dependent elements bringing them closer together either physically, attentionally, or perceptually. Finally, we review artificial grammar learning experiments in human adults, infants, and nonhuman animals, and discuss how similarities and differences observed across these groups can provide insights into how language is learned across development and how these language‐related abilities might have evolved.
  • Winter, B., Lupyan, G., Perry, L. K., Dingemanse, M., & Perlman, M. (2024). Iconicity ratings for 14,000+ English words. Behavior Research Methods, 56, 1640-1655. doi:10.3758/s13428-023-02112-6.

    Abstract

    Iconic words and signs are characterized by a perceived resemblance between aspects of their form and aspects of their meaning. For example, in English, iconic words include peep and crash, which mimic the sounds they denote, and wiggle and zigzag, which mimic motion. As a semiotic property of words and signs, iconicity has been demonstrated to play a role in word learning, language processing, and language evolution. This paper presents the results of a large-scale norming study for more than 14,000 English words conducted with over 1400 American English speakers. We demonstrate the utility of these ratings by replicating a number of existing findings showing that iconicity ratings are related to age of acquisition, sensory modality, semantic neighborhood density, structural markedness, and playfulness. We discuss possible use cases and limitations of the rating dataset, which is made publicly available.
  • Wittenburg, P., Lautenschlager, M., Thiemann, H., Baldauf, C., & Trilsbeek, P. (2020). FAIR Practices in Europe. Data Intelligence, 2(1-2), 257-263. doi:10.1162/dint_a_00048.

    Abstract

    Institutions driving fundamental research at the cutting edge such as for example from the Max Planck Society (MPS) took steps to optimize data management and stewardship to be able to address new scientific questions. In this paper we selected three institutes from the MPS from the areas of humanities, environmental sciences and natural sciences as examples to indicate the efforts to integrate large amounts of data from collaborators worldwide to create a data space that is ready to be exploited to get new insights based on data intensive science methods. For this integration the typical challenges of fragmentation, bad quality and also social differences had to be overcome. In all three cases, well-managed repositories that are driven by the scientific needs and harmonization principles that have been agreed upon in the community were the core pillars. It is not surprising that these principles are very much aligned with what have now become the FAIR principles. The FAIR principles confirm the correctness of earlier decisions and their clear formulation identified the gaps which the projects need to address.
  • Wnuk, E., Laophairoj, R., & Majid, A. (2020). Smell terms are not rara: A semantic investigation of odor vocabulary in Thai. Linguistics, 58(4), 937-966. doi:10.1515/ling-2020-0009.
  • Wolna, A., Szewczyk, J., Diaz, M., Domagalik, A., Szwed, M., & Wodniecka, Z. (2024). Domain-general and language-specific contributions to speech production in a second language: An fMRI study using functional localizers. Scientific Reports, 14: 57. doi:10.1038/s41598-023-49375-9.

    Abstract

    For bilinguals, speaking in a second language (L2) compared to the native language (L1) is usually more difficult. In this study we asked whether the difficulty in L2 production reflects increased demands imposed on domain-general or core language mechanisms. We compared the brain response to speech production in L1 and L2 within two functionally-defined networks in the brain: the Multiple Demand (MD) network and the language network. We found that speech production in L2 was linked to a widespread increase of brain activity in the domain-general MD network. The language network did not show a similarly robust differences in processing speech in the two languages, however, we found increased response to L2 production in the language-specific portion of the left inferior frontal gyrus (IFG). To further explore our results, we have looked at domain-general and language-specific response within the brain structures postulated to form a Bilingual Language Control (BLC) network. Within this network, we found a robust increase in response to L2 in the domain-general, but also in some language-specific voxels including in the left IFG. Our findings show that L2 production strongly engages domain-general mechanisms, but only affects language sensitive portions of the left IFG. These results put constraints on the current model of bilingual language control by precisely disentangling the domain-general and language-specific contributions to the difficulty in speech production in L2.

