Publications

Displaying 1 - 100 of 238
  • Ameka, F. K. (2005). "The woman is seeable" and "The woman perceives seeing": Undergoer voice constructions in Ewe and Likpe. In M. Dakubu, & E. Osam (Eds.), Studies in languages of the Volta Basin (pp. 43-62). Legon: University of Ghana. Department of Linguistics.
  • Ameka, F. K. (2005). Forms of secondary predication in serializing languages: On depictives in Ewe. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification: The typology of depictives (pp. 335-378). Oxford: Oxford University Press.
  • Ameka, F. K. (2005). Multiverb constructions on the West African littoral: Microvariation and areal typology. In M. Vulchanova, & T. A. Afarli (Eds.), Grammar and beyond: Essays in honour of Lars Hellan (pp. 15-42). Oslo: Novus.
  • Baayen, R. H. (2005). Data mining at the intersection of psychology and linguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 69-83). Mahwah: Erlbaum.
  • Bauer, B. L. M. (2005). Innovation in Old French syntax and its Latin origins. In S. Kiss, L. Mondin, & G. Salvi (Eds.), Latin et langues romanes: Etudes de linguistique offertes à Jozsef Herman à l’occasion de son 80ème anniversaire (pp. 507-521). Tübingen: Niemeyer.
  • Bauer, B. L. M. (2005). Living in two worlds. In W. R. Louis (Ed.), Burnt orange Britannia (pp. 732-744). Austin: Harry Ransom Humanities Research Center.
  • Bauer, B. L. M. (1997). Nominal syntax in Italic: A diachronic perspective. In Language change and functional explanations (pp. 273-301). Berlin: Mouton de Gruyter.
  • Bauer, B. L. M. (2016). The development of the comparative in Latin texts. In J. N. Adams, & N. Vincent (Eds.), Early and late Latin. Continuity or change? (pp. 313-339). Cambridge: Cambridge University Press.
  • Becker, M. (2016). On the identification of FOXP2 gene enhancers and their role in brain development. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Blythe, J. (2018). Genesis of the trinity: The convergent evolution of trirelational kinterms. In P. McConvell, & P. Kelly (Eds.), Skin, kin and clan: The dynamics of social categories in Indigenous Australia (pp. 431-471). Canberra: ANU EPress.
  • Bock, K., & Levelt, W. J. M. (1994). Language production: Grammatical encoding. In M. A. Gernsbacher (Ed.), Handbook of Psycholinguistics (pp. 945-984). San Diego,: Academic Press.
  • Böttner, M. (1997). Natural Language. In C. Brink, W. Kahl, & G. Schmidt (Eds.), Relational Methods in computer science (pp. 229-249). Vienna, Austria: Springer-Verlag.
  • Bouman, M. A., & Levelt, W. J. M. (1994). Werner E. Reichardt: Levensbericht. In H. W. Pleket (Ed.), Levensberichten en herdenkingen 1993 (pp. 75-80). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Bowden, J. (1997). The meanings of Directionals in Taba. In G. Senft (Ed.), Referring to Space: Studies in Austronesian and Papuan Languages (pp. 251-268). New York, NJ: Oxford University Press.
  • Bowerman, M. (2005). Why can't you "open" a nut or "break" a cooked noodle? Learning covert object categories in action word meanings. In L. Gershkoff-Stowe, & D. H. Rakison (Eds.), Building object categories in developmental time (pp. 209-243). Mahwah, NJ: Erlbaum.
  • Bowerman, M. (2005). Linguistics. In B. Hopkins (Ed.), The Cambridge encyclopedia of child development (pp. 497-501). Cambridge: Cambridge University Press.
  • Bowerman, M. (1994). Learning a semantic system: What role do cognitive predispositions play? [Reprint]. In P. Bloom (Ed.), Language acquisition: Core readings (pp. 329-363). Cambridge, MA: MIT Press.

