Publications

Displaying 801 - 808 of 808
  • Zinken, J., Rossi, G., & Reddy, V. (2020). Doing more than expected: Thanking recognizes another's agency in providing assistance. In C. Taleghani-Nikazm, E. Betz, & P. Golato (Eds.), Mobilizing others: Grammar and lexis within larger activities (pp. 253-278). Amsterdam: John Benjamins.

    Abstract

    In informal interaction, speakers rarely thank a person who has complied with a request. Examining data from British English, German, Italian, Polish, and Telugu, we ask when speakers do thank after compliance. The results show that thanking treats the other’s assistance as going beyond what could be taken for granted in the circumstances. Coupled with the rareness of thanking after requests, this suggests that cooperation is to a great extent governed by expectations of helpfulness, which can be long-standing, or built over the course of a particular interaction. The higher frequency of thanking in some languages (such as English or Italian) suggests that cultures differ in the importance they place on recognizing the other’s agency in doing as requested.
  • Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. doi:10.1523/JNEUROSCI.1500-22.2023.

    Abstract

    Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.
  • Zora, H., Rudner, M., & Montell Magnusson, A. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 51(11), 2236-2249. doi:10.1111/ejn.14658.

    Abstract

    Change in linguistic prosody generates a mismatch negativity response (MMN), indicating neural representation of linguistic prosody, while change in affective prosody generates a positive response (P3a), reflecting its motivational salience. However, the neural response to concurrent affective and linguistic prosody is unknown. The present paper investigates the integration of these two prosodic features in the brain by examining the neural response to separate and concurrent processing by electroencephalography (EEG). A spoken pair of Swedish words—[ˈfɑ́ːsɛn] phase and [ˈfɑ̀ːsɛn] damn—that differed in emotional semantics due to linguistic prosody was presented to 16 subjects in an angry and neutral affective prosody using a passive auditory oddball paradigm. Acoustically matched pseudowords—[ˈvɑ́ːsɛm] and [ˈvɑ̀ːsɛm]—were used as controls. Following the constructionist concept of emotions, accentuating the conceptualization of emotions based on language, it was hypothesized that concurrent affective and linguistic prosody with the same valence—angry [ˈfɑ̀ːsɛn] damn—would elicit a unique late EEG signature, reflecting the temporal integration of affective voice with emotional semantics of prosodic origin. In accordance, linguistic prosody elicited an MMN at 300–350 ms, and affective prosody evoked a P3a at 350–400 ms, irrespective of semantics. Beyond these responses, concurrent affective and linguistic prosody evoked a late positive component (LPC) at 820–870 ms in frontal areas, indicating the conceptualization of affective prosody based on linguistic prosody. This study provides evidence that the brain does not only distinguish between these two functions of prosody but also integrates them based on language and experience.
  • Zora, H., Tremblay, A. C., Gussenhoven, C., & Liu, F. (Eds.). (2023). Crosstalk between intonation and lexical tones: Linguistic, cognitive and neuroscience perspectives. Lausanne: Frontiers Media SA. doi:10.3389/978-2-8325-3301-7.
  • Zora, H., Wester, J. M., & Csépe, V. (2023). Predictions about prosody facilitate lexical access: Evidence from P50/N100 and MMN components. International Journal of Psychophysiology, 194: 112262. doi:10.1016/j.ijpsycho.2023.112262.

    Abstract

    Research into the neural foundation of perception asserts a model where top-down predictions modulate the bottom-up processing of sensory input. Despite becoming increasingly influential in cognitive neuroscience, the precise account of this predictive coding framework remains debated. In this study, we aim to contribute to this debate by investigating how predictions about prosody facilitate speech perception, and to shed light especially on lexical access influenced by simultaneous predictions in different domains, inter alia, prosodic and semantic. Using a passive auditory oddball paradigm, we examined neural responses to prosodic changes, leading to a semantic change as in Dutch nouns canon [ˈkaːnɔn] ‘cannon’ vs kanon [kaːˈnɔn] ‘canon’, and used acoustically identical pseudowords as controls. Results from twenty-eight native speakers of Dutch (age range 18–32 years) indicated an enhanced P50/N100 complex to prosodic change in pseudowords as well as an MMN response to both words and pseudowords. The enhanced P50/N100 response to pseudowords is claimed to indicate that all relevant auditory information is still processed by the brain, whereas the reduced response to words might reflect the suppression of information that has already been encoded. The MMN response to pseudowords and words, on the other hand, is best justified by the unification of previously established prosodic representations with sensory and semantic input respectively. This pattern of results is in line with the predictive coding framework acting on multiple levels and is of crucial importance to indicate that predictions about linguistic prosodic information are utilized by the brain as early as 50 ms.
  • Zormpa, E. (2020). Memory for speaking and listening. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Zormpa, E., Meyer, A. S., & Brehm, L. (2023). In conversation, answers are remembered better than the questions themselves. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(12), 1971-1988. doi:10.1037/xlm0001292.

    Abstract

    Language is used in communicative contexts to identify and successfully transmit new information that should be later remembered. In three studies, we used question–answer pairs, a naturalistic device for focusing information, to examine how properties of conversations inform later item memory. In Experiment 1, participants viewed three pictures while listening to a recorded question–answer exchange between two people about the locations of two of the displayed pictures. In a memory recognition test conducted online a day later, participants recognized the names of pictures that served as answers more accurately than the names of pictures that appeared as questions. This suggests that this type of focus indeed boosts memory. In Experiment 2, participants listened to the same items embedded in declarative sentences. There was a reduced memory benefit for the second item, confirming the role of linguistic focus on later memory beyond a simple serial-position effect. In Experiment 3, two participants asked and answered the same questions about objects in a dialogue. Here, answers continued to receive a memory benefit, and this focus effect was accentuated by language production such that information-seekers remembered the answers to their questions better than information-givers remembered the questions they had been asked. Combined, these studies show how people’s memory for conversation is modulated by the referential status of the items mentioned and by the speaker’s roles of the conversation participants.
  • Zuidema, W., French, R. M., Alhama, R. G., Ellis, K., O'Donnell, T. J. O., Sainburgh, T., & Gentner, T. Q. (2020). Five ways in which computational modeling can help advance cognitive science: Lessons from artificial grammar learning. Topics in Cognitive Science, 12(3), 925-941. doi:10.1111/tops.12474.

    Abstract

    There is a rich tradition of building computational models in cognitive science, but modeling, theoretical, and experimental research are not as tightly integrated as they could be. In this paper, we show that computational techniques—even simple ones that are straightforward to use—can greatly facilitate designing, implementing, and analyzing experiments, and generally help lift research to a new level. We focus on the domain of artificial grammar learning, and we give five concrete examples in this domain for (a) formalizing and clarifying theories, (b) generating stimuli, (c) visualization, (d) model selection, and (e) exploring the hypothesis space.

Share this page