Publications

Displaying 101 - 200 of 253
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Janse, E. (2002). Time-compressing natural and synthetic speech. In Proceedings of 7th International Conference on Spoken Language Processing (pp. 1645-1648).
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Kastens, K. (2020). The Jerome Bruner Library treasure. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 29-34). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kearns, R. K., Norris, D., & Cutler, A. (2002). Syllable processing in English. In Proceedings of the 7th International Conference on Spoken Language Processing [ICSLP 2002] (pp. 1657-1660).

    Abstract

    We describe a reaction time study in which listeners detected word or nonword syllable targets (e.g. zoo, trel) in sequences consisting of the target plus a consonant or syllable residue (trelsh, trelshek). The pattern of responses differed from an earlier word-spotting study with the same material, in which words were always harder to find if only a consonant residue remained. The earlier results should thus not be viewed in terms of syllabic parsing, but in terms of a universal role for syllables in speech perception; words which are accidentally present in spoken input (e.g. sell in self) can be rejected when they leave a residue of the input which could not itself be a word.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G., & Van Breugel, C. (2002). A workbench for visual-interactive grammar instruction at the secondary education level. In Proceedings of the 10th International CALL Conference (pp. 157-158). Antwerp: University of Antwerp.
  • Kempen, G. (1996). Computational models of syntactic processing in human language comprehension. In T. Dijkstra, & K. De Smedt (Eds.), Computational psycholinguistics: Symbolic and subsymbolic models of language processing (pp. 192-220). London: Taylor & Francis.
  • Kempen, G. (1996). "De zwoele groei van den zinsbouw": De wonderlijke levende grammatica van Jac. van Ginneken uit De Roman van een Kleuter (1917). Bezorgd en van een nawoord voorzien door Gerard Kempen. In A. Foolen, & J. Noordegraaf (Eds.), De taal is kennis van de ziel: Opstellen over Jac. van Ginneken (1877-1945) (pp. 173-216). Münster: Nodus Publikationen.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G. (1996). Human language technology can modernize writing and grammar instruction. In COLING '96 Proceedings of the 16th conference on Computational linguistics - Volume 2 (pp. 1005-1006). Stroudsburg, PA: Association for Computational Linguistics.
  • Kempen, G., & Janssen, S. (1996). Omspellen: Reuze(n)karwei of peule(n)schil? In H. Croll, & J. Creutzberg (Eds.), Proceedings of the 5e Dag van het Document (pp. 143-146). Projectbureau Croll en Creutzberg.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1981). Taalpsychologie. In H. Duijker, & P. Vroon (Eds.), Codex Psychologicus (pp. 205-221). Amsterdam: Elsevier.
  • Kempen, G., & Harbusch, K. (2002). Rethinking the architecture of human syntactic processing: The relationship between grammatical encoding and decoding. In Proceedings of the 35th Meeting of the Societas Linguistica Europaea. University of Potsdam.
  • Khoe, Y. H., Tsoukala, C., Kootstra, G. J., & Frank, S. L. (2020). Modeling cross-language structural priming in sentence production. In T. C. Stewart (Ed.), Proceedings of the 18th Annual Meeting of the International Conference on Cognitive Modeling (pp. 131-137). University Park, PA, USA: The Penn State Applied Cognitive Science Lab.

    Abstract

    A central question in the psycholinguistic study of multilingualism is how syntax is shared across languages. We implement a model to investigate whether error-based implicit learning can provide an account of cross-language structural priming. The model is based on the Dual-path model of
    sentence-production (Chang, 2002). We implement our model using the Bilingual version of Dual-path (Tsoukala, Frank, & Broersma, 2017). We answer two main questions: (1) Can structural priming of active and passive constructions occur between English and Spanish in a bilingual version of the Dual-
    path model? (2) Does cross-language priming differ quantitatively from within-language priming in this model? Our results show that cross-language priming does occur in the model. This finding adds to the viability of implicit learning as an account of structural priming in general and cross-language
    structural priming specifically. Furthermore, we find that the within-language priming effect is somewhat stronger than the cross-language effect. In the context of mixed results from
    behavioral studies, we interpret the latter finding as an indication that the difference between cross-language and within-
    language priming is small and difficult to detect statistically.
  • Kidd, E., Bigood, A., Donnelly, S., Durrant, S., Peter, M. S., & Rowland, C. F. (2020). Individual differences in first language acquisition and their theoretical implications. In C. F. Rowland, A. L. Theakston, B. Ambridge, & K. E. Twomey (Eds.), Current Perspectives on Child Language Acquisition: How children use their environment to learn (pp. 189-219). Amsterdam: John Benjamins. doi:10.1075/tilar.27.09kid.