    Additional information

    supplementary materials
  • Wolna, A., Szewczyk, J., Diaz, M., Domagalik, A., Szwed, M., & Wodniecka, Z. (2024). Tracking components of bilingual language control in speech production: An fMRI study using functional localizers. Neurobiology of Language, 5(2), 315-340. doi:10.1162/nol_a_00128.

    Abstract

    When bilingual speakers switch back to speaking in their native language (L1) after having used their second language (L2), they often experience difficulty in retrieving words in their L1. This phenomenon is referred to as the L2 after-effect. We used the L2 after-effect as a lens to explore the neural bases of bilingual language control mechanisms. Our goal was twofold: first, to explore whether bilingual language control draws on domain-general or language-specific mechanisms; second, to investigate the precise mechanism(s) that drive the L2 after-effect. We used a precision fMRI approach based on functional localizers to measure the extent to which the brain activity that reflects the L2 after-effect overlaps with the language network (Fedorenko et al., 2010) and the domain-general multiple demand network (Duncan, 2010), as well as three task-specific networks that tap into interference resolution, lexical retrieval, and articulation. Forty-two Polish–English bilinguals participated in the study. Our results show that the L2 after-effect reflects increased engagement of domain-general but not language-specific resources. Furthermore, contrary to previously proposed interpretations, we did not find evidence that the effect reflects increased difficulty related to lexical access, articulation, and the resolution of lexical interference. We propose that difficulty of speech production in the picture naming paradigm—manifested as the L2 after-effect—reflects interference at a nonlinguistic level of task schemas or a general increase of cognitive control engagement during speech production in L1 after L2.

    Additional information

    supplementary materials
  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609-1612. doi:10.1126/science.1139597.

    Abstract

    Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups. Phase relations supporting interactions between the groups preceded those interactions by a few milliseconds, consistent with a mechanistic role. These effects were specific in time, frequency, and space, and we therefore propose that the pattern of synchronization flexibly determines the pattern of neuronal interactions.
  • Xiong, K., Verdonschot, R. G., & Tamaoka, K. (2020). The time course of brain activity in reading identical cognates: An ERP study of Chinese - Japanese bilinguals. Journal of Neurolinguistics, 55: 100911. doi:10.1016/j.jneuroling.2020.100911.

    Abstract

    Previous studies suggest that bilinguals' lexical access is language non-selective, especially for orthographically identical translation equivalents across languages (i.e., identical cognates). The present study investigated how such words (e.g., meaning "school" in both Chinese and Japanese) are processed in the (late) Chinese - Japanese bilingual brain. Using an L2-Japanese lexical decision task, both behavioral and electrophysiological data were collected. Reaction times (RTs), as well as the N400 component, showed that cognates are more easily recognized than non-cognates. Additionally, an early component (i.e., the N250), potentially reflecting activation at the word-form level, was also found. Cognates elicited a more positive N250 than non-cognates in the frontal region, indicating that the cognate facilitation effect occurred at an early stage of word formation for languages with logographic scripts.
  • Yang, W., Chan, A., Chang, F., & Kidd, E. (2020). Four-year-old Mandarin-speaking children’s online comprehension of relative clauses. Cognition, 196: 104103. doi:10.1016/j.cognition.2019.104103.

    Abstract

    A core question in language acquisition is whether children’s syntactic processing is experience-dependent and language-specific, or whether it is governed by abstract, universal syntactic machinery. We address this question by presenting corpus and on-line processing dat a from children learning Mandarin Chinese, a language that has been important in debates about the universality of parsing processes. The corpus data revealed that two different relative clause constructions in Mandarin are differentially used to modify syntactic subjects and objects. In the experiment, 4-year-old children’s eye-movements were recorded as they listened to the two RC construction types (e.g., Can you pick up the pig that pushed the sheep?). A permutation analysis showed that children’s ease of comprehension was closely aligned with the distributional frequencies, suggesting syntactic processing preferences are shaped by the input experience of these constructions.

