Publications

Displaying 901 - 933 of 933
  • Warrington, N. M., Howe, L. D., Paternoster, L., Kaakinen, M., Herrala, S., Huikari, V., Wu, Y. Y., Kemp, J. P., Timpson, N. J., St Pourcain, B., Smith, G. D., Tilling, K., Jarvelin, M.-R., Pennell, C. E., Evans, D. M., Lawlor, D. A., Briollais, L., & Palmer, L. J. (2015). A genome-wide association study of body mass index across early life and childhood. International Journal of Epidemiology, 44(2), 700-712. doi:10.1093/ije/dyv077.

    Abstract

    Background: Several studies have investigated the effect of known adult body mass index (BMI) associated single nucleotide polymorphisms (SNPs) on BMI in childhood. There has been no genome-wide association study (GWAS) of BMI trajectories over childhood.
    Methods: We conducted a GWAS meta-analysis of BMI trajectories from 1 to 17 years of age in 9377 children (77 967 measurements) from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Western Australian Pregnancy Cohort (Raine) Study. Genome-wide significant loci were examined in a further 3918 individuals (48 530 measurements) from Northern Finland. Linear mixed effects models with smoothing splines were used in each cohort for longitudinal modelling of BMI.
    Results: A novel SNP, downstream from the FAM120AOS gene on chromosome 9, was detected in the meta-analysis of ALSPAC and Raine. This association was driven by a difference in BMI at 8 years (T allele of rs944990 increased BMI; PSNP = 1.52 × 10−8), with a modest association with change in BMI over time (PWald(Change) = 0.006). Three known adult BMI-associated loci (FTO, MC4R and ADCY3) and one childhood obesity locus (OLFM4) reached genome-wide significance (PWald < 1.13 × 10−8) with BMI at 8 years and/or change over time.
    Conclusions: This GWAS of BMI trajectories over childhood identified a novel locus that warrants further investigation. We also observed genome-wide significance with previously established obesity loci, making the novel observation that these loci affected both the level and the rate of change in BMI. We have demonstrated that the use of repeated measures data can increase power to allow detection of genetic loci with smaller sample sizes.
  • Warrington, N. M., Zhu, G., Dy, V., Heath, A. C., Madden, P. A. F., Hemani, G., Kemp, J. P., McMahon, G., St Pourcain, B., Timpson, N. J., Taylor, C. M., Golding, J., Lawlor, D. A., Steer, C., Montgomery, G. W., Martin, N. G., Smith, G. D., Evans, D. M., & Whitfield, J. B. (2015). Genome-wide association study of blood lead shows multiple associations near ALAD. Human Molecular Genetics, 24(13), 3871-3879. doi:10.1093/hmg/ddv112.

    Abstract

    Exposure to high levels of environmental lead, or biomarker evidence of high body lead content, is associated with anaemia, developmental and neurological deficits in children, and increased mortality in adults. Adverse effects of lead still occur despite substantial reduction in environmental exposure. There is genetic variation between individuals in blood lead concentration but the polymorphisms contributing to this have not been defined. We measured blood or erythrocyte lead content, and carried out genome-wide association analysis, on population-based cohorts of adult volunteers from Australia and UK (N = 5433). Samples from Australia were collected in two studies, in 1993–1996 and 2002–2005 and from UK in 1991–1992. One locus, at ALAD on chromosome 9, showed consistent association with blood lead across countries and evidence for multiple independent allelic effects. The most significant single nucleotide polymorphism (SNP), rs1805313 (P = 3.91 × 10−14 for lead concentration in a meta-analysis of all data), is known to have effects on ALAD expression in blood cells but other SNPs affecting ALAD expression did not affect blood lead. Variants at 12 other loci, including ABO, showed suggestive associations (5 × 10−6 >} P {> 5 × 10−8). Identification of genetic polymorphisms affecting blood lead reinforces the view that genetic factors, as well as environmental ones, are important in determining blood lead levels. The ways in which ALAD variation affects lead uptake or distribution are still to be determined.
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Watson, L. M., Wong, M. M. K., & Becker, E. B. E. (2015). Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biology, 5: 150056. doi:10.1098/rsob.150056.

