Publications

Displaying 1 - 92 of 92
  • Ameka, F. K. (2005). "The woman is seeable" and "The woman perceives seeing": Undergoer voice constructions in Ewe and Likpe. In M. Dakubu, & E. Osam (Eds.), Studies in languages of the Volta Basin (pp. 43-62). Legon: University of Ghana. Department of Linguistics.
  • Ameka, F. K. (2005). Forms of secondary predication in serializing languages: On depictives in Ewe. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification: The typology of depictives (pp. 335-378). Oxford: Oxford University Press.
  • Ameka, F. K. (2005). Multiverb constructions on the West African littoral: Microvariation and areal typology. In M. Vulchanova, & T. A. Afarli (Eds.), Grammar and beyond: Essays in honour of Lars Hellan (pp. 15-42). Oslo: Novus.
  • Baayen, R. H. (2005). Data mining at the intersection of psychology and linguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 69-83). Mahwah: Erlbaum.
  • Bauer, B. L. M. (2000). From Latin to French: The linear development of word order. In B. Bichakjian, T. Chernigovskaya, A. Kendon, & A. Müller (Eds.), Becoming Loquens: More studies in language origins (pp. 239-257). Frankfurt am Main: Lang.
  • Bauer, B. L. M. (2005). Innovation in Old French syntax and its Latin origins. In S. Kiss, L. Mondin, & G. Salvi (Eds.), Latin et langues romanes: Etudes de linguistique offertes à Jozsef Herman à l’occasion de son 80ème anniversaire (pp. 507-521). Tübingen: Niemeyer.
  • Bauer, B. L. M. (2005). Living in two worlds. In W. R. Louis (Ed.), Burnt orange Britannia (pp. 732-744). Austin: Harry Ransom Humanities Research Center.
  • Bohnemeyer, J. (2000). Where do pragmatic meanings come from? In W. Spooren, T. Sanders, & C. van Wijk (Eds.), Samenhang in Diversiteit; Opstellen voor Leo Noorman, aangeboden bij gelegenheid van zijn zestigste verjaardag (pp. 137-153).
  • Bowerman, M. (2005). Why can't you "open" a nut or "break" a cooked noodle? Learning covert object categories in action word meanings. In L. Gershkoff-Stowe, & D. H. Rakison (Eds.), Building object categories in developmental time (pp. 209-243). Mahwah, NJ: Erlbaum.
  • Bowerman, M. (2005). Linguistics. In B. Hopkins (Ed.), The Cambridge encyclopedia of child development (pp. 497-501). Cambridge: Cambridge University Press.
  • Bowerman, M. (2000). Where do children's word meanings come from? Rethinking the role of cognition in early semantic development. In L. Nucci, G. Saxe, & E. Turiel (Eds.), Culture, thought and development (pp. 199-230). Mahwah, NJ: Lawrence Erlbaum.
  • Brown, P. (2000). ’He descended legs-upwards‘: Position and motion in Tzeltal frog stories. In E. V. Clark (Ed.), Proceedings of the 30th Stanford Child Language Research Forum (pp. 67-75). Stanford: CSLI.

    Abstract

    How are events framed in narrative? Speakers of English (a 'satellite-framed' language), when 'reading' Mercer Mayer's wordless picture book 'Frog, Where Are You?', find the story self-evident: a boy has a dog and a pet frog; the frog escapes and runs away; the boy and dog look for it across hill and dale, through woods and over a cliff, until they find it and return home with a baby frog child of the original pet frog. In Tzeltal, as spoken in a Mayan community in southern Mexico, the story is somewhat different, because the language structures event descriptions differently. Tzeltal is in part a 'verb-framed' language with a set of Path-encoding motion verbs, so that the bare bones of the Frog story can consist of verbs translating as 'go'/'pass by'/'ascend'/ 'descend'/ 'arrive'/'return'. But Tzeltal also has satellite-framing adverbials, grammaticized from the same set of motion verbs, which encode the direction of motion or the orientation of static arrays. Furthermore, vivid pictorial detail is provided by positional verbs which can describe the position of the Figure as an outcome of a motion event; motion and stasis are thereby combined in a single event description. (For example:  jipot jawal "he has been thrown (by the deer) lying­_face_upwards_spread-eagled". This paper compares the use of these three linguistic resources in Frog Story narratives from  Tzeltal adults and children, looks at their development in the narratives of children, and considers the results in relation to those from Berman and Slobin's (1996) comparative study of adult and child Frog stories.
  • Brown, P. (2005). Linguistic politeness. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the science of language and society (pp. 1410-1416). Berlin: Mouton de Gruyter.

