Publications

Displaying 701 - 732 of 732
  • De Vos, C., & Nyst, V.A.S (2018). Introduction: The time-depth and typology of rural sign languages. Sign Language Studies, 18(4), 477-487.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • De Vries, C., Reijnierse, W. G., & Willems, R. M. (2018). Eye movements reveal readers’ sensitivity to deliberate metaphors during narrative reading. Scientific Study of Literature, 8(1), 135-164. doi:10.1075/ssol.18008.vri.

    Abstract

    Metaphors occur frequently in literary texts. Deliberate Metaphor Theory (DMT; e.g., Steen, 2017) proposes that metaphors that serve a communicative function as metaphor are radically different from metaphors that do not have this function. We investigated differences in processing between deliberate and non-deliberate metaphors, compared to non-metaphorical words in literary reading. Using the Deliberate Metaphor Identification Procedure (Reijnierse et al., 2018), we identified metaphors in two literary stories. Then, eye-tracking was used to investigate participants’ (N = 72) reading behavior. Deliberate metaphors were read slower than non-deliberate metaphors, and both metaphor types were read slower than non-metaphorical words. Differences were controlled for several psycholinguistic variables. Differences in reading behavior were related to individual differences in reading experience and absorption and appreciation of the story. These results are in line with predictions from DMT and underline the importance of distinguishing between metaphor types in the experimental study of literary reading.
  • Vromans, R. D., & Jongman, S. R. (2018). The interplay between selective and nonselective inhibition during single word production. PLoS One, 13(5): e0197313. doi:10.1371/journal.pone.0197313.

    Abstract

    The present study investigated the interplay between selective inhibition (the ability to suppress specific competing responses) and nonselective inhibition (the ability to suppress any inappropriate response) during single word production. To this end, we combined two well-established research paradigms: the picture-word interference task and the stop-signal task. Selective inhibition was assessed by instructing participants to name target pictures (e.g., dog) in the presence of semantically related (e.g., cat) or unrelated (e.g., window) distractor words. Nonselective inhibition was tested by occasionally presenting a visual stop-signal, indicating that participants should withhold their verbal response. The stop-signal was presented early (250 ms) aimed at interrupting the lexical selection stage, and late (325 ms) to influence the word-encoding stage of the speech production process. We found longer naming latencies for pictures with semantically related distractors than with unrelated distractors (semantic interference effect). The results further showed that, at both delays, stopping latencies (i.e., stop-signal RTs) were prolonged for naming pictures with semantically related distractors compared to pictures with unrelated distractors. Taken together, our findings suggest that selective and nonselective inhibition, at least partly, share a common inhibitory mechanism during different stages of the speech production process.

    Additional information

    Data available (link to Figshare)
  • Waller, D., & Haun, D. B. M. (2003). Scaling techniques for modeling directional knowledge. Behavior Research Methods, Instruments, & Computers, 35(2), 285-293.

    Abstract

    A common way for researchers to model or graphically portray spatial knowledge of a large environment is by applying multidimensional scaling (MDS) to a set of pairwise distance estimations. We introduce two MDS-like techniques that incorporate people’s knowledge of directions instead of (or in addition to) their knowledge of distances. Maps of a familiar environment derived from these procedures were more accurate and were rated by participants as being more accurate than those derived from nonmetric MDS. By incorporating people’s relatively accurate knowledge of directions, these methods offer spatial cognition researchers and behavioral geographers a sharper analytical tool than MDS for studying cognitive maps.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Wang, M., Shao, Z., Chen, Y., & Schiller, N. O. (2018). Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Language, Cognition and Neuroscience, 33(5), 575-586. doi:10.1080/23273798.2017.1395467.

    Abstract

    The blocked cyclic naming paradigm has been increasingly employed to investigate the mechanisms underlying spoken word production. Semantic homogeneity typically elicits longer naming latencies than heterogeneity; however, it is debated whether competitive lexical selection or incremental learning underlies this effect. The current study manipulated both semantic and phonological homogeneity and used behavioural and electrophysiological measurements to provide evidence that can distinguish between the two accounts. Results show that naming latencies are longer in semantically homogeneous blocks, but shorter in phonologically homogeneous blocks, relative to heterogeneity. The semantic factor significantly modulates electrophysiological waveforms from 200 ms and the phonological factor from 350 ms after picture presentation. A positive component was demonstrated in both manipulations, possibly reflecting a task-related top-down bias in performing blocked cyclic naming. These results provide novel insights into the neural correlates of blocked cyclic naming and further contribute to the understanding of spoken word production.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Warner, N., & Cutler, A. (2017). Stress effects in vowel perception as a function of language-specific vocabulary patterns. Phonetica, 74, 81-106. doi:10.1159/000447428.

