Publications

Displaying 801 - 819 of 819
  • Xiang, H.-D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical functional connectivity pattern in the perisylvian language networks. Cerebral Cortex, 20, 549-560. doi:10.1093/cercor/bhp119.

    Abstract

    We performed a resting-state functional connectivity study to investigate directly the functional correlations within the perisylvian language networks by seeding from 3 subregions of Broca's complex (pars opercularis, pars triangularis, and pars orbitalis) and their right hemisphere homologues. A clear topographical functional connectivity pattern in the left middle frontal, parietal, and temporal areas was revealed for the 3 left seeds. This is the first demonstration that a functional connectivity topology can be observed in the perisylvian language networks. The results support the assumption of the functional division for phonology, syntax, and semantics of Broca's complex as proposed by the memory, unification, and control (MUC) model and indicated a topographical functional organization in the perisylvian language networks, which suggests a possible division of labor for phonological, syntactic, and semantic function in the left frontal, parietal, and temporal areas.
  • Zeshan, U. (2006). Sign language of the world. In K. Brown (Ed.), Encyclopedia of language and linguistics (vol. 11) (pp. 358-365). Amsterdam: Elsevier.

    Abstract

    Although sign language-using communities exist in all areas of the world, few sign languages have been documented in detail. Sign languages occur in a variety of sociocultural contexts, ranging from sign languages used in closed village communities to officially recognized national sign languages. They may be grouped into language families on historical grounds or may participate in various language contact situations. Systematic cross-linguistic comparison reveals both significant structural similarities and important typological differences between sign languages. Focusing on information from non-Western countries, this article provides an overview of the sign languages of the world.
  • Zeshan, U. (2005). Sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 558-559). Oxford: Oxford University Press.
  • Zeshan, U. (2005). Question particles in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 564-567). Oxford: Oxford University Press.
  • Zeshan, U., & Panda, S. (2005). Professional course in Indian sign language. Mumbai: Ali Yavar Jung National Institute for the Hearing Handicapped.
  • Zeshan, U., Pfau, R., & Aboh, E. (2005). When a wh-word is not a wh-word: the case of Indian sign language. In B. Tanmoy (Ed.), Yearbook of South Asian languages and linguistics 2005 (pp. 11-43). Berlin: Mouton de Gruyter.
  • Zeshan, U. (Ed.). (2006). Interrogative and negative constructions in sign languages. Nijmegen: Ishara Press.
  • Zeshan, U., Vasishta, M. N., & Sethna, M. (2005). Implementation of Indian Sign Language in educational settings. Asia Pacific Disability Rehabilitation Journal, 16(1), 16-40.

    Abstract

    This article reports on several sub-projects of research and development related to the use of Indian Sign Language in educational settings. In many countries around the world, sign languages are now recognised as the legitimate, full-fledged languages of the deaf communities that use them. In India, the development of sign language resources and their application in educational contexts, is still in its initial stages. The work reported on here, is the first principled and comprehensive effort of establishing educational programmes in Indian Sign Language at a national level. Programmes are of several types: a) Indian Sign Language instruction for hearing people; b) sign language teacher training programmes for deaf people; and c) educational materials for use in schools for the Deaf. The conceptual approach used in the programmes for deaf students is known as bilingual education, which emphasises the acquisition of a first language, Indian Sign Language, alongside the acquisition of spoken languages, primarily in their written form.
  • Zeshan, U. (2005). Irregular negatives in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 560-563). Oxford: Oxford University Press.
  • Zhang, J., Bao, S., Furumai, R., Kucera, K. S., Ali, A., Dean, N. M., & Wang, X.-F. (2005). Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Molecular and Cellular Biology, 25, 9910-9919. doi:10.1128/​MCB.25.22.9910-9919.2005.

    Abstract

    In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.
  • Zhernakova, A., Elbers, C. C., Ferwerda, B., Romanos, J., Trynka, G., Dubois, P. C., De Kovel, C. G. F., Franke, L., Oosting, M., Barisani, D., Bardella, M. T., Joosten, L. A. B., Saavalainen, P., van Heel, D. A., Catassi, C., Netea, M. G., Wijmenga, C., & Finnish Celiac Dis Study, G. (2010). Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. American Journal of Human Genetics, 86(6), 970-977. doi:10.1016/j.ajhg.2010.05.004.

    Abstract

    Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (F(st)) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.
  • Zwitserlood, I., & Van Gijn, I. (2006). Agreement phenomena in Sign Language of the Netherlands. In P. Ackema (Ed.), Arguments and Agreement (pp. 195-229). Oxford: Oxford University Press.
  • Zwitserlood, I., van den Bogaerde, B., & Terpstra, A. (2010). De Nederlandse Gebarentaal en het ERK. Levende Talen Magazine, 2010(5), 50-51.
  • Zwitserlood, I. (2010). De Nederlandse Gebarentaal, het Corpus NGT en het ERK. Levende Talen Magazine, 2010(8), 44-45.
  • Zwitserlood, I. (2010). Laat je vingers spreken: NGT en vingerspelling. Levende Talen Magazine, 2010(2), 46-47.
  • Zwitserlood, I. (2010). Het Corpus NGT en de dagelijkse lespraktijk (2). Levende Talen Magazine, 2010(3), 47-48.
  • Zwitserlood, I. (2010). Sign language lexicography in the early 21st century and a recently published dictionary of Sign Language of the Netherlands. International Journal of Lexicography, 23, 443-476. doi:10.1093/ijl/ecq031.

    Abstract

    Sign language lexicography has thus far been a relatively obscure area in the world of lexicography. Therefore, this article will contain background information on signed languages and the communities in which they are used, on the lexicography of sign languages, the situation in the Netherlands as well as a review of a sign language dictionary that has recently been published in the Netherlands.
  • Zwitserlood, I., & Crasborn, O. (2010). Wat kunnen we leren uit een Corpus Nederlandse Gebarentaal? WAP Nieuwsbrief, 28(2), 16-18.
  • Zwitserlood, I. (2010). Verlos ons van de glos. Levende Talen Magazine, 2010(7), 40-41.

Share this page