Publications

Displaying 301 - 323 of 323
  • Van Berkum, J. J. A. (1986). De cognitieve psychologie op zoek naar grondslagen. Kennis en Methode: Tijdschrift voor wetenschapsfilosofie en methodologie, X, 348-360.
  • Van Wijk, C., & Kempen, G. (1982). De ontwikkeling van syntactische formuleervaardigheid bij kinderen van 9 tot 16 jaar. Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden, 37(8), 491-509.

    Abstract

    An essential phenomenon in the development towards syntactic maturity after early childhood is the increasing use of so-called sentence-combining transformations. Especially by using subordination, complex sentences are produced. The research reported here is an attempt to arrive at a more adequate characterization and explanation. Our starting point was an analysis of 280 texts written by Dutch-speaking pupils of the two highest grades of the primary school and the four lowest grades of three different types of secondary education. It was examined whether systematic shifts in the use of certain groups of so-called function words could be traced. We concluded that the development of the syntactic formulating ability can be characterized as an increase in connectivity: the use of all kinds of function words which explicitly mark logico-semantic relations between propositions. This development starts by inserting special adverbs and coordinating conjunctions resulting in various types of coordination. In a later stage, the syntactic patterning of the sentence is affected as well (various types of subordination). The increase in sentence complexity is only one aspect of the entire development. An explanation for the increase in connectivity is offered based upon a distinction between narrative and expository language use. The latter, but not the former, is characterized by frequent occurrence of connectives. The development in syntactic formulating ability includes a high level of skill in expository language use. Speed of development is determined by intensity of training, e.g. in scholastic and occupational settings.
  • Van Berkum, J. J. A. (1986). Doordacht gevoel: Emoties als informatieverwerking. De Psycholoog, 21(9), 417-423.
  • Van de Geer, J. P., & Levelt, W. J. M. (1963). Detection of visual patterns disturbed by noise: An exploratory study. Quarterly Journal of Experimental Psychology, 15, 192-204. doi:10.1080/17470216308416324.

    Abstract

    An introductory study of the perception of stochastically specified events is reported. The initial problem was to determine whether the perceiver can split visual input data of this kind into random and determined components. The inability of subjects to do so with the stimulus material used (a filmlike sequence of dot patterns), led to the more general question of how subjects code this kind of visual material. To meet the difficulty of defining the subjects' responses, two experiments were designed. In both, patterns were presented as a rapid sequence of dots on a screen. The patterns were more or less disturbed by “noise,” i.e. the dots did not appear exactly at their proper places. In the first experiment the response was a rating on a semantic scale, in the second an identification from among a set of alternative patterns. The results of these experiments give some insight in the coding systems adopted by the subjects. First, noise appears to be detrimental to pattern recognition, especially to patterns with little spread. Second, this shows connections with the factors obtained from analysis of the semantic ratings, e.g. easily disturbed patterns show a large drop in the semantic regularity factor, when only a little noise is added.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1991). Aspects of computer simulations in education. Education & Computing, 6(3/4), 231-239.

    Abstract

    Computer simulations in an instructional context can be characterized according to four aspects (themes): simulation models, learning goals, learning processes and learner activity. The present paper provides an outline of these four themes. The main classification criterion for simulation models is quantitative vs. qualitative models. For quantitative models a further subdivision can be made by classifying the independent and dependent variables as continuous or discrete. A second criterion is whether one of the independent variables is time, thus distinguishing dynamic and static models. Qualitative models on the other hand use propositions about non-quantitative properties of a system or they describe quantitative aspects in a qualitative way. Related to the underlying model is the interaction with it. When this interaction has a normative counterpart in the real world we call it a procedure. The second theme of learning with computer simulation concerns learning goals. A learning goal is principally classified along three dimensions, which specify different aspects of the knowledge involved. The first dimension, knowledge category, indicates that a learning goal can address principles, concepts and/or facts (conceptual knowledge) or procedures (performance sequences). The second dimension, knowledge representation, captures the fact that knowledge can be represented in a more declarative (articulate, explicit), or in a more compiled (implicit) format, each one having its own advantages and drawbacks. The third dimension, knowledge scope, involves the learning goal's relation with the simulation domain; knowledge can be specific to a particular domain, or generalizable over classes of domains (generic). A more or less separate type of learning goal refers to knowledge acquisition skills that are pertinent to learning in an exploratory environment. Learning processes constitute the third theme. Learning processes are defined as cognitive actions of the learner. Learning processes can be classified using a multilevel scheme. The first (highest) of these levels gives four main categories: orientation, hypothesis generation, testing and evaluation. Examples of more specific processes are model exploration and output interpretation. The fourth theme of learning with computer simulations is learner activity. Learner activity is defined as the ‘physical’ interaction of the learner with the simulations (as opposed to the mental interaction that was described in the learning processes). Five main categories of learner activity are distinguished: defining experimental settings (variables, parameters etc.), interaction process choices (deciding a next step), collecting data, choice of data presentation and metacontrol over the simulation.
  • Van Berkum, J. J. A., & De Jong, T. (1991). Instructional environments for simulations. Education & Computing, 6(3/4), 305-358.