    Abstract

    Background/Aims: Evidence from spoken word recognition suggests that for English listeners, distinguishing full versus reduced vowels is important, but discerning stress differences involving the same full vowel (as in mu- from music or museum) is not. In Dutch, in contrast, the latter distinction is important. This difference arises from the relative frequency of unstressed full vowels in the two vocabularies. The goal of this paper is to determine how this difference in the lexicon influences the perception of stressed versus unstressed vowels. Methods: All possible sequences of two segments (diphones) in Dutch and in English were presented to native listeners in gated fragments. We recorded identification performance over time throughout the speech signal. The data were here analysed specifically for patterns in perception of stressed versus unstressed vowels. Results: The data reveal significantly larger stress effects (whereby unstressed vowels are harder to identify than stressed vowels) in English than in Dutch. Both language-specific and shared patterns appear regarding which vowels show stress effects. Conclusion: We explain the larger stress effect in English as reflecting the processing demands caused by the difference in use of unstressed vowels in the lexicon. The larger stress effect in English is due to relative inexperience with processing unstressed full vowels
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • Wegman, J., Tyborowska, A., Hoogman, M., Vasquez, A. A., & Janzen, G. (2017). The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. European Journal of Neuroscience, 45(12), 1501-1511. doi:10.1111/ejn.13416.

    Abstract

    The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing
  • Wheeldon, L. (2003). Inhibitory from priming of spoken word production. Language and Cognitive Processes, 18(1), 81-109. doi:10.1080/01690960143000470.

    Abstract

    Three experiments were designed to examine the effect on picture naming of the prior production of a word related in phonological form. In Experiment 1, the latency to produce Dutch words in response to pictures (e.g., hoed , hat) was longer following the production of a form-related word (e.g., hond , dog) in response to a definition on a preceding trial, than when the preceding definition elicited an unrelated word (e.g., kerk , church). Experiment 2 demonstrated that the inhibitory effect disappears when one unrelated word is produced intervening prime and target productions (e.g., hond-kerk-hoed ). The size of the inhibitory effect was not significantly affected by the frequency of the prime words or the target picture names. In Experiment 3, facilitation was observed for word pairs that shared offset segments (e.g., kurk-jurk , cork-dress), whereas inhibition was observed for shared onset segments (e.g., bloed-bloem , blood-flower). However, no priming was observed for prime and target words with shared phonemes but no mismatching segments (e.g., oom-boom , uncle-tree; hex-hexs , fence-witch). These findings are consistent with a process of phoneme competition during phonological encoding.
  • Wiese, R., Orzechowska, P., Alday, P. M., & Ulbrich, C. (2017). Structural Principles or Frequency of Use? An ERP Experiment on the Learnability of Consonant Clusters. Frontiers in Psychology, 7: 2005. doi:10.3389/fpsyg.2016.02005.

    Abstract

    Phonological knowledge of a language involves knowledge about which segments can be combined under what conditions. Languages vary in the quantity and quality of licensed combinations, in particular sequences of consonants, with Polish being a language with a large inventory of such combinations. The present paper reports on a two-session experiment in which Polish-speaking adult participants learned nonce words with final consonant clusters. The aim was to study the role of two factors which potentially play a role in the learning of phonotactic structures: the phonological principle of sonority (ordering sound segments within the syllable according to their inherent loudness) and the (non-) existence as a usage-based phenomenon. EEG responses in two different time windows (adversely to behavioral responses) show linguistic processing by native speakers of Polish to be sensitive to both distinctions, in spite of the fact that Polish is rich in sonority-violating clusters. In particular, a general learning effect in terms of an N400 effect was found which was demonstrated to be different for sonority-obeying clusters than for sonority-violating clusters. Furthermore, significant interactions of formedness and session, and of existence and session, demonstrate that both factors, the sonority principle and the frequency pattern, play a role in the learning process.
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Wittenburg, P. (2003). The DOBES model of language documentation. Language Documentation and Description, 1, 122-139.
  • Wnuk, E., De Valk, J. M., Huisman, J. L. A., & Majid, A. (2017). Hot and cold smells: Odor-temperature associations across cultures. Frontiers in Psychology, 8: 1373. doi:10.3389/fpsyg.2017.01373.

    Abstract

    It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Wong, M. M. K., Watson, L. M., & Becker, E. B. E. (2017). Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. Journal of Neurology & Neuromedicine, 2(7), 11-15. doi:10.29245/2572.942X/2017/7.1134.