    Abstract

    This is an encyclopedia entry surveying research and theoretical approaches to politeness phenomena in language usage.
  • Brown, P., & Levinson, S. C. (2000). Frames of spatial reference and their acquisition in Tenejapan Tzeltal. In L. Nucci, G. Saxe, & E. Turiel (Eds.), Culture, thought, and development (pp. 167-197). Mahwah, NJ: Erlbaum.
  • Brown, C. M., & Hagoort, P. (2000). On the electrophysiology of language comprehension: Implications for the human language system. In M. W. Crocker, M. Pickering, & C. Clifton jr. (Eds.), Architectures and mechanisms for language processing (pp. 213-237). Cambridge University Press.
  • Brown, C. M., Hagoort, P., & Kutas, M. (2000). Postlexical integration processes during language comprehension: Evidence from brain-imaging research. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd., pp. 881-895). Cambridge, MA: MIT Press.
  • Cabrelli, J., Chaouch-Orozco, A., González Alonso, J., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2023). Introduction - Multilingualism: Language, brain, and cognition. In J. Cabrelli, A. Chaouch-Orozco, J. González Alonso, S. M. Pereira Soares, E. Puig-Mayenco, & J. Rothman (Eds.), The Cambridge handbook of third language acquisition (pp. 1-20). Cambridge: Cambridge University Press. doi:10.1017/9781108957823.001.

    Abstract

    This chapter provides an introduction to the handbook. It succintly overviews the key questions in the field of L3/Ln acquisition and summarizes the scope of all the chapters included. The chapter ends by raising some outstanding questions that the field needs to address.
  • Corps, R. E. (2023). What do we know about the mechanisms of response planning in dialog? In Psychology of Learning and Motivation (pp. 41-81). doi:10.1016/bs.plm.2023.02.002.

    Abstract

    During dialog, interlocutors take turns at speaking with little gap or overlap between their contributions. But language production in monolog is comparatively slow. Theories of dialog tend to agree that interlocutors manage these timing demands by planning a response early, before the current speaker reaches the end of their turn. In the first half of this chapter, I review experimental research supporting these theories. But this research also suggests that planning a response early, while simultaneously comprehending, is difficult. Does response planning need to be this difficult during dialog? In other words, is early-planning always necessary? In the second half of this chapter, I discuss research that suggests the answer to this question is no. In particular, corpora of natural conversation demonstrate that speakers do not directly respond to the immediately preceding utterance of their partner—instead, they continue an utterance they produced earlier. This parallel talk likely occurs because speakers are highly incremental and plan only part of their utterance before speaking, leading to pauses, hesitations, and disfluencies. As a result, speakers do not need to engage in extensive advance planning. Thus, laboratory studies do not provide a full picture of language production in dialog, and further research using naturalistic tasks is needed.
  • Creemers, A. (2023). Morphological processing in spoken-word recognition. In D. Crepaldi (Ed.), Linguistic morphology in the mind and brain (pp. 50-64). New York: Routledge.