    Abstract

    Much of Lieven’s pioneering work has helped move the study of individual differences to the centre of child language research. The goal of the present chapter is to illustrate how the study of individual differences provides crucial insights into the language acquisition process. In part one, we summarise some of the evidence showing how pervasive individual differences are across the whole of the language system; from gestures to morphosyntax. In part two, we describe three causal factors implicated in explaining individual differences, which, we argue, must be built into any theory of language acquisition (intrinsic differences in the neurocognitive learning mechanisms, the child’s communicative environment, and developmental cascades in which each new linguistic skill that the child has to acquire depends critically on the prior acquisition of foundational abilities). In part three, we present an example study on the role of the speed of linguistic processing on vocabulary development, which illustrates our approach to individual differences. The results show evidence of a changing relationship between lexical processing speed and vocabulary over developmental time, perhaps as a result of the changing nature of the structure of the lexicon. The study thus highlights the benefits of an individual differences approach in building, testing, and constraining theories of language acquisition.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (2002). Why case marking? In I. Kaufmann, & B. Stiebels (Eds.), More than words: Festschrift for Dieter Wunderlich (pp. 251-273). Berlin: Akademie Verlag.
  • Klein, W., & Rath, R. (1981). Automatische Lemmatisierung deutscher Flexionsformen. In R. Herzog (Ed.), Computer in der Übersetzungswissenschaft (pp. 94-142). Framkfurt am Main, Bern: Verlag Peter Lang.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1981). Eine kommentierte Bibliographie zur Computerlinguistik. In R. Herzog (Ed.), Computer in der Übersetzungswissenschaft (pp. 95-142). Frankfurt am Main: Lang.
  • Klein, W. (1996). Essentially social: On the origin of linguistic knowledge in the individual. In P. Baltes, & U. Staudinger (Eds.), Interactive minds (pp. 88-107). Cambridge: Cambridge University Press.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Musan, R. (2002). (A)Symmetry in language: seit and bis, and others. In C. Maienborn (Ed.), (A)Symmetrien - (A)Symmetry. Beiträge zu Ehren von Ewald Lang - Papers in Honor of Ewald Lang (pp. 283-295). Tübingen: Stauffenburg.
  • Klein, W. (1981). Knowing a language and knowing to communicate: A case study in foreign workers' communication. In A. Vermeer (Ed.), Language problems of minority groups (pp. 75-95). Tilburg: Tilburg University.
  • Klein, W. (1996). Language acquisition at different ages. In D. Magnusson (Ed.), Individual development over the lifespan: Biological and psychosocial perspectives (pp. 88-108). Cambridge: Cambridge University Press.
  • Klein, W. (1981). Logik der Argumentation. In Institut für deutsche Sprache (Ed.), Dialogforschung: Jahrbuch 1980 des Instituts für deutsche Sprache (pp. 226-264). Düsseldorf: Schwann.
  • Klein, W. (1981). Some rules of regular ellipsis in German. In W. Klein, & W. J. M. Levelt (Eds.), Crossing the boundaries in linguistics: Studies presented to Manfred Bierwisch (pp. 51-78). Dordrecht: Reidel.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Krott, A., Schreuder, R., & Baayen, R. H. (2002). Analogical hierarchy: Exemplar-based modeling of linkers in Dutch noun-noun compounds. In R. Skousen (Ed.), Analogical modeling: An exemplar-based approach to language (pp. 181-206). Amsterdam: Benjamins.
  • Kuijpers, C., Van Donselaar, W., & Cutler, A. (2002). Perceptual effects of assimilation-induced violation of final devoicing in Dutch. In J. H. L. Hansen, & B. Pellum (Eds.), The 7th International Conference on Spoken Language Processing (pp. 1661-1664). Denver: ICSA.