    Abstract

    Reprint from: Bowerman, M. (1989). Learning a semantic system: What role do cognitive predispositions play? In M.L. Rice & R.L Schiefelbusch (Ed.), The teachability of language (pp. 133-169). Baltimore: Paul H. Brookes.
  • Bowerman, M. (1982). Reorganizational processes in lexical and syntactic development. In E. Wanner, & L. Gleitman (Eds.), Language acquisition: The state of the art (pp. 319-346). New York: Academic Press.
  • Bowerman, M. (1982). Starting to talk worse: Clues to language acquisition from children's late speech errors. In S. Strauss (Ed.), U shaped behavioral growth (pp. 101-145). New York: Academic Press.
  • Brehm, L., & Goldrick, M. (2018). Connectionist principles in theories of speech production. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 372-397). Oxford: Oxford University Press.

    Abstract

    This chapter focuses on connectionist modeling in language production, highlighting how
    core principles of connectionism provide coverage for empirical observations about
    representation and selection at the phonological, lexical, and sentence levels. The first
    section focuses on the connectionist principles of localist representations and spreading
    activation. It discusses how these two principles have motivated classic models of speech
    production and shows how they cover results of the picture-word interference paradigm,
    the mixed error effect, and aphasic naming errors. The second section focuses on how
    newer connectionist models incorporate the principles of learning and distributed
    representations through discussion of syntactic priming, cumulative semantic
    interference, sequencing errors, phonological blends, and code-switching
  • Broersma, M. (2005). Phonetic and lexical processing in a second language. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.58294.
  • Brown, P. (2005). Linguistic politeness. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the science of language and society (pp. 1410-1416). Berlin: Mouton de Gruyter.

    Abstract

    This is an encyclopedia entry surveying research and theoretical approaches to politeness phenomena in language usage.
  • Brown, P. (1997). Isolating the CVC root in Tzeltal Mayan: A study of children's first verbs. In E. V. Clark (Ed.), Proceedings of the 28th Annual Child Language Research Forum (pp. 41-52). Stanford, CA: CSLI/University of Chicago Press.

    Abstract

    How do children isolate the semantic package contained in verb roots in the Mayan language Tzeltal? One might imagine that the canonical CVC shape of roots characteristic of Mayan languages would make the job simple, but the root is normally preceded and followed by affixes which mask its identity. Pye (1983) demonstrated that, in Kiche' Mayan, prosodic salience overrides semantic salience, and children's first words in Kiche' are often composed of only the final (stressed) syllable constituted by the final consonant of the CVC root and a 'meaningless' termination suffix. Intonation thus plays a crucial role in early Kiche' morphological development. Tzeltal presents a rather different picture: The first words of children around the age of 1;6 are bare roots, children strip off all prefixes and suffixes which are obligatory in adult speech. They gradually add them, starting with the suffixes (which receive the main stress), but person prefixes are omitted in some contexts past a child's third birthday, and one obligatory aspectual prefix (x-) is systematically omitted by the four children in my longitudinal study even after they are four years old. Tzeltal children's first verbs generally show faultless isolation of the root. An account in terms of intonation or stress cannot explain this ability (the prefixes are not all syllables; the roots are not always stressed). This paper suggests that probable clues include the fact that the CVC root stays constant across contexts (with some exceptions) whereas the affixes vary, that there are some linguistic contexts where the root occurs without any prefixes (relatively frequent in the input), and that the Tzeltal discourse convention of responding by repeating with appropriate deictic alternation (e.g., "I see it." "Oh, you see it.") highlights the root.
  • Brown, P., & Levinson, S. C. (2018). Tzeltal: The demonstrative system. In S. C. Levinson, S. Cutfield, M. Dunn, N. J. Enfield, & S. Meira (Eds.), Demonstratives in cross-linguistic perspective (pp. 150-177). Cambridge: Cambridge University Press.
  • Bruggeman, L. (2016). Nativeness, dominance, and the flexibility of listening to spoken language. PhD Thesis, Western Sydney University, Sydney.
  • Burenhult, N., & Kruspe, N. (2016). The language of eating and drinking: A window on Orang Asli meaning-making. In K. Endicott (Ed.), Malaysia’s original people: Past, present and future of the Orang Asli (pp. 175-199). Singapore: National University of Singapore Press.
  • Carrion Castillo, A. (2016). Deciphering common and rare genetic effects on reading ability. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Chen, H.-C., & Cutler, A. (1997). Auditory priming in spoken and printed word recognition. In H.-C. Chen (Ed.), Cognitive processing of Chinese and related Asian languages (pp. 77-81). Hong Kong: Chinese University Press.
  • Clark, E. V., & Casillas, M. (2016). First language acquisition. In K. Allen (Ed.), The Routledge Handbook of Linguistics (pp. 311-328). New York: Routledge.
  • Corps, R. E. (2018). Coordinating utterances during conversational dialogue: The role of content and timing predictions. PhD Thesis, The University of Edinburgh, Edinburgh.
  • Crago, M. B., Allen, S. E. M., & Hough-Eyamie, W. P. (1997). Exploring innateness through cultural and linguistic variation. In M. Gopnik (Ed.), The inheritance and innateness of grammars (pp. 70-90). New York City, NY, USA: Oxford University Press, Inc.
  • Croijmans, I. (2018). Wine expertise shapes olfactory language and cognition. PhD Thesis, Radboud University, Nijmegen.
  • Cutler, A., & Broersma, M. (2005). Phonetic precision in listening. In W. J. Hardcastle, & J. M. Beck (Eds.), A figure of speech: A Festschrift for John Laver (pp. 63-91). Mahwah, NJ: Erlbaum.
  • Cutler, A., Klein, W., & Levinson, S. C. (2005). The cornerstones of twenty-first century psycholinguistics. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 1-20). Mahwah, NJ: Erlbaum.
  • Cutler, A. (2005). Lexical stress. In D. B. Pisoni, & R. E. Remez (Eds.), The handbook of speech perception (pp. 264-289). Oxford: Blackwell.
  • Cutler, A., & Farrell, J. (2018). Listening in first and second language. In J. I. Liontas (Ed.), The TESOL encyclopedia of language teaching. New York: Wiley. doi:10.1002/9781118784235.eelt0583.