    Abstract

    Most psycholinguistic studies on morphological processing have examined the role of morphological structure in the visual modality. This chapter discusses morphological processing in the auditory modality, which is an area of research that has only recently received more attention. It first discusses why results in the visual modality cannot straightforwardly be applied to the processing of spoken words, stressing the importance of acknowledging potential modality effects. It then gives a brief overview of the existing research on the role of morphology in the auditory modality, for which an increasing number of studies report that listeners show sensitivity to morphological structure. Finally, the chapter highlights insights gained by looking at morphological processing not only in reading, but also in listening, and it discusses directions for future research
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A. (2000). How the ear comes to hear. In New Trends in Modern Linguistics [Part of Annual catalogue series] (pp. 6-10). Tokyo, Japan: Maruzen Publishers.
  • Cutler, A. (2000). Hoe het woord het oor verovert. In Voordrachten uitgesproken tijdens de uitreiking van de SPINOZA-premies op 15 februari 2000 (pp. 29-41). The Hague, The Netherlands: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
  • Cutler, A. (2000). Real words, phantom words and impossible words. In D. Burnham, S. Luksaneeyanawin, C. Davis, & M. Lafourcade (Eds.), Interdisciplinary approaches to language processing: The international conference on human and machine processing of language and speech (pp. 32-42). Bangkok: NECTEC.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dingemanse, M. (2023). Ideophones. In E. Van Lier (Ed.), The Oxford handbook of word classes (pp. 466-476). Oxford: Oxford University Press.

    Abstract

    Many of the world’s languages feature an open lexical class of ideophones, words whose marked forms and sensory meanings invite iconic associations. Ideophones (also known as mimetics or expressives) are well-known from languages in Asia, Africa and the Americas, where they often form a class on the same order of magnitude as other major word classes and take up a considerable functional load as modifying expressions or predicates. Across languages, commonalities in the morphosyntactic behaviour of ideophones can be related to their nature and origin as vocal depictions. At the same time there is ample room for linguistic diversity, raising the need for fine-grained grammatical description of ideophone systems. As vocal depictions, ideophones often form a distinct lexical stratum seemingly conjured out of thin air; but as conventionalized words, they inevitably grow roots in local linguistic systems, showing relations to adverbs, adjectives, verbs and other linguistic resources devoted to modification and predication
  • Dingemanse, M. (2023). Interjections. In E. Van Lier (Ed.), The Oxford handbook of word classes (pp. 477-491). Oxford: Oxford University Press.

    Abstract

    No class of words has better claims to universality than interjections. At the same time, no category has more variable content than this one, traditionally the catch-all basket for linguistic items that bear a complicated relation to sentential syntax. Interjections are a mirror reflecting methodological and theoretical assumptions more than a coherent linguistic category that affords unitary treatment. This chapter focuses on linguistic items that typically function as free-standing utterances, and on some of the conceptual, methodological, and theoretical questions generated by such items. A key move is to study these items in the setting of conversational sequences, rather than from the “flatland” of sequential syntax. This makes visible how some of the most frequent interjections streamline everyday language use and scaffold complex language. Approaching interjections in terms of their sequential positions and interactional functions has the potential to reveal and explain patterns of universality and diversity in interjections.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Drijvers, L., & Mazzini, S. (2023). Neural oscillations in audiovisual language and communication. In Oxford Research Encyclopedia of Neuroscience. Oxford: Oxford University Press. doi:10.1093/acrefore/9780190264086.013.455.

    Abstract

    How do neural oscillations support human audiovisual language and communication? Considering the rhythmic nature of audiovisual language, in which stimuli from different sensory modalities unfold over time, neural oscillations represent an ideal candidate to investigate how audiovisual language is processed in the brain. Modulations of oscillatory phase and power are thought to support audiovisual language and communication in multiple ways. Neural oscillations synchronize by tracking external rhythmic stimuli or by re-setting their phase to presentation of relevant stimuli, resulting in perceptual benefits. In particular, synchronized neural oscillations have been shown to subserve the processing and the integration of auditory speech, visual speech, and hand gestures. Furthermore, synchronized oscillatory modulations have been studied and reported between brains during social interaction, suggesting that their contribution to audiovisual communication goes beyond the processing of single stimuli and applies to natural, face-to-face communication.