    Abstract

    Voice assimilation in Dutch is an optional phonological rule which changes the surface forms of words and in doing so may violate the otherwise obligatory phonological rule of syllablefinal devoicing. We report two experiments examining the influence of voice assimilation on phoneme processing, in lexical compound words and in noun-verb phrases. Processing was not impaired in appropriate assimilation contexts across morpheme boundaries, but was impaired when devoicing was violated (a) in an inappropriate non-assimilatory) context, or (b) across a syntactic boundary.
  • Kuijpers, C., Van Donselaar, W., & Cutler, A. (1996). Phonological variation: Epenthesis and deletion of schwa in Dutch. In H. T. Bunnell (Ed.), Proceedings of the Fourth International Conference on Spoken Language Processing: Vol. 1 (pp. 94-97). New York: Institute of Electrical and Electronics Engineers.

    Abstract

    Two types of phonological variation in Dutch, resulting from optional rules, are schwa epenthesis and schwa deletion. In a lexical decision experiment it was investigated whether the phonological variants were processed similarly to the standard forms. It was found that the two types of variation patterned differently. Words with schwa epenthesis were processed faster and more accurately than the standard forms, whereas words with schwa deletion led to less fast and less accurate responses. The results are discussed in relation to the role of consonant-vowel alternations in speech processing and the perceptual integrity of onset clusters.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kuntay, A., & Ozyurek, A. (2002). Joint attention and the development of the use of demonstrative pronouns in Turkish. In B. Skarabela, S. Fish, & A. H. Do (Eds.), Proceedings of the 26th annual Boston University Conference on Language Development (pp. 336-347). Somerville, MA: Cascadilla Press.
  • Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences.
  • Lei, L., Raviv, L., & Alday, P. M. (2020). Using spatial visualizations and real-world social networks to understand language evolution and change. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 252-254). Nijmegen: The Evolution of Language Conferences.
  • Levelt, W. J. M. (2002). Phonological encoding in speech production: Comments on Jurafsky et al., Schiller et al., and van Heuven & Haan. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology VII (pp. 87-99). Berlin: Mouton de Gruyter.
  • Levelt, W. J. M. (1996). Preface. In W. J. M. Levelt (Ed.), Advanced psycholinguistics: A bressanone perspective for Giovanni B. Flores d'Arcais (pp. VII-IX). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Levelt, W. J. M. (1996). Foreword. In T. Dijkstra, & K. De Smedt (Eds.), Computational psycholinguistics (pp. ix-xi). London: Taylor & Francis.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M., & Maassen, B. (1981). Lexical search and order of mention in sentence production. In W. Klein, & W. J. M. Levelt (Eds.), Crossing the boundaries in linguistics (pp. 221-252). Dordrecht: Reidel.
  • Levelt, W. J. M. (1996). Linguistic intuitions and beyond. In W. J. M. Levelt (Ed.), Advanced psycholinguistics: A Bressanone retrospective for Giovanni B. Floris d'Arcais (pp. 31-35). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levelt, W. J. M. (1996). Perspective taking and ellipsis in spatial descriptions. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 77-107). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2002). Appendix to the 2002 Supplement, version 1, for the “Manual” for the field season 2001. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 62-64). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (1996). Frames of reference and Molyneux's question: Cross-linguistic evidence. In P. Bloom, M. Peterson, L. Nadel, & M. Garrett (Eds.), Language and space (pp. 109-169). Cambridge, MA: MIT press.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C. (2002). Landscape terms and place names in Yélî Dnye, the language of Rossel Island, PNG. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (1996). Introduction to part II. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 133-144). Cambridge: Cambridge University Press.
  • Levinson, S. C. (1996). Relativity in spatial conception and description. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 177-202). Cambridge University Press.
  • Levinson, S. C. (1981). The essential inadequacies of speech act models of dialogue. In H. Parret, M. Sbisà, & J. Verscheuren (Eds.), Possibilities and limitations of pragmatics: Proceedings of the Conference on Pragmatics, Urbino, July 8–14, 1979 (pp. 473-492). Amsterdam: John Benjamins.
  • Levinson, S. C., & Senft, G. (1996). Zur Semantik der Verben INTRARE und EXIRE in verschieden Sprachen. In Jahrbuch der Max-Planck-Gesellschaft 1996 (pp. 340-344). München: Generalverwaltung der Max-Planck-Gesellschaft München.
  • Levshina, N. (2020). How tight is your language? A semantic typology based on Mutual Information. In K. Evang, L. Kallmeyer, R. Ehren, S. Petitjean, E. Seyffarth, & D. Seddah (Eds.), Proceedings of the 19th International Workshop on Treebanks and Linguistic Theories (pp. 70-78). Düsseldorf, Germany: Association for Computational Linguistics. doi:10.18653/v1/2020.tlt-1.7.