    Abstract

    Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research.
  • Weber, A., Di Betta, A. M., & McQueen, J. M. (2014). Treack or trit: Adaptation to genuine and arbitrary foreign accents by monolingual and bilingual listeners. Journal of phonetics, 46, 34-51. doi:10.1016/j.wocn.2014.05.002.

    Abstract

    Two cross-modal priming experiments examined two questions about word recognition in foreign-accented speech: Does accent adaptation occur only for genuine accents markers, and does adaptation depend on language experience? We compared recognition of words spoken with canonical, genuinely-accented and arbitrarily-accented vowels. In Experiment 1, an Italian speaker pronounced vowels in English prime words canonically, or by lengthening /ɪ/ as in a genuine Italian accent (*/tri:k/ for trick), or by arbitrarily shortening /i:/ (*/trɪt/ for treat). Lexical-decision times to subsequent visual target words showed different priming effects in three listener groups. Monolingual native English listeners recognized variants with lengthened but not shortened vowels. Bilingual nonnative Italian-English listeners, who could not reliably distinguish vowel length, recognized both variants. Bilingual nonnative Dutch-English listeners also recognized both variants. In Experiment 2, bilingual Dutch-English listeners recognized Dutch words with genuinely- and arbitrarily-accented vowels (spoken by a native Italian with lengthened and shortened vowels respectively), but recognized words with canonical vowels more easily than words with accented vowels. These results suggest that adaptation to genuine accent markers arises for monolingual and bilingual listeners alike and can occur in native and nonnative languages, but that bilinguals can adapt to arbitrary accent markers better than monolinguals.
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • Wegman, J., Fonteijn, H. M., van Ekert, J., Tyborowska, A., Jansen, C., & Janzen, G. (2014). Gray and white matter correlates of navigational ability in humans. Human Brain Mapping, 35(6), 2561-2572. doi:10.1002/hbm.22349.

    Abstract

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.
  • Whelpton, M., Guðmundsdóttir Beck, þ., & Jordan, F. (2015). The semantics and morphology of household container names in Icelandic and Dutch. Language Sciences, 49, 67-81. doi:10.1016/j.langsci.2014.07.014.

    Abstract

    In this paper, we report an experiment on the naming of household containers in Dutch and Icelandic carried out as part of the Evolution of Semantic Systems project (EoSS; Majid et al., 2011). This naming experiment allows us to support and elaborate on a hypothesis by Malt et al. (2003) that productive morphology in the naming domain can have an influence on boundary placement within the extensional space. Specifically, we demonstrate that the Dutch diminutive -(t)je favours a cut between small items versus others, whereas Icelandic, which does not use the diminutive in this domain, favours a cut between large items and others. This is not a typological effect, as Dutch and Icelandic are both Germanic languages and both have diminutive morphology available in principle. We find no evidence that the diminutive produces a proliferation of terms and/or fine-grained nesting within the extensional domain. Rather, the Dutch diminutive favours a more even distribution of terms across the space whereas Icelandic favours broad inclusive terms with a number of narrower specialist terms. Further, the extensional space defined by the diminutive is not associated with its own clear prototypical exemplar. Using evidence from compounding and modification, we also consider which semantic features are prominent in differentiating categories within the domain. By far the most prominent in both languages is the inferred contents of the container. Other than contents, however, the languages differ in the range and prominence of features such as intended usage or material of composition. Our results demonstrate that in order to understand the processes that produce semantic divisions of basic object classes, we should consider fine-grained analyses of closely related languages alongside analyses of typologically different languages.
  • Whitmarsh, S., Barendregt, H., Schoffelen, J.-M., & Jensen, O. (2014). Metacognitive awareness of covert somatosensory attention corresponds to contralateral alpha power. NeuroImage, 85(2), 803-809. doi:10.1016/j.neuroimage.2013.07.031.