    There are still some outstanding questions that need to be answered to reach a better understanding of the neural processes supporting audiovisual language and communication. In particular, it is not entirely clear yet how the multitude of signals encountered during audiovisual communication are combined into a coherent percept and how this is affected during real-world dyadic interactions. In order to address these outstanding questions, it is fundamental to consider language as a multimodal phenomenon, involving the processing of multiple stimuli unfolding at different rhythms over time, and to study language in its natural context: social interaction. Other outstanding questions could be addressed by implementing novel techniques (such as rapid invisible frequency tagging, dual-electroencephalography, or multi-brain stimulation) and analysis methods (e.g., using temporal response functions) to better understand the relationship between oscillatory dynamics and efficient audiovisual communication.
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Düngen, D., Sarfati, M., & Ravignani, A. (2023). Cross-species research in biomusicality: Methods, pitfalls, and prospects. In E. H. Margulis, P. Loui, & D. Loughridge (Eds.), The science-music borderlands: Reckoning with the past and imagining the future (pp. 57-95). Cambridge, MA, USA: The MIT Press. doi:10.7551/mitpress/14186.003.0008.
  • Eisenbeiss, S. (2000). The acquisition of Determiner Phrase in German child language. In M.-A. Friedemann, & L. Rizzi (Eds.), The Acquisition of Syntax (pp. 26-62). Harlow, UK: Pearson Education Ltd.
  • Ekerdt, C., Takashima, A., & McQueen, J. M. (2023). Memory consolidation in second language neurocognition. In K. Morgan-Short, & J. G. Van Hell (Eds.), The Routledge handbook of second language acquisition and neurolinguistics. Oxfordshire: Routledge.

    Abstract

    Acquiring a second language (L2) requires newly learned information to be integrated with existing knowledge. It has been proposed that several memory systems work together to enable this process of rapidly encoding new information and then slowly incorporating it with existing knowledge, such that it is consolidated and integrated into the language network without catastrophic interference. This chapter focuses on consolidation of L2 vocabulary. First, the complementary learning systems model is outlined, along with the model’s predictions regarding lexical consolidation. Next, word learning studies in first language (L1) that investigate the factors playing a role in consolidation, and the neural mechanisms underlying this, are reviewed. Using the L1 memory consolidation literature as background, the chapter then presents what is currently known about memory consolidation in L2 word learning. Finally, considering what is already known about L1 but not about L2, future research investigating memory consolidation in L2 neurocognition is proposed.
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2000). On linguocentrism. In M. Pütz, & M. H. Verspoor (Eds.), Explorations in linguistic relativity (pp. 125-157). Amsterdam: Benjamins.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.

    Abstract

    This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Janzen, G., Herrmann, T., Katz, S., & Schweizer, K. (2000). Oblique Angled Intersections and Barriers: Navigating through a Virtual Maze. In Spatial Cognition II (pp. 277-294). Berlin: Springer.

    Abstract

    The configuration of a spatial layout has a substantial effect on the acquisition and the representation of the environment. In four experiments, we investigated navigation difficulties arising at oblique angled intersections. In the first three studies we investigated specific arrow-fork configurations. In dependence on the branch subjects use to enter the intersection different decision latencies and numbers of errors arise. If subjects see the intersection as a fork, it is more difficult to find the correct way as if it is seen as an arrow. In a fourth study we investigated different heuristics people use while making a detour around a barrier. Detour behaviour varies with the perspective. If subjects learn and navigate through the maze in a field perspective they use a heuristic of preferring right angled paths. If they have a view from above and acquire their knowledge in an observer perspective they use oblique angled paths more often.

    Files private

    Request files
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Jordanoska, I. (2023). Focus marking and size in some Mande and Atlantic languages. In N. Sumbatova, I. Kapitonov, M. Khachaturyan, S. Oskolskaya, & V. Verhees (Eds.), Songs and Trees: Papers in Memory of Sasha Vydrina (pp. 311-343). St. Petersburg: Institute for Linguistic Studies and Russian Academy of Sciences.