    Abstract

    Languages differ in the degree of semantic flexibility of their syntactic roles. For example, Eng-
    lish and Indonesian are considered more flexible with regard to the semantics of subjects,
    whereas German and Japanese are less flexible. In Hawkins’ classification, more flexible lan-
    guages are said to have a loose fit, and less flexible ones are those that have a tight fit. This
    classification has been based on manual inspection of example sentences. The present paper
    proposes a new, quantitative approach to deriving the measures of looseness and tightness from
    corpora. We use corpora of online news from the Leipzig Corpora Collection in thirty typolog-
    ically and genealogically diverse languages and parse them syntactically with the help of the
    Universal Dependencies annotation software. Next, we compute Mutual Information scores for
    each language using the matrices of lexical lemmas and four syntactic dependencies (intransi-
    tive subjects, transitive subject, objects and obliques). The new approach allows us not only to
    reproduce the results of previous investigations, but also to extend the typology to new lan-
    guages. We also demonstrate that verb-final languages tend to have a tighter relationship be-
    tween lexemes and syntactic roles, which helps language users to recognize thematic roles early
    during comprehension.

    Additional information

    full text via ACL website
  • MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.

    Abstract

    Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech
    (IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
  • Yu, J., Mailhammer, R., & Cutler, A. (2020). Vocabulary structure affects word recognition: Evidence from German listeners. In N. Minematsu, M. Kondo, T. Arai, & R. Hayashi (Eds.), Proceedings of Speech Prosody 2020 (pp. 474-478). Tokyo: ISCA. doi:10.21437/SpeechProsody.2020-97.