    Abstract

    Studies on metacognition have shown that participants can report on their performance on a wide range of perceptual, memory and behavioral tasks. We know little, however, about the ability to report on one's attentional focus. The degree and direction of somatosensory attention can, however, be readily discerned through suppression of alpha band frequencies in EEG/MEG produced by the somatosensory cortex. Such top-down attentional modulations of cortical excitability have been shown to result in better discrimination performance and decreased response times. In this study we asked whether the degree of attentional focus is also accessible for subjective report, and whether such evaluations correspond to the amount of somatosensory alpha activity. In response to auditory cues participants maintained somatosensory attention to either their left or right hand for intervals varying randomly between 5 and 32seconds, while their brain activity was recorded with MEG. Trials were terminated by a probe sound, to which they reported their level of attention on the cued hand right before probe-onset. Using a beamformer approach, we quantified the alpha activity in left and right somatosensory regions, one second before the probe. Alpha activity from contra- and ipsilateral somatosensory cortices for high versus low attention trials were compared. As predicted, the contralateral somatosensory alpha depression correlated with higher reported attentional focus. Finally, alpha activity two to three seconds before the probe-onset was correlated with attentional focus. We conclude that somatosensory attention is indeed accessible to metacognitive awareness.
  • Widlok, T., & Burenhult, N. (2014). Sehen, riechen, orientieren. Spektrum der Wissenschaft, June 2014, 76-81.
  • Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.

    Abstract

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.
  • Willems, R. M., & Francks, C. (2014). Your left-handed brain. Frontiers for Young Minds, 2: 13. doi:10.3389/frym.2014.00013.

    Abstract

    While most people prefer to use their right hand to brush their teeth, throw a ball, or hold a tennis racket, left-handers prefer to use their left hand. This is the case for around 10 per cent of all people. There was a time (not so long ago) when left-handers were stigmatized in Western (and other) communities: it was considered a bad sign if you were left-handed, and left-handed children were often forced to write with their right hand. This is nonsensical: there is nothing wrong with being left-handed, and trying to write with the non-preferred hand is frustrating for almost everybody. As a matter of fact, science can learn from left-handers, and in this paper, we discuss how this may be the case. We review why some people are left-handed and others are not, how left-handers' brains differ from right-handers’, and why scientists study left-handedness in the first place
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • De Wit, S. J., van der Werf, Y. D., Mataix-Cols, D., Trujillo, J. P., van Oppen, P., Veltman, D. J., & van den Heuvel, O. A. (2015). Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder. Psychological Medicine, 45(14), 3059-3073. doi:10.1017/S0033291715001026.

    Abstract

    Impaired emotion regulation may underlie exaggerated emotional reactivity in patients with obsessive compulsive disorder (OCD), yet instructed emotion regulation has never been studied in the disorder. METHOD: This study aimed to assess the neural correlates of emotion processing and regulation in 43 medication-free OCD patients and 38 matched healthy controls, and additionally test if these can be modulated by stimulatory (patients) and inhibitory (controls) repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (dlPFC). Participants performed an emotion regulation task during functional magnetic resonance imaging before and after a single session of randomly assigned real or sham rTMS. Effect of group and rTMS were assessed on self-reported distress ratings and brain activity in frontal-limbic regions of interest. RESULTS: Patients had higher distress ratings than controls during emotion provocation, but similar rates of distress reduction after voluntary emotion regulation. OCD patients compared with controls showed altered amygdala responsiveness during symptom provocation and diminished left dlPFC activity and frontal-amygdala connectivity during emotion regulation. Real v. sham dlPFC stimulation differentially modulated frontal-amygdala connectivity during emotion regulation in OCD patients. CONCLUSIONS: We propose that the increased emotional reactivity in OCD may be due to a deficit in emotion regulation caused by a failure of cognitive control exerted by the dorsal frontal cortex. Modulatory rTMS over the left dlPFC may influence automatic emotion regulation capabilities by influencing frontal-limbic connectivity.
  • Witteman, M. J., Bardhan, N. P., Weber, A., & McQueen, J. M. (2015). Automaticity and stability of adaptation to foreign-accented speech. Language and Speech, 52(2), 168-189. doi:10.1177/0023830914528102.