    Abstract

    This paper compares the focus marking systems and the focus size that can be expressed by the different focus markings in four Mande and three Atlantic languages and varieties, namely: Bambara, Dyula, Kakabe, Soninke (Mande), Wolof, Jóola Foñy and Jóola Karon (Atlantic). All of these languages are known to mark focus morphosyntactically, rather than prosodically, as the more well-studied Germanic languages do. However, the Mande languages under discussion use only morphology, in the form of a particle that follows the focus, while the Atlantic ones use a more complex morphosyntactic system in which focus is marked by morphology in the verbal complex and movement of the focused term. It is shown that while there are some syntactic restrictions to how many different focus sizes can be marked in a distinct way, there is also a certain degree of arbitrariness as to which focus sizes are marked in the same way as each other.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W. (2000). Der Mythos vom Sprachverfall. In Berlin-Brandenburgische Akademie der Wissenschaften (Ed.), Jahrbuch 1999: Berlin-Brandenburgische Akademie der Wissenschaften (pp. 139-158). Berlin: Akademie Verlag.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W. (2000). Prozesse des Zweitspracherwerbs. In H. Grimm (Ed.), Enzyklopädie der Psychologie: Vol. 3 (pp. 538-570). Göttingen: Hogrefe.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M. (1966). The perceptual conflict in binocular rivalry. In M. A. Bouman (Ed.), Studies in perception: Dedicated to M.A. Bouman (pp. 47-60). Soesterberg: Institute for Perception RVO-TNO.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levinson, S. C. (2023). On cognitive artifacts. In R. Feldhay (Ed.), The evolution of knowledge: A scientific meeting in honor of Jürgen Renn (pp. 59-78). Berlin: Max Planck Institute for the History of Science.

    Abstract

    Wearing the hat of a cognitive anthropologist rather than an historian, I will try to amplify the ideas of Renn’s cited above. I argue that a particular subclass of material objects, namely “cognitive artifacts,” involves a close coupling of mind and artifact that acts like a brain prosthesis. Simple cognitive artifacts are external objects that act as aids to internal
    computation, and not all cultures have extended inventories of these. Cognitive artifacts in this sense (e.g., calculating or measuring devices) have clearly played a central role in the history of science. But the notion can be widened to take in less material externalizations of cognition, like writing and language itself. A critical question here is how and why this close coupling of internal computation and external device actually works, a rather neglected question to which I’ll suggest some answers.

    Additional information

    link to book
  • Magyari, L. (2005). A nyelv miért nem olyan, mint a szem? (Why is language not like vertebrate eye?). In J. Gervain, K. Kovács, Á. Lukács, & M. Racsmány (Eds.), Az ezer arcú elme (The mind with thousand faces) (first edition, pp. 452-460). Budapest: Akadémiai Kiadó.
  • Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. In T. Trabasso, J. Sabatini, D. W. Massaro, & R. C. Calfee (Eds.), From orthography to pedagogy: Essays in honor of Richard L. Venezky. (pp. 37-61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Abstract

    Words are fundamental to reading and yet over a century of research has not masked the controversies around how words are recognized. We review some old and new research that disproves simple ideas such as words are read as wholes or are simply mapped directly to spoken language. We also review theory and research relevant to the question of sublexical influences in word recognition. We describe orthography and phonology, how they are related to each other and describe a series of new experiments on how these sources of information are processed. Tasks include lexical decision, perceptual identification, and naming. Dependent measures are reaction time, accuracy of performance, and a new measure, initial phoneme duration, that refers to the duration of the first phoneme when the target word is pronounced. Important factors in resolving the controversies include the realization that reading has multiple determinants, as well as evaluating the type of task, proper controls such as familiarity of the test items and accuracy of measurement of the response. We also address potential limitations with measures related to the mapping between orthography and phonology, and show that the existence of a sound-to-spelling consistency effect does not require interactive activation, but can be explained and predicted by a feedforward model, the Fuzzy logical model of perception.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • Ozyurek, A. (2000). Differences in spatial conceptualization in Turkish and English discourse: Evidence from both speech and gesture. In A. Goksel, & C. Kerslake (Eds.), Studies on Turkish and Turkic languages (pp. 263-272). Wiesbaden: Harrassowitz.
  • Ozyurek, A. (2000). The influence of addressee location on spatial language and representational gestures of direction. In D. McNeill (Ed.), Language and gesture (pp. 64-83). Cambridge: Cambridge University Press.
  • Pereira Soares, S. M., Chaouch-Orozco, A., & González Alonso, J. (2023). Innovations and challenges in acquisition and processing methodologies for L3/Ln. In J. Cabrelli, A. Chaouch-Orozco, J. González Alonso, S. M. Pereira Soares, E. Puig-Mayenco, & J. Rothman (Eds.), The Cambridge handbook of third language acquisition (pp. 661-682). Cambridge: Cambridge University Press. doi:10.1017/9781108957823.026.