    Additional information

    1-s2.0-S001002771930277X-mmc1.pdf
  • Yang, J., Cai, Q., & Tian, X. (2020). How do we segment text? Two-stage chunking operation in reading. eNeuro, 7(3): ENEURO.0425-19.2020. doi:10.1523/ENEURO.0425-19.2020.

    Abstract

    Chunking in language comprehension is a process that segments continuous linguistic input into smaller chunks that are in the reader’s mental lexicon. Effective chunking during reading facilitates disambiguation and enhances efficiency for comprehension. However, the chunking mechanisms remain elusive, especially in reading given that information arrives simultaneously yet the written systems may not have explicit cues for labeling boundaries such as Chinese. What are the mechanisms of chunking that mediates the reading of the text that contains hierarchical information? We investigated this question by manipulating the lexical status of the chunks at distinct levels in four-character Chinese strings, including the two-character local chunk and four-character global chunk. Male and female human participants were asked to make lexical decisions on these strings in a behavioral experiment, followed by a passive reading task when their electroencephalography (EEG) was recorded. The behavioral results showed that the lexical decision time of lexicalized two-character local chunks was influenced by the lexical status of the four-character global chunk, but not vice versa, which indicated the processing of global chunks possessed priority over the local chunks. The EEG results revealed that familiar lexical chunks were detected simultaneously at both levels and further processed in a different temporal order – the onset of lexical access for the global chunks was earlier than that of local chunks. These consistent results suggest a two-stage operation for chunking in reading–– the simultaneous detection of familiar lexical chunks at multiple levels around 100 ms followed by recognition of chunks with global precedence.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2020). The influence of orthography on speech production: Evidence from masked priming in word-naming and picture-naming tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(8), 1570-1589. doi:10.1037/xlm0000829.

    Abstract

    In a masked priming word-naming task, a facilitation due to the initial-segmental sound overlap for 2-character kanji prime-target pairs was affected by certain orthographic properties (Yoshihara, Nakayama, Verdonschot, & Hino, 2017). That is, the facilitation that was due to the initial mora overlap occurred only when the mora was the whole pronunciation of their initial kanji characters (i.e., match pairs; e.g., /ka-se.ki/-/ka-rjo.ku/). When the shared initial mora was only a part of the kanji characters' readings, however, there was no facilitation (i.e., mismatch pairs; e.g., /ha.tu-a.N/-/ha.ku-bu.tu/). In the present study, we used a masked priming picture-naming task to investigate whether the previous results were relevant only when the orthography of targets is visually presented. In Experiment 1. the main findings of our word-naming task were fully replicated in a picture-naming task. In Experiments 2 and 3. the absence of facilitation for the mismatch pairs were confirmed with a new set of stimuli. On the other hand, a significant facilitation was observed for the match pairs that shared the 2 initial morae (in Experiment 4), which was again consistent with the results of our word-naming study. These results suggest that the orthographic properties constrain the phonological expression of masked priming for kanji words across 2 tasks that are likely to differ in how phonology is retrieved. Specifically, we propose that orthography of a word is activated online and constrains the phonological encoding processes in these tasks.
  • Zettersten, M., Cox, C., Bergmann, C., Tsui, A. S. M., Soderstrom, M., Mayor, J., Lundwall, R. A., Lewis, M., Kosie, J. E., Kartushina, N., Fusaroli, R., Frank, M. C., Byers-Heinlein, K., Black, A. K., & Mathur, M. B. (2024). Evidence for infant-directed speech preference is consistent across large-scale, multi-site replication and meta-analysis. Open Mind, 8, 439-461. doi:10.1162/opmi_a_00134.