    Abstract

    In three cross-modal priming experiments we asked whether adaptation to a foreign-accented speaker is automatic, and whether adaptation can be seen after a long delay between initial exposure and test. Dutch listeners were exposed to a Hebrew-accented Dutch speaker with two types of Dutch words: those that contained [ɪ] (globally accented words), and those in which the Dutch [i] was shortened to [ɪ] (specific accent marker words). Experiment 1, which served as a baseline, showed that native Dutch participants showed facilitatory priming for globally accented, but not specific accent, words. In experiment 2, participants performed a 3.5-minute phoneme monitoring task, and were tested on their comprehension of the accented speaker 24 hours later using the same cross-modal priming task as in experiment 1. During the phoneme monitoring task, listeners were asked to detect a consonant that was not strongly accented. In experiment 3, the delay between exposure and test was extended to 1 week. Listeners in experiments 2 and 3 showed facilitatory priming for both globally accented and specific accent marker words. Together, these results show that adaptation to a foreign-accented speaker can be rapid and automatic, and can be observed after a prolonged delay in testing.
  • Witteman, M. J., Weber, A., & McQueen, J. M. (2014). Tolerance for inconsistency in foreign-accented speech. Psychonomic Bulletin & Review, 21, 512-519. doi:10.3758/s13423-013-0519-8.

    Abstract

    Are listeners able to adapt to a foreign-accented speaker who has, as is often the case, an inconsistent accent? Two groups of native Dutch listeners participated in a cross-modal priming experiment, either in a consistent-accent condition (German-accented items only) or in an inconsistent-accent condition (German-accented and nativelike pronunciations intermixed). The experimental words were identical for both groups (words with vowel substitutions characteristic of German-accented speech); additional contextual words differed in accentedness (German-accented or nativelike words). All items were spoken by the same speaker: a German native who could produce the accented forms but could also pass for a Dutch native speaker. Listeners in the consistent-accent group were able to adapt quickly to the speaker (i.e., showed facilitatory priming for words with vocalic substitutions). Listeners in the inconsistent-accent condition showed adaptation to words with vocalic substitutions only in the second half of the experiment. These results indicate that adaptation to foreign-accented speech is rapid. Accent inconsistency slows listeners down initially, but a short period of additional exposure is enough for them to adapt to the speaker. Listeners can therefore tolerate inconsistency in foreign-accented speech.
  • Wnuk, E., & Burenhult, N. (2014). Contact and isolation in hunter-gatherer language dynamics: Evidence from Maniq phonology (Aslian, Malay Peninsula). Studies in Language, 38(4), 956-981. doi:10.1075/sl.38.4.06wnu.
  • Wnuk, E., & Majid, A. (2014). Revisiting the limits of language: The odor lexicon of Maniq. Cognition, 131, 125-138. doi:10.1016/j.cognition.2013.12.008.