    Abstract

    The advent of psycholinguistic and neurolinguistic methodologies has provided new insights into theories of language acquisition. Sequential multilingualism is no exception, and some of the most recent work on the subject has incorporated a particular focus on language processing. This chapter surveys some of the work on the processing of lexical and morphosyntactic aspects of third or further languages, with different offline and online methodologies. We also discuss how, while increasingly sophisticated techniques and experimental designs have improved our understanding of third language acquisition and processing, simpler but clever designs can answer pressing questions in our theoretical debate. We provide examples of both sophistication and clever simplicity in experimental design, and argue that the field would benefit from incorporating a combination of both concepts into future work.
  • Plomp, R., & Levelt, W. J. M. (1966). Perception of tonal consonance. In M. A. Bouman (Ed.), Studies in Perception - dedicated to M.A. Bouman (pp. 105-118). Soesterberg: Institute for Perception RVO-TNO.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Raviv, L., & Kirby, S. (2023). Self domestication and the cultural evolution of language. In J. J. Tehrani, J. Kendal, & R. Kendal (Eds.), The Oxford Handbook of Cultural Evolution. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780198869252.013.60.

    Abstract

    The structural design features of human language emerge in the process of cultural evolution, shaping languages over the course of communication, learning, and transmission. What role does this leave biological evolution? This chapter highlights the biological bases and preconditions that underlie the particular type of prosocial behaviours and cognitive inference abilities that are required for languages to emerge via cultural evolution to begin with.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. In J. M. Bower (Ed.), Computational Neuroscience: Trends in Research 2000 (pp. 987-994). Amsterdam: Elsevier.
  • Schiller, N. O. (2005). Verbal self-monitoring. In A. Cutler (Ed.), Twenty-first Century Psycholinguistics: Four cornerstones (pp. 245-261). Lawrence Erlbaum: Mahwah [etc.].
  • Senft, G. (2005). Bronislaw Malinowski and linguistic pragmatics. In P. Cap (Ed.), Pragmatics today (pp. 139-155). Frankfurt am Main: Lang.
  • Senft, G. (2000). Introduction. In G. Senft (Ed.), Systems of nominal classification (pp. 1-10). Cambridge University Press.
  • Senft, G. (2000). What do we really know about nominal classification systems? In Conference handbook. The 18th national conference of the English Linguistic Society of Japan. 18-19 November, 2000, Konan University (pp. 225-230). Kobe: English Linguistic Society of Japan.
  • Senft, G. (2000). What do we really know about nominal classification systems? In G. Senft (Ed.), Systems of nominal classification (pp. 11-49). Cambridge University Press.
  • Senft, G. (2023). The system of classifiers in Kilivila - The role of these formatives and their functions. In M. Allassonnière-Tang, & M. Kilarski (Eds.), Nominal Classification in Asia and Oceania. Functional and diachronic perspectives (pp. 10-29). Amsterdam: John Benjamins. doi:10.1075/cilt.362.02sen.

