Publications

Displaying 201 - 217 of 217
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Tabak, W. (2010). Semantics and (ir)regular inflection in morphological processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Terrill, A. (2010). Complex predicates and complex clauses in Lavukaleve. In J. Bowden, N. P. Himmelman, & M. Ross (Eds.), A journey through Austronesian and Papuan linguistic and cultural space: Papers in honour of Andrew K. Pawley (pp. 499-512). Canberra: Pacific Linguistics.
  • Terrill, A. (2004). Coordination in Lavukaleve. In M. Haspelmath (Ed.), Coordinating Constructions. (pp. 427-443). Amsterdam: John Benjamins.
  • Van Alphen, P. M. (2004). Perceptual relevance of prevoicing in Dutch. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.58551.

    Abstract

    In this dissertation the perceptual relevance of prevoicing in Dutch was investigated. Prevoicing is the presence of vocal fold vibration during the closure of initial voiced plosives (negative voice onset time). The presence or absence of prevoicing is generally used to describe the difference between voiced and voiceless Dutch plosives. The first experiment described in this dissertation showed that prevoicing is frequently absent in Dutch and that several factors affect the production of prevoicing. A detailed acoustic analysis of the voicing distinction identified several acoustic correlates of voicing. Prevoicing appeared to be by far the best predictor. Perceptual classification data revealed that prevoicing was indeed the strongest cue that listeners use when classifying plosives as voiced or voiceless. In the cases where prevoicing was absent, other acoustic cues influenced classification, such that some of these tokens were still perceived as being voiced. In the second part of this dissertation the influence of prevoicing variation on spoken-word recognition was examined. In several cross-modal priming experiments two types of prevoicing variation were contrasted: a difference between the presence and absence of prevoicing (6 versus 0 periods of prevoicing) and a difference in the amount of prevoicing (12 versus 6 periods). All these experiments indicated that primes with 12 and 6 periods of prevoicing had the same effect on lexical decisions to the visual targets. The primes without prevoicing had a different effect, but only when their voiceless counterparts were real words. Phonetic detail appears to influence lexical access only when it is useful: In Dutch, the presence versus absence of prevoicing is informative, while the amount of prevoicing is not.

    Additional information

    full text via Radboud Repository
  • Van den Brink, D. (2004). Contextual influences on spoken-word processing: An electrophysiological approach. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.57773.

    Abstract

    The aim of this thesis was to gain more insight into spoken-word comprehension and the influence of sentence-contextual information on these processes using ERPs. By manipulating critical words in semantically constraining sententes, in semantic or syntactic sense, and examining the consequences in the electrophysiological signal (e.g., elicitation of ERP components such as the N400, N200, LAN, and P600), three questions were tackled: I At which moment is context information used in the spoken-word recognition process? II What is the temporal relationship between lexical selection and integration of the meaning of a spoken word into a higher-order level representeation of the preceding sentence? III What is the time course of the processing of different sources of linguistic information obtained from the context, such as phonological, semantic and syntactic information, during spoken-word comprehension? From the results of this thesis it can be concluded that sentential context already exerts an influence on spoken-word processing at approximately 200 ms after word onset. In addition, semantic integration is attempted before a spoken word can be selected on the basis of the acoustic signal, i.e. before lexical selection is completed. Finally, knowledge of the syntactic category of a word is not needed before semantic integration can take place. These findings, therefore, were interpreted as providing evidence for an account of cascaded spoken-word processing that proclaims an optimal use of contextual information during spoken-word identification. Optimal use is accomplished by allowing for semantic and syntactic processing to take place in parallel after bottom-up activation of a set of candidates, and lexical integration to proceed with a limited number of candidates that still match the acoustic input

    Additional information

    full text via Radboud Repository
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Berkum, J. J. A. (2004). Sentence comprehension in a wider discourse: Can we use ERPs to keep track of things? In M. Carreiras, Jr., & C. Clifton (Eds.), The on-line study of sentence comprehension: eyetracking, ERPs and beyond (pp. 229-270). New York: Psychology Press.
  • Van Valin Jr., R. D. (2010). Role and reference grammar as a framework for linguistic analysis. In B. Heine, & H. Narrog (Eds.), The Oxford handbook of linguistic analysis (pp. 703-738). Oxford: Oxford University Press.
  • Van Dijk, H. (2010). The state of the brain: How alpha oscillations shape behavior and event-related responses. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Von Stutterheim, C., & Klein, W. (2004). Die Gesetze des Geistes sind metrisch: Hölderlin und die Sprachproduktion. In H. Schwarz (Ed.), Fenster zur Welt: Deutsch als Fremdsprachenphilologie (pp. 439-460). München: Iudicium.
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.

Share this page