    Abstract

    It is widely believed that human languages cannot encode odors. While this is true for English,
    and other related languages, data from some non-Western languages challenge this
    view. Maniq, a language spoken by a small population of nomadic hunter–gatherers in
    southern Thailand, is such a language. It has a lexicon of over a dozen terms dedicated
    to smell. We examined the semantics of these smell terms in 3 experiments (exemplar
    listing, similarity judgment and off-line rating). The exemplar listing task confirmed that
    Maniq smell terms have complex meanings encoding smell qualities. Analyses of the
    similarity data revealed that the odor lexicon is coherently structured by two dimensions.
    The underlying dimensions are pleasantness and dangerousness, as verified by the off-line
    rating study. Ethnographic data illustrate that smell terms have detailed semantics tapping
    into broader cultural constructs. Contrary to the widespread view that languages cannot
    encode odors, the Maniq data show odor can be a coherent semantic domain, thus shedding
    new light on the limits of language.
  • Li, Q., Wojciechowski, R., Simpson, C. L., Hysi, P. G., Verhoeven, V. J. M., Ikram, M. K., Höhn, R., Vitart, V., Hewitt, A. W., Oexle, K., Mäkelä, K.-M., MacGregor, S., Pirastu, M., Fan, Q., Cheng, C.-Y., St Pourcain, B., McMahon, G., Kemp, J. P., Northstone, K., Rahi, J. S. and 69 moreLi, Q., Wojciechowski, R., Simpson, C. L., Hysi, P. G., Verhoeven, V. J. M., Ikram, M. K., Höhn, R., Vitart, V., Hewitt, A. W., Oexle, K., Mäkelä, K.-M., MacGregor, S., Pirastu, M., Fan, Q., Cheng, C.-Y., St Pourcain, B., McMahon, G., Kemp, J. P., Northstone, K., Rahi, J. S., Cumberland, P. M., Martin, N. G., Sanfilippo, P. G., Lu, Y., Wang, Y. X., Hayward, C., Polašek, O., Campbell, H., Bencic, G., Wright, A. F., Wedenoja, J., Zeller, T., Schillert, A., Mirshahi, A., Lackner, K., Yip, S. P., Yap, M. K. H., Ried, J. S., Gieger, C., Murgia, F., Wilson, J. F., Fleck, B., Yazar, S., Vingerling, J. R., Hofman, A., Uitterlinden, A., Rivadeneira, F., Amin, N., Karssen, L., Oostra, B. A., Zhou, X., Teo, Y.-Y., Tai, E. S., Vithana, E., Barathi, V., Zheng, Y., Siantar, R. G., Neelam, K., Shin, Y., Lam, J., Yonova-Doing, E., Venturini, C., Hosseini, S. M., Wong, H.-S., Lehtimäki, T., Kähönen, M., Raitakari, O., Timpson, N. J., Evans, D. M., Khor, C.-C., Aung, T., Young, T. L., Mitchell, P., Klein, B., van Duijn, C. M., Meitinger, T., Jonas, J. B., Baird, P. N., Mackey, D. A., Wong, T. Y., Saw, S.-M., Pärssinen, O., Stambolian, D., Hammond, C. J., Klaver, C. C. W., Williams, C., Paterson, A. D., Bailey-Wilson, J. E., & Guggenheim, J. A. (2015). Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 134, 131-146. doi:10.1007/s00439-014-1500-y.

    Abstract

    To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E−8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E−07), TOX (rs7823467, P = 3.47E−07) and LINC00340 (rs12212674, P = 1.49E−06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = −0.59, P = 2.10E−04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.
  • Wolf, M. C. (2015). Het verschil tussen hardop en stillezen wat betreft leessnelheid en tekstbegrip en de invloed hierop van fonologisch bewustzijn, benoemsnelheid en visuele aandachtsspanne. Student Undergraduate Research E-journal, 1(1), 261-264. Retrieved from http://journals.library.tudelft.nl/index.php/sure/article/view/1025.

    Abstract

    In het onderwijs wordt aangenomen dat hardop en stillezen dezelfde processen zijn. In dit onderzoek wordt gekeken naar het verschil tussen hardop en stillezen wat betreft leessnelheid en tekstbegrip bij 90 kinderen uit groep 4. Ook wordt de invloed van de cognitieve vaardigheden fonologisch bewustzijn, benoemsnelheid en visuele aandachtsspanne op de verschillende leesmodi onderzocht. De participanten lazen stil sneller, maar begrepen de tekst beter hardop. De cognitieve vaardigheden correleerden met hardop en stillezen wat betreft leessnelheid, maar hingen in beide leesmodi niet samen met tekstbegrip. Hoewel hardop en stillezen samenhangen, onderstrepen deze bevindingen dat het verschillende leesmodi zijn.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5(6), 349-361. doi:10.1089/brain.2013.0199.