    Abstract

    This paper presents the complex system of classifiers in Kilivila, the language of the Trobriand Islanders of Papua New Guinea. After a brief introduction to the language and its speakers, the classifier system is briefly described with respect to the role of these formatives for the word formation of Kilivila numerals, adjectives, demonstratives and one form of an interrogative pronoun/adverb. Then the functions the classifier system fulfils with respect to concord, temporary classification, the unitizing of nominal expressions, nominalization, indication of plural, anaphoric reference as well as text and discourse coherence are discussed and illustrated. The paper ends with some language specific and cross-linguistic questions for further research.
  • Seuren, P. A. M. (2005). The origin of grammatical terminology. In B. Smelik, R. Hofman, C. Hamans, & D. Cram (Eds.), A companion in linguistics: A Festschrift for Anders Ahlqvist on the occasion of his sixtieth birthday (pp. 185-196). Nijmegen: Stichting Uitgeverij de Keltische Draak.
  • Seuren, P. A. M. (2005). The role of lexical data in semantics. In A. Cruse, F. Hundsnurscher, M. Job, & P. R. Lutzeier (Eds.), Lexikologie / Lexicology. Ein internationales Handbuch zur Natur und Struktur von Wörtern und Wortschätzen/An international handbook on the nature and structure of words and vocabularies. 2. Halbband / Volume 2 (pp. 1690-1696). Berlin: Walter de Gruyter.
  • Seuren, P. A. M. (2000). A discourse-semantic account of topic and comment. In N. Nicolov, & R. Mitkov (Eds.), Recent advances in natural language processing II. Selected papers from RANLP '97 (pp. 179-190). Amsterdam: Benjamins.
  • Seuren, P. A. M. (2000). Pseudocomplementen. In H. Den Besten, E. Elffers, & J. Luif (Eds.), Samengevoegde woorden. Voor Wim Klooster bij zijn afscheid als hoogleraar (pp. 231-237). Amsterdam: Leerstoelgroep Nederlandse Taalkunde, Universiteit van Amsterdam.
  • Trilsbeek, P., & Wittenburg, P. (2005). Archiving challenges. In J. Gippert, N. Himmelmann, & U. Mosel (Eds.), Essentials of language documentation (pp. 311-335). Berlin: Mouton de Gruyter.
  • Verga, L., Schwartze, M., & Kotz, S. A. (2023). Neurophysiology of language pathologies. In M. Grimaldi, E. Brattico, & Y. Shtyrov (Eds.), Language Electrified: Neuromethods (pp. 753-776). New York, NY: Springer US. doi:10.1007/978-1-0716-3263-5_24.

    Abstract

    Language- and speech-related disorders are among the most frequent consequences of developmental and acquired pathologies. While classical approaches to the study of these disorders typically employed the lesion method to unveil one-to-one correspondence between locations, the extent of the brain damage, and corresponding symptoms, recent advances advocate the use of online methods of investigation. For example, the use of electrophysiology or magnetoencephalography—especially when combined with anatomical measures—allows for in vivo tracking of real-time language and speech events, and thus represents a particularly promising venue for future research targeting rehabilitative interventions. In this chapter, we provide a comprehensive overview of language and speech pathologies arising from cortical and/or subcortical damage, and their corresponding neurophysiological and pathological symptoms. Building upon the reviewed evidence and literature, we aim at providing a description of how the neurophysiology of the language network changes as a result of brain damage. We will conclude by summarizing the evidence presented in this chapter, while suggesting directions for future research.
  • Zavala, R. (2000). Multiple classifier systems in Akatek (Mayan). In G. Senft (Ed.), Systems of nominal classification (pp. 114-146). Cambridge University Press.
  • Zeshan, U. (2005). Sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 558-559). Oxford: Oxford University Press.
  • Zeshan, U. (2005). Question particles in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 564-567). Oxford: Oxford University Press.
  • Zeshan, U., Pfau, R., & Aboh, E. (2005). When a wh-word is not a wh-word: the case of Indian sign language. In B. Tanmoy (Ed.), Yearbook of South Asian languages and linguistics 2005 (pp. 11-43). Berlin: Mouton de Gruyter.
  • Zeshan, U. (2005). Irregular negatives in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 560-563). Oxford: Oxford University Press.

Share this page