    Abstract

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving context, to practise task performance without stress, to systematically explore both realistic and hypothetical situations, to change the time-scale of events, and to interact with simplified versions of the process or system being simulated. However, learners are often unable to cope with the freedom offered by, and the complexity of, a simulation. As a result many of them resort to an unsystematic, unproductive mode of exploration. There is evidence that simulation-based learning can be improved if the learner is supported while working with the simulation. Constructing such an instructional environment around simulations seems to run counter to the freedom the learner is allowed to in ‘stand alone’ simulations. The present article explores instructional measures that allow for an optimal freedom for the learner. An extensive discussion of learning goals brings two main types of learning goals to the fore: conceptual knowledge and operational knowledge. A third type of learning goal refers to the knowledge acquisition (exploratory learning) process. Cognitive theory has implications for the design of instructional environments around simulations. Most of these implications are quite general, but they can also be related to the three types of learning goals. For conceptual knowledge the sequence and choice of models and problems is important, as is providing the learner with explanations and minimization of error. For operational knowledge cognitive theory recommends learning to take place in a problem solving context, the explicit tracing of the behaviour of the learner, providing immediate feedback and minimization of working memory load. For knowledge acquisition goals, it is recommended that the tutor takes the role of a model and coach, and that learning takes place together with a companion. A second source of inspiration for designing instructional environments can be found in Instructional Design Theories. Reviewing these shows that interacting with a simulation can be a part of a more comprehensive instructional strategy, in which for example also prerequisite knowledge is taught. Moreover, information present in a simulation can also be represented in a more structural or static way and these two forms of presentation provoked to perform specific learning processes and learner activities by tutor controlled variations in the simulation, and by tutor initiated prodding techniques. And finally, instructional design theories showed that complex models and procedures can be taught by starting with central and simple elements of these models and procedures and subsequently presenting more complex models and procedures. Most of the recent simulation-based intelligent tutoring systems involve troubleshooting of complex technical systems. Learners are supposed to acquire knowledge of particular system principles, of troubleshooting procedures, or of both. Commonly encountered instructional features include (a) the sequencing of increasingly complex problems to be solved, (b) the availability of a range of help information on request, (c) the presence of an expert troubleshooting module which can step in to provide criticism on learner performance, hints on the problem nature, or suggestions on how to proceed, (d) the option of having the expert module demonstrate optimal performance afterwards, and (e) the use of different ways of depicting the simulated system. A selection of findings is summarized by placing them under the four themes we think to be characteristic of learning with computer simulations (see de Jong, this volume).
  • Van Wijk, C., & Kempen, G. (1982). Kost zinsbouw echt tijd? In R. Stuip, & W. Zwanenberg (Eds.), Handelingen van het zevenendertigste Nederlands Filologencongres (pp. 223-231). Amsterdam: APA-Holland University Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van de Geer, J. P., Levelt, W. J. M., & Plomp, R. (1962). The connotation of musical consonance. Acta Psychologica, 20, 308-319.

    Abstract

    As a preliminary to further research on musical consonance an explanatory investigation was made on the different modes of judgment of musical intervals. This was done by way of a semantic differential. Subjects rated 23 intervals against 10 scales. In a factor analysis three factors appeared: pitch, evaluation and fusion. The relation between these factors and some physical characteristics has been investigated. The scale consonant-dissonant showed to be purely evaluative (in opposition to Stumpf's theory). This evaluative connotation is not in accordance with the musicological meaning of consonance. Suggestions to account for this difference have been given.
  • Van Wijk, C., & Kempen, G. (1982). Syntactische formuleervaardigheid en het schrijven van opstellen. Pedagogische Studiën, 59, 126-136.