    Abstract

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the BA6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2-processing especially for less proficient L2-speakers. This is the first time that a L2-proficiency-dependent laterality shift in structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right, and back to left hemisphere dominance with increasing L2-proficiency. We additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yang, Y., Dai, B., Howell, P., Wang, X., Li, K., & Lu, C. (2014). White and Grey Matter Changes in the Language Network during Healthy Aging. PLoS One, 9(9): e108077. doi: 10.1371/journal.pone.0108077.

    Abstract

    Neural structures change with age but there is no consensus on the exact processes involved. This study tested the hypothesis that white and grey matter in the language network changes during aging according to a “last in, first out” process. The fractional anisotropy (FA) of white matter and cortical thickness of grey matter were measured in 36 participants whose ages ranged from 55 to 79 years. Within the language network, the dorsal pathway connecting the mid-to-posterior superior temporal cortex (STC) and the inferior frontal cortex (IFC) was affected more by aging in both FA and thickness than the other dorsal pathway connecting the STC with the premotor cortex and the ventral pathway connecting the mid-to-anterior STC with the ventral IFC. These results were independently validated in a second group of 20 participants whose ages ranged from 50 to 73 years. The pathway that is most affected during aging matures later than the other two pathways (which are present at birth). The results are interpreted as showing that the neural structures which mature later are affected more than those that mature earlier, supporting the “last in, first out” theory.
  • Zhao, H., Zhou, W., Yao, Z., Wan, Y., Cao, J., Zhang, L., Zhao, J., Li, H., Zhou, R., Li, B., Wei, G., Zhang, Z., French, C. A., Dekker, J. D., Yang, Y., Fisher, S. E., Tucker, H. O., & Guo, X. (2015). Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Developmental Biology, 398, 242-254. doi:10.1016/j.ydbio.2014.12.007.

    Abstract

    Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.
  • Zhen, Z., Yang, Z., Huang, L., Kong, X., Wang, X., Dang, X., Huang, Y., Song, Y., & Liu, J. (2015). Quantifying interindividual variability and asymmetry of face-selective regions: A probabilistic functional atlas. NeuroImage, 113, 13-25. doi:10.1016/j.neuroimage.2015.03.010.

    Abstract

    Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • Zora, H., Schwarz, I.-C., & Heldner, M. (2015). Neural correlates of lexical stress: Mismatch negativity reflects fundamental frequency and intensity. NeuroReport, 26(13), 791-796. doi:10.1097/WNR.0000000000000426.

    Abstract

    Neural correlates of lexical stress were studied using the mismatch negativity (MMN) component in event-related potentials. The MMN responses were expected to reveal the encoding of stress information into long-term memory and the contributions of prosodic features such as fundamental frequency (F0) and intensity toward lexical access. In a passive oddball paradigm, neural responses to changes in F0, intensity, and in both features together were recorded for words and pseudowords. The findings showed significant differences not only between words and pseudowords but also between prosodic features. Early processing of prosodic information in words was indexed by an intensity-related MMN and an F0-related P200. These effects were stable at right-anterior and mid-anterior regions. At a later latency, MMN responses were recorded for both words and pseudowords at the mid-anterior and posterior regions. The P200 effect observed for F0 at the early latency for words developed into an MMN response. Intensity elicited smaller MMN for pseudowords than for words. Moreover, a larger brain area was recruited for the processing of words than for the processing of pseudowords. These findings suggest earlier and higher sensitivity to prosodic changes in words than in pseudowords, reflecting a language-related process. The present study, therefore, not only establishes neural correlates of lexical stress but also confirms the presence of long-term memory traces for prosodic information in the brain.
  • De Zubicaray, G. I., Hartsuiker, R. J., & Acheson, D. J. (2014). Mind what you say—general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 8: 514. doi:10.3389%2Ffnhum.2014.00514.

    Abstract

    For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech.

    This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
  • Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G., & Jensen, O. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10): e1001965. doi:10.1371/journal.pbio.1001965.

    Abstract

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.

Share this page