Publications

Displaying 801 - 804 of 804
  • Zora, H., Riad, T., & Ylinen, S. (2019). Prosodically controlled derivations in the mental lexicon. Journal of Neurolinguistics, 52: 100856. doi:10.1016/j.jneuroling.2019.100856.

    Abstract

    Swedish morphemes are classified as prosodically specified or prosodically unspecified, depending on lexical or phonological stress, respectively. Here, we investigate the allomorphy of the suffix -(i)sk, which indicates the distinction between lexical and phonological stress; if attached to a lexically stressed morpheme, it takes a non-syllabic form (-sk), whereas if attached to a phonologically stressed morpheme, an epenthetic vowel is inserted (-isk). Using mismatch negativity (MMN), we explored the neural processing of this allomorphy across lexically stressed and phonologically stressed morphemes. In an oddball paradigm, participants were occasionally presented with congruent and incongruent derivations, created by the suffix -(i)sk, within the repetitive presentation of their monomorphemic stems. The results indicated that the congruent derivation of the lexically stressed stem elicited a larger MMN than the incongruent sequences of the same stem and the derivational suffix, whereas after the phonologically stressed stem a non-significant tendency towards an opposite pattern was observed. We argue that the significant MMN response to the congruent derivation in the lexical stress condition is in line with lexical MMN, indicating a holistic processing of the sequence of lexically stressed stem and derivational suffix. The enhanced MMN response to the incongruent derivation in the phonological stress condition, on the other hand, is suggested to reflect combinatorial processing of the sequence of phonologically stressed stem and derivational suffix. These findings bring a new aspect to the dual-system approach to neural processing of morphologically complex words, namely the specification of word stress.
  • Zormpa, E., Meyer, A. S., & Brehm, L. (2019). Slow naming of pictures facilitates memory for their names. Psychonomic Bulletin & Review, 26(5), 1675-1682. doi:10.3758/s13423-019-01620-x.

    Abstract

    Speakers remember their own utterances better than those of their interlocutors, suggesting that language production is beneficial to memory. This may be partly explained by a generation effect: The act of generating a word is known to lead to a memory advantage (Slamecka & Graf, 1978). In earlier work, we showed a generation effect for recognition of images (Zormpa, Brehm, Hoedemaker, & Meyer, 2019). Here, we tested whether the recognition of their names would also benefit from name generation. Testing whether picture naming improves memory for words was our primary aim, as it serves to clarify whether the representations affected by generation are visual or conceptual/lexical. A secondary aim was to assess the influence of processing time on memory. Fifty-one participants named pictures in three conditions: after hearing the picture name (identity condition), backward speech, or an unrelated word. A day later, recognition memory was tested in a yes/no task. Memory in the backward speech and unrelated conditions, which required generation, was superior to memory in the identity condition, which did not require generation. The time taken by participants for naming was a good predictor of memory, such that words that took longer to be retrieved were remembered better. Importantly, that was the case only when generation was required: In the no-generation (identity) condition, processing time was not related to recognition memory performance. This work has shown that generation affects conceptual/lexical representations, making an important contribution to the understanding of the relationship between memory and language.
  • Zormpa, E., Brehm, L., Hoedemaker, R. S., & Meyer, A. S. (2019). The production effect and the generation effect improve memory in picture naming. Memory, 27(3), 340-352. doi:10.1080/09658211.2018.1510966.

    Abstract

    The production effect (better memory for words read aloud than words read silently) and the picture superiority effect (better memory for pictures than words) both improve item memory in a picture naming task (Fawcett, J. M., Quinlan, C. K., & Taylor, T. L. (2012). Interplay of the production and picture superiority effects: A signal detection analysis. Memory (Hove, England), 20(7), 655–666. doi:10.1080/09658211.2012.693510). Because picture naming requires coming up with an appropriate label, the generation effect (better memory for generated than read words) may contribute to the latter effect. In two forced-choice memory experiments, we tested the role of generation in a picture naming task on later recognition memory. In Experiment 1, participants named pictures silently or aloud with the correct name or an unreadable label superimposed. We observed a generation effect, a production effect, and an interaction between the two. In Experiment 2, unreliable labels were included to ensure full picture processing in all conditions. In this experiment, we observed a production and a generation effect but no interaction, implying the effects are dissociable. This research demonstrates the separable roles of generation and production in picture naming and their impact on memory. As such, it informs the link between memory and language production and has implications for memory asymmetries between language production and comprehension.

    Additional information

    pmem_a_1510966_sm9257.pdf
  • De Zubicaray, G. I., Acheson, D. J., & Hartsuiker, R. J. (Eds.). (2013). Mind what you say - general and specific mechanisms for monitoring in speech production [Research topic] [Special Issue]. Frontiers in Human Neuroscience. Retrieved from http://www.frontiersin.org/human_neuroscience/researchtopics/mind_what_you_say_-_general_an/1197.

    Abstract

    Psycholinguistic research has typically portrayed speech production as a relatively automatic process. This is because when errors are made, they occur as seldom as one in every thousand words we utter. However, it has long been recognised that we need some form of control over what we are currently saying and what we plan to say. This capacity to both monitor our inner speech and self-correct our speech output has often been assumed to be a property of the language comprehension system. More recently, it has been demonstrated that speech production benefits from interfacing with more general cognitive processes such as selective attention, short-term memory (STM) and online response monitoring to resolve potential conflict and successfully produce the output of a verbal plan. The conditions and levels of representation according to which these more general planning, monitoring and control processes are engaged during speech production remain poorly understood. Moreover, there remains a paucity of information about their neural substrates, despite some of the first evidence of more general monitoring having come from electrophysiological studies of error related negativities (ERNs). While aphasic speech errors continue to be a rich source of information, there has been comparatively little research focus on instances of speech repair. The purpose of this Frontiers Research Topic is to provide a forum for researchers to contribute investigations employing behavioural, neuropsychological, electrophysiological, neuroimaging and virtual lesioning techniques. In addition, while the focus of the research topic is on novel findings, we welcome submission of computational simulations, review articles and methods papers.

Share this page