    Abstract

    Lexical stress is realised similarly in English, German, and
    Dutch. On a suprasegmental level, stressed syllables tend to be
    longer and more acoustically salient than unstressed syllables;
    segmentally, vowels in unstressed syllables are often reduced.
    The frequency of unreduced unstressed syllables (where only
    the suprasegmental cues indicate lack of stress) however,
    differs across the languages. The present studies test whether
    listener behaviour is affected by these vocabulary differences,
    by investigating German listeners’ use of suprasegmental cues
    to lexical stress in German and English word recognition. In a
    forced-choice identification task, German listeners correctly
    assigned single-syllable fragments (e.g., Kon-) to one of two
    words differing in stress (KONto, konZEPT). Thus, German
    listeners can exploit suprasegmental information for
    identifying words. German listeners also performed above
    chance in a similar task in English (with, e.g., DIver, diVERT),
    i.e., their sensitivity to these cues also transferred to a nonnative
    language. An English listener group, in contrast, failed
    in the English fragment task. These findings mirror vocabulary
    patterns: German has more words with unreduced unstressed
    syllables than English does.
  • Martin, A., & Van Turennout, M. (2002). Searching for the neural correlates of object priming. In L. R. Squire, & D. L. Schacter (Eds.), The Neuropsychology of Memory (pp. 239-247). New York: Guilford Press.
  • Matsuo, A., & Duffield, N. (2002). Assessing the generality of knowledge about English ellipsis in SLA. In J. Costa, & M. J. Freitas (Eds.), Proceedings of the GALA 2001 Conference on Language Acquisition (pp. 49-53). Lisboa: Associacao Portuguesa de Linguistica.
  • Matsuo, A., & Duffield, N. (2002). Finiteness and parallelism: Assessing the generality of knowledge about English ellipsis in SLA. In B. Skarabela, S. Fish, & A.-H.-J. Do (Eds.), Proceedings of the 26th Boston University Conference on Language Development (pp. 197-207). Somerville, Massachusetts: Cascadilla Press.
  • Mauner, G., Koenig, J.-P., Melinger, A., & Bienvenue, B. (2002). The lexical source of unexpressed participants and their role in sentence and discourse understanding. In P. Merlo, & S. Stevenson (Eds.), The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues (pp. 233-254). Amsterdam: John Benjamins.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.
  • Mudd, K., Lutzenberger, H., De Vos, C., Fikkert, P., Crasborn, O., & De Boer, B. (2020). How does social structure shape language variation? A case study of the Kata Kolok lexicon. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 302-304). Nijmegen: The Evolution of Language Conferences.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Oostdijk, N., Goedertier, W., Van Eynde, F., Boves, L., Martens, J.-P., Moortgat, M., & Baayen, R. H. (2002). Experiences from the Spoken Dutch Corpus Project. In Third international conference on language resources and evaluation (pp. 340-347). Paris: European Language Resources Association.
  • Ozyurek, A. (1998). An analysis of the basic meaning of Turkish demonstratives in face-to-face conversational interaction. In S. Santi, I. Guaitella, C. Cave, & G. Konopczynski (Eds.), Oralite et gestualite: Communication multimodale, interaction: actes du colloque ORAGE 98 (pp. 609-614). Paris: L'Harmattan.
  • Ozyurek, A. (2020). From hands to brains: How does human body talk, think and interact in face-to-face language use? In K. Truong, D. Heylen, & M. Czerwinski (Eds.), ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 1-2). New York, NY, USA: Association for Computing Machinery. doi:10.1145/3382507.3419442.
  • Ozyurek, A. (2002). Speech-gesture relationship across languages and in second language learners: Implications for spatial thinking and speaking. In B. Skarabela, S. Fish, & A. H. Do (Eds.), Proceedings of the 26th annual Boston University Conference on Language Development (pp. 500-509). Somerville, MA: Cascadilla Press.
  • Paplu, S. H., Mishra, C., & Berns, K. (2020). Pseudo-randomization in automating robot behaviour during human-robot interaction. In 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 1-6). Institute of Electrical and Electronics Engineers. doi:10.1109/ICDL-EpiRob48136.2020.9278115.

    Abstract

    Automating robot behavior in a specific situation is an active area of research. There are several approaches available in the literature of robotics to cater for the automatic behavior of a robot. However, when it comes to humanoids or human-robot interaction in general, the area has been less explored. In this paper, a pseudo-randomization approach has been introduced to automatize the gestures and facial expressions of an interactive humanoid robot called ROBIN based on its mental state. A significant number of gestures and facial expressions have been implemented to allow the robot more options to perform a relevant action or reaction based on visual stimuli. There is a display of noticeable differences in the behaviour of the robot for the same stimuli perceived from an interaction partner. This slight autonomous behavioural change in the robot clearly shows a notion of automation in behaviour. The results from experimental scenarios and human-centered evaluation of the system help validate the approach.

    Files private

    Request files
  • Pederson, E., & Wilkins, D. (1996). A cross-linguistic questionnaire on 'demonstratives'. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 1-11). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003259.