    Abstract

    There is substantial evidence that infants prefer infant-directed speech (IDS) to adult-directed speech (ADS). The strongest evidence for this claim has come from two large-scale investigations: i) a community-augmented meta-analysis of published behavioral studies and ii) a large-scale multi-lab replication study. In this paper, we aim to improve our understanding of the IDS preference and its boundary conditions by combining and comparing these two data sources across key population and design characteristics of the underlying studies. Our analyses reveal that both the meta-analysis and multi-lab replication show moderate effect sizes (d ≈ 0.35 for each estimate) and that both of these effects persist when relevant study-level moderators are added to the models (i.e., experimental methods, infant ages, and native languages). However, while the overall effect size estimates were similar, the two sources diverged in the effects of key moderators: both infant age and experimental method predicted IDS preference in the multi-lab replication study, but showed no effect in the meta-analysis. These results demonstrate that the IDS preference generalizes across a variety of experimental conditions and sampling characteristics, while simultaneously identifying key differences in the empirical picture offered by each source individually and pinpointing areas where substantial uncertainty remains about the influence of theoretically central moderators on IDS preference. Overall, our results show how meta-analyses and multi-lab replications can be used in tandem to understand the robustness and generalizability of developmental phenomena.

    Additional information

    supplementary data link to preprint
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2020). Language selection contributes to intrusion errors in speaking: Evidence from picture naming. Bilingualism: Language and Cognition, 23, 788-800. doi:10.1017/S1366728919000683.

    Abstract

    Bilinguals usually select the right language to speak for the particular context they are in, but sometimes the nontarget language intrudes. Despite a large body of research into language selection and language control, it remains unclear where intrusion errors originate from. These errors may be due to incorrect selection of the nontarget language at the conceptual level, or be a consequence of erroneous word selection (despite correct language selection) at the lexical level. We examined the former possibility in two language switching experiments using a manipulation that supposedly affects language selection on the conceptual level, namely whether the conversational language context was associated with the target language (congruent) or with the alternative language (incongruent) on a trial. Both experiments showed that language intrusion errors occurred more often in incongruent than in congruent contexts, providing converging evidence that language selection during concept preparation is one driving force behind language intrusion.
  • Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140: 107387. doi:10.1016/j.neuropsychologia.2020.107387.

    Abstract

    Bilingual speakers have to control their languages to avoid interference, which may be achieved by enhancing the target language and/or inhibiting the nontarget language. Previous research suggests that bilinguals use inhibition (e.g., Jackson et al., 2001), which should be reflected in the N2 component of the event-related potential (ERP) in the EEG. In the current study, we investigated the dynamics of inhibitory control by measuring the N2 during language switching and repetition in bilingual picture naming. Participants had to name pictures in Dutch or English depending on the cue. A run of same-language trials could be short (two or three trials) or long (five or six trials). We assessed whether RTs and N2 changed over the course of same-language runs, and at a switch between languages. Results showed that speakers named pictures more quickly late as compared to early in a run of same-language trials. Moreover, they made a language switch more quickly after a long run than after a short run. This run-length effect was only present in the first language (L1), not in the second language (L2). In ERPs, we observed a widely distributed switch effect in the N2, which was larger after a short run than after a long run. This effect was only present in the L2, not in the L1, although the difference was not significant between languages. In contrast, the N2 was not modulated during a same-language run. Our results suggest that the nontarget language is inhibited at a switch, but not during the repeated use of the target language.

    Additional information

    Data availability

    Files private

    Request files
  • Zhou, H., Van der Ham, S., De Boer, B., Bogaerts, L., & Raviv, L. (2024). Modality and stimulus effects on distributional statistical learning: Sound vs. sight, time vs. space. Journal of Memory and Language, 138: 104531. doi:10.1016/j.jml.2024.104531.