    Abstract

    The cerebellar ataxias are a group of incurable brain disorders that are caused primarily by the progressive dysfunction and degeneration of cerebellar Purkinje cells. The lack of reliable disease models for the heterogeneous ataxias has hindered the understanding of the underlying pathogenic mechanisms as well as the development of effective therapies for these devastating diseases. Recent advances in the field of induced pluripotent stem cell (iPSC) technology offer new possibilities to better understand and potentially reverse disease pathology. Given the neurodevelopmental phenotypes observed in several types of ataxias, iPSC-based models have the potential to provide significant insights into disease progression, as well as opportunities for the development of early intervention therapies. To date, however, very few studies have successfully used iPSC-derived cells to cerebellar ataxias. In this review, we focus on recent breakthroughs in generating human iPSC-derived Purkinje cells. We also highlight the future challenges that will need to be addressed in order to fully exploit these models for the modelling of the molecular mechanisms underlying cerebellar ataxias and the development of effective therapeutics.
  • Yager, J., & Burenhult, N. (2017). Jedek: a newly discovered Aslian variety of Malaysia. Linguistic Typology, 21(3), 493-545. doi:10.1515/lingty-2017-0012.

    Abstract

    Jedek is a previously unrecognized variety of the Northern Aslian subgroup of the Aslian branch of the Austroasiatic language family. It is spoken by c. 280 individuals in the resettlement area of Sungai Rual, near Jeli in Kelantan state, Peninsular Malaysia. The community originally consisted of several bands of foragers along the middle reaches of the Pergau river. Jedek’s distinct status first became known during a linguistic survey carried out in the DOBES project Tongues of the Semang (2005-2011). This paper describes the process leading up to its discovery and provides an overview of its typological characteristics.
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2017). The phonological unit of Japanese Kanji compounds: A masked priming investigation. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1303-1328. doi:10.1037/xhp0000374.

    Abstract

    Using the masked priming paradigm, we examined which phonological unit is used when naming Kanji compounds. Although the phonological unit in the Japanese language has been suggested to be the mora, Experiment 1 found no priming for mora-related Kanji prime-target pairs. In Experiment 2, significant priming was only found when Kanji pairs shared the whole sound of their initial Kanji characters. Nevertheless, when the same Kanji pairs used in Experiment 2 were transcribed into Kana, significant mora priming was observed in Experiment 3. In Experiment 4, matching the syllable structure and pitch-accent of the initial Kanji characters did not lead to mora priming, ruling out potential alternative explanations for the earlier absence of the effect. A significant mora priming effect was observed, however, when the shared initial mora constituted the whole sound of their initial Kanji characters in Experiments 5. Lastly, these results were replicated in Experiment 6. Overall, these results indicate that the phonological unit involved when naming Kanji compounds is not the mora but the whole sound of each Kanji character. We discuss how different phonological units may be involved when processing Kanji and Kana words as well as the implications for theories dealing with language production processes.
  • Zeshan, U. (2003). Aspects of Türk Işaret Dili (Turkish Sign Language). Sign Language and Linguistics, 6(1), 43-75. doi:10.1075/sll.6.1.04zes.

    Abstract

    This article provides a first overview of some striking grammatical structures in Türk Idotscedilaret Dili (Turkish Sign Language, TID), the sign language used by the Deaf community in Turkey. The data are described with a typological perspective in mind, focusing on aspects of TID grammar that are typologically unusual across sign languages. After giving an overview of the historical, sociolinguistic and educational background of TID and the language community using this sign language, five domains of TID grammar are investigated in detail. These include a movement derivation signalling completive aspect, three types of nonmanual negation — headshake, backward head tilt, and puffed cheeks — and their distribution, cliticization of the negator NOT to a preceding predicate host sign, an honorific whole-entity classifier used to refer to humans, and a question particle, its history and current status in the language. A final evaluation points out the significance of these data for sign language research and looks at perspectives for a deeper understanding of the language and its history.
  • Zhen, Z., Kong, X., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. doi:10.1002/hbm.23519.

    Abstract

    Scene-selective regions (SSRs), including the parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS), are among the most widely characterized functional regions in the human brain. However, previous studies have mostly focused on the commonality within each SSR, providing little information on different aspects of their variability. In a large group of healthy adults (N = 202), we used functional magnetic resonance imaging to investigate different aspects of topographical and functional variability within SSRs, including interindividual, interhemispheric, and sex differences. First, the PPA, RSC, and TOS were delineated manually for each individual. We then demonstrated that SSRs showed substantial interindividual variability in both spatial topography and functional selectivity. We further identified consistent interhemispheric differences in the spatial topography of all three SSRs, but distinct interhemispheric differences in scene selectivity. Moreover, we found that all three SSRs showed stronger scene selectivity in men than in women. In summary, our work thoroughly characterized the interindividual, interhemispheric, and sex variability of the SSRs and invites future work on the origin and functional significance of these variabilities. Additionally, we constructed the first probabilistic atlases for the SSRs, which provide the detailed anatomical reference for further investigations of the scene network.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • De Zubicaray, G., & Fisher, S. E. (Eds.). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172.
  • De Zubicaray, G., & Fisher, S. E. (2017). Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 172, 1-2. doi:10.1016/j.bandl.2017.08.003.

Share this page