    Abstract

    Demonstrative terms (e.g., this and that) are key items in understanding how a language constructs and interprets spatial relationships. This in-depth questionnaire explores how demonstratives (and similar spatial deixis forms) function in the research language, covering such topics as their morphology and syntax, semantic dimensions, and co-occurring gesture practices. Questionnaire responses should ideally be based on natural, situated discourse as well as elicitation with consultants.
  • Pederson, E., & Senft, G. (1996). Route descriptions: interactive games with Eric's maze task. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 15-17). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003287.

    Abstract

    What are the preferred ways to describe spatial relationships in different linguistic and cultural groups, and how does this interact with non-linguistic spatial awareness? This game was devised as an interactive supplement to several items that collect information on the encoding and understanding of spatial relationships, especially as relevant to “route descriptions”. This is a director-matcher task, where one consultant has access to stimulus materials that shows a “target” situation, and directs another consultant (who cannot see the target) to recreate this arrangement.
  • Petersson, K. M. (2002). Brain physiology. In R. Behn, & C. Veranda (Eds.), Proceedings of The 4th Southern European School of the European Physical Society - Physics in Medicine (pp. 37-38). Montreux: ESF.
  • Rasenberg, M., Dingemanse, M., & Ozyurek, A. (2020). Lexical and gestural alignment in interaction and the emergence of novel shared symbols. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 356-358). Nijmegen: The Evolution of Language Conferences.
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2020). Network structure and the cultural evolution of linguistic structure: A group communication experiment. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 359-361). Nijmegen: The Evolution of Language Conferences.
  • Reesink, G. (2002). The Eastern bird's head languages. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 1-44). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). A grammar sketch of Sougb. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 181-275). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). Mansim, a lost language of the Bird's Head. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 277-340). Canberra: Pacific Linguistics.
  • de Reus, K., Carlson, D., Jadoul, Y., Lowry, A., Gross, S., Garcia, M., Salazar-Casals, A., Rubio-García, A., Haas, C. E., De Boer, B., & Ravignani, A. (2020). Relationships between vocal ontogeny and vocal tract anatomy in harbour seals (Phoca vitulina). In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 63-66). Nijmegen: The Evolution of Language Conferences.
  • Roelofs, A. (2002). Storage and computation in spoken word production. In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 183-216). Dordrecht: Kluwer.
  • Roelofs, A. (2002). Modeling of lexical access in speech production: A psycholinguistic perspective on the lexicon. In L. Behrens, & D. Zaefferer (Eds.), The lexicon in focus: Competition and convergence in current lexicology (pp. 75-92). Frankfurt am Main: Lang.
  • Rowland, C. F. (2020). Introduction. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Saito, H., & Kita, S. (2002). "Jesuchaa, kooi, imi" no hennshuu ni atat te [On the occasion of editing "Jesuchaa, Kooi, imi"]. In H. Saito, & S. Kita (Eds.), Kooi, jesuchaa, imi [Action, gesture, meaning] (pp. v-xi). Tokyo: Kyooritsu Shuppan.
  • Scharenborg, O., Boves, L., & de Veth, J. (2002). ASR in a human word recognition model: Generating phonemic input for Shortlist. In J. H. L. Hansen, & B. Pellom (Eds.), ICSLP 2002 - INTERSPEECH 2002 - 7th International Conference on Spoken Language Processing (pp. 633-636). ISCA Archive.

    Abstract

    The current version of the psycholinguistic model of human word recognition Shortlist suffers from two unrealistic constraints. First, the input of Shortlist must consist of a single string of phoneme symbols. Second, the current version of the search in Shortlist makes it difficult to deal with insertions and deletions in the input phoneme string. This research attempts to fully automatically derive a phoneme string from the acoustic signal that is as close as possible to the number of phonemes in the lexical representation of the word. We optimised an Automatic Phone Recogniser (APR) using two approaches, viz. varying the value of the mismatch parameter and optimising the APR output strings on the output of Shortlist. The approaches show that it will be very difficult to satisfy the input requirements of the present version of Shortlist with a phoneme string generated by an APR.
  • Scharenborg, O., & Boves, L. (2002). Pronunciation variation modelling in a model of human word recognition. In Pronunciation Modeling and Lexicon Adaptation for Spoken Language Technology [PMLA-2002] (pp. 65-70).