    Abstract

    Statistical learning (SL) is postulated to play an important role in the process of language acquisition as well as in other cognitive functions. It was found to enable learning of various types of statistical patterns across different sensory modalities. However, few studies have distinguished distributional SL (DSL) from sequential and spatial SL, or examined DSL across modalities using comparable tasks. Considering the relevance of such findings to the nature of SL, the current study investigated the modality- and stimulus-specificity of DSL. Using a within-subject design we compared DSL performance in auditory and visual modalities. For each sensory modality, two stimulus types were used: linguistic versus non-linguistic auditory stimuli and temporal versus spatial visual stimuli. In each condition, participants were exposed to stimuli that varied in their length as they were drawn from two categories (short versus long). DSL was assessed using a categorization task and a production task. Results showed that learners’ performance was only correlated for tasks in the same sensory modality. Moreover, participants were better at categorizing the temporal signals in the auditory conditions than in the visual condition, where in turn an advantage of the spatial condition was observed. In the production task participants exaggerated signal length more for linguistic signals than non-linguistic signals. Together, these findings suggest that DSL is modality- and stimulus-sensitive.

    Additional information

    link to preprint
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
  • Zioga, I., Zhou, Y. J., Weissbart, H., Martin, A. E., & Haegens, S. (2024). Alpha and beta oscillations differentially support word production in a rule-switching task. eNeuro, 11(4): ENEURO.0312-23.2024. doi:10.1523/ENEURO.0312-23.2024.

    Abstract

    Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word “tuna”, an exemplar from the same category—“seafood”—would be “shrimp”, and a feature would be “pink”). A cue indicated the task rule—exemplar or feature—either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more “complex, linguistic processes” and offers a novel task to investigate links between rule-switching, working memory, and word production.
  • Zora, H., Rudner, M., & Montell Magnusson, A. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 51(11), 2236-2249. doi:10.1111/ejn.14658.

    Abstract

    Change in linguistic prosody generates a mismatch negativity response (MMN), indicating neural representation of linguistic prosody, while change in affective prosody generates a positive response (P3a), reflecting its motivational salience. However, the neural response to concurrent affective and linguistic prosody is unknown. The present paper investigates the integration of these two prosodic features in the brain by examining the neural response to separate and concurrent processing by electroencephalography (EEG). A spoken pair of Swedish words—[ˈfɑ́ːsɛn] phase and [ˈfɑ̀ːsɛn] damn—that differed in emotional semantics due to linguistic prosody was presented to 16 subjects in an angry and neutral affective prosody using a passive auditory oddball paradigm. Acoustically matched pseudowords—[ˈvɑ́ːsɛm] and [ˈvɑ̀ːsɛm]—were used as controls. Following the constructionist concept of emotions, accentuating the conceptualization of emotions based on language, it was hypothesized that concurrent affective and linguistic prosody with the same valence—angry [ˈfɑ̀ːsɛn] damn—would elicit a unique late EEG signature, reflecting the temporal integration of affective voice with emotional semantics of prosodic origin. In accordance, linguistic prosody elicited an MMN at 300–350 ms, and affective prosody evoked a P3a at 350–400 ms, irrespective of semantics. Beyond these responses, concurrent affective and linguistic prosody evoked a late positive component (LPC) at 820–870 ms in frontal areas, indicating the conceptualization of affective prosody based on linguistic prosody. This study provides evidence that the brain does not only distinguish between these two functions of prosody but also integrates them based on language and experience.
  • Zuidema, W., French, R. M., Alhama, R. G., Ellis, K., O'Donnell, T. J. O., Sainburgh, T., & Gentner, T. Q. (2020). Five ways in which computational modeling can help advance cognitive science: Lessons from artificial grammar learning. Topics in Cognitive Science, 12(3), 925-941. doi:10.1111/tops.12474.

    Abstract

    There is a rich tradition of building computational models in cognitive science, but modeling, theoretical, and experimental research are not as tightly integrated as they could be. In this paper, we show that computational techniques—even simple ones that are straightforward to use—can greatly facilitate designing, implementing, and analyzing experiments, and generally help lift research to a new level. We focus on the domain of artificial grammar learning, and we give five concrete examples in this domain for (a) formalizing and clarifying theories, (b) generating stimuli, (c) visualization, (d) model selection, and (e) exploring the hypothesis space.

Share this page