    Abstract

    Meermalen is getracht om syntactische formuleenuuirdigheid direct en objectief te meten aan de hand van gesproken of geschreven teksten. Uitgangspunt hierbij vormde in de regel de syntactische complexiteit van de geproduceerde taaluitingen. Dit heeft echter niet geleid tot een plausibele, duidelijk omschreven en praktisch bruikbare index. N.a.v. een kritische bespreking van de notie complexiteit wordt in dit artikel als nieuw criterium voorgesteld de connectiviteit van de taaluitingen; de expliciete aanduiding van logiscli-scmantische relaties tussen proposities. Connectiviteit is gemakkelijk scoorbaar aan de hand van functiewoorden die verschillende vormen van nevenschikkend en onderschikkend zinsverband markeren. Deze nieuwe index ondetrangt de kritiek die op complexiteit gegeven kon worden, blijkt duidelijk te discrimineren tussen groepen leerlingen die van elkaar verschillen naar leeftijd en opleidingsniveau, en sluit aan bij recente taalpsychologische en sociolinguïstische theorie. Tot besluit worden enige onderwijskundige implicaties aangegeven.
  • Van der Veer, G. C., Bagnara, S., & Kempen, G. (1991). Preface. Acta Psychologica, 78, ix. doi:10.1016/0001-6918(91)90002-H.
  • Van Valin Jr., R. D. (1995). Toward a functionalist account of so-called ‘extraction constraints’. In B. Devriendt (Ed.), Complex structures: A functionalist perspective (pp. 29-60). Berlin: Mouton de Gruyter.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Weissenborn, J. (1986). Learning how to become an interlocutor. The verbal negotiation of common frames of reference and actions in dyads of 7–14 year old children. In J. Cook-Gumperz, W. A. Corsaro, & J. Streeck (Eds.), Children's worlds and children's language (pp. 377-404). Berlin: Mouton de Gruyter.
  • Wheeldon, L. R., & Levelt, W. J. M. (1995). Monitoring the time course of phonological encoding. Journal of Memory and Language, 34(3), 311-334. doi:10.1006/jmla.1995.1014.

    Abstract

    Three experiments examined the time course of phonological encoding in speech production. A new methodology is introduced in which subjects are required to monitor their internal speech production for prespecified target segments and syllables. Experiment 1 demonstrated that word initial target segments are monitored significantly faster than second syllable initial target segments. The addition of a concurrent articulation task (Experiment 1b) had a limited effect on performance, excluding the possibility that subjects are monitoring a subvocal articulation of the carrier word. Moreover, no relationship was observed between the pattern of monitoring latencies and the timing of the targets in subjects′ overt speech. Subjects are not, therefore, monitoring an internal phonetic representation of the carrier word. Experiment 2 used the production monitoring task to replicate the syllable monitoring effect observed in speech perception experiments: responses to targets were faster when they corresponded to the initial syllable of the carrier word than when they did not. We conclude that subjects are monitoring their internal generation of a syllabified phonological representation. Experiment 3 provides more detailed evidence concerning the time course of the generation of this representation by comparing monitoring latencies to targets within, as well as between, syllables. Some amendments to current models of phonological encoding are suggested in light of these results.
  • Wilkins, D. (1995). Towards a Socio-Cultural Profile of the Communities We Work With. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 70-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513481.

    Abstract

    Field data are drawn from a particular speech community at a certain place and time. The intent of this survey is to enrich understanding of the various socio-cultural contexts in which linguistic and “cognitive” data may have been collected, so that we can explore the role which societal, cultural and contextual factors may play in this material. The questionnaire gives guidelines concerning types of ethnographic information that are important to cross-cultural and cross-linguistic enquiry, and will be especially useful to researchers who do not have specialised training in anthropology.
  • Wilkins, D., Pederson, E., & Levinson, S. C. (1995). Background questions for the "enter"/"exit" research. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 14-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003935.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored.
  • Wilkins, D. (1995). Motion elicitation: "moving 'in(to)'" and "moving 'out (of)'". In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 4-12). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003391.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This task investigates the expression of “enter” and “exit” activities, that is, events involving motion in(to) and motion out (of) container-like items. The researcher first uses particular stimuli (a ball, a cup, rice, etc.) to elicit descriptions of enter/exit events from one consultant, and then asks another consultant to demonstrate the event based on these descriptions. See also the related entries Enter/Exit Animation and Background Questions for Enter/Exit Research.
  • Wilkins, D. P., & Hill, D. (1995). When "go" means "come": Questioning the basicness of basic motion verbs. Cognitive Linguistics, 6, 209-260. doi:10.1515/cogl.1995.6.2-3.209.

    Abstract

    The purpose of this paper is to question some of the basic assumpiions concerning motion verbs. In particular, it examines the assumption that "come" and "go" are lexical universals which manifest a universal deictic Opposition. Against the background offive working hypotheses about the nature of'come" and ''go", this study presents a comparative investigation of t wo unrelated languages—Mparntwe Arrernte (Pama-Nyungan, Australian) and Longgu (Oceanic, Austronesian). Although the pragmatic and deictic "suppositional" complexity of"come" and "go" expressions has long been recognized, we argue that in any given language the analysis of these expressions is much more semantically and systemically complex than has been assumed in the literature. Languages vary at the lexical semantic level äs t o what is entailed by these expressions, äs well äs differing äs t o what constitutes the prototype and categorial structure for such expressions. The data also strongly suggest that, ifthere is a lexical universal "go", then this cannof be an inherently deictic expression. However, due to systemic Opposition with "come", non-deictic "go" expressions often take on a deictic Interpretation through pragmatic attribution. Thus, this crosslinguistic investigation of "come" and "go" highlights the need to consider semantics and pragmatics äs modularly separate.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.

Share this page