    Abstract

    Due to pronunciation variation, many insertions and deletions of phones occur in spontaneous speech. The psycholinguistic model of human speech recognition Shortlist is not well able to deal with phone insertions and deletions and is therefore not well suited for dealing with real-life input. The research presented in this paper explains how Shortlist can benefit from pronunciation variation modelling in dealing with real-life input. Pronunciation variation was modelled by including variants into the lexicon of Shortlist. A series of experiments was carried out to find the optimal acoustic model set for transcribing the training material that was used as basis for the generation of the variants. The Shortlist experiments clearly showed that Shortlist benefits from pronunciation variation modelling. However, the performance of Shortlist stays far behind the performance of other, more conventional speech recognisers.
  • Schiller, N. O., Costa, A., & Colomé, A. (2002). Phonological encoding of single words: In search of the lost syllable. In C. Gussenhoven, & N. Warner (Eds.), Laboratory Phonology VII (pp. 35-59). Berlin: Mouton de Gruyter.
  • Schiller, N. O., Schmitt, B., Peters, J., & Levelt, W. J. M. (2002). 'BAnana'or 'baNAna'? Metrical encoding during speech production [Abstract]. In M. Baumann, A. Keinath, & J. Krems (Eds.), Experimentelle Psychologie: Abstracts der 44. Tagung experimentell arbeitender Psychologen. (pp. 195). TU Chemnitz, Philosophische Fakultät.

    Abstract

    The time course of metrical encoding, i.e. stress, during speech production is investigated. In a first experiment, participants were presented with pictures whose bisyllabic Dutch names had initial or final stress (KAno 'canoe' vs. kaNON 'cannon'; capital letters indicate stressed syllables). Picture names were matched for frequency and object recognition latencies. When participants were asked to judge whether picture names had stress on the first or second syllable, they showed significantly faster decision times for initially stressed targets than for targets with final stress. Experiment 2 replicated this effect with trisyllabic picture names (faster RTs for penultimate stress than for ultimate stress). In our view, these results reflect the incremental phonological encoding process. Wheeldon and Levelt (1995) found that segmental encoding is a process running from the beginning to the end of words. Here, we present evidence that the metrical pattern of words, i.e. stress, is also encoded incrementally.
  • Schiller, N. O. (2002). From phonetics to cognitive psychology: Psycholinguistics has it all. In A. Braun, & H. Masthoff (Eds.), Phonetics and its Applications. Festschrift for Jens-Peter Köster on the Occasion of his 60th Birthday. [Beihefte zur Zeitschrift für Dialektologie und Linguistik; 121] (pp. 13-24). Stuttgart: Franz Steiner Verlag.
  • Schmiedtová, V., & Schmiedtová, B. (2002). The color spectrum in language: The case of Czech: Cognitive concepts, new idioms and lexical meanings. In H. Gottlieb, J. Mogensen, & A. Zettersten (Eds.), Proceedings of The 10th International Symposium on Lexicography (pp. 285-292). Tübingen: Max Niemeyer Verlag.

    Abstract

    The representative corpus SYN2000 in the Czech National Corpus (CNK) project containing 100 million word forms taken from different types of texts. I have tried to determine the extent and depth of the linguistic material in the corpus. First, I chose the adjectives indicating the basic colors of the spectrum and other parts of speech (names and adverbs) derived from these adjectives. An analysis of three examples - black, white and red - shows the extent of the linguistic wealth and diversity we are looking at: because of size limitations, no existing dictionary is capable of embracing all analyzed nuances. Currently, we can only hope that the next dictionary of contemporary Czech, built on the basis of the Czech National Corpus, will be electronic. Without the size limitations, we would be able us to include many of the fine nuances of language

Share this page