    Abstract

    Listeners' recognition of spoken language involves complex decoding processes: The continuous speech stream must be segmented into its component words, and words must be recognized despite great variability in their pronunciation (due to talker differences, or to influence of phonetic context, or to speech register) and despite competition from many spuriously present forms supported by the speech signal. L1 listeners deal more readily with all levels of this complexity than L2 listeners. Fortunately, the decoding processes necessary for competent L2 listening can be taught in the classroom. Evidence-based methodologies targeted at the development of efficient speech decoding include teaching of minimal pairs, of phonotactic constraints, and of reduction processes, as well as the use of dictation and L2 video captions.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (1997). Prosody and the structure of the message. In Y. Sagisaka, N. Campbell, & N. Higuchi (Eds.), Computing prosody: Computational models for processing spontaneous speech (pp. 63-66). Heidelberg: Springer.
  • D'Avis, F.-J., & Gretsch, P. (1994). Variations on "Variation": On the Acquisition of Complementizers in German. In R. Tracy, & E. Lattey (Eds.), How Tolerant is Universal Grammar? (pp. 59-109). Tübingen, Germany: Max-Niemeyer-Verlag.
  • Defina, R. (2016). Events in language and thought: The case of serial verb constructions in Avatime. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Dijkstra, T., & Kempen, G. (1997). Het taalgebruikersmodel. In H. Hulshof, & T. Hendrix (Eds.), De taalcentrale. Amsterdam: Bulkboek.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dingemanse, M., Blythe, J., & Dirksmeyer, T. (2018). Formats for other-initiation of repair across languages: An exercise in pragmatic typology. In I. Nikolaeva (Ed.), Linguistic Typology: Critical Concepts in Linguistics. Vol. 4 (pp. 322-357). London: Routledge.

    Abstract

    In conversation, people regularly deal with problems of speaking, hearing, and understanding. We report on a cross-linguistic investigation of the conversational structure of other-initiated repair (also known as collaborative repair, feedback, requests for clarification, or grounding sequences). We take stock of formats for initiating repair across languages (comparable to English huh?, who?, y’mean X?, etc.) and find that different languages make available a wide but remarkably similar range of linguistic resources for this function. We exploit the patterned variation as evidence for several underlying concerns addressed by repair initiation: characterising trouble, managing responsibility, and handling knowledge. The concerns do not always point in the same direction and thus provide participants in interaction with alternative principles for selecting one format over possible others. By comparing conversational structures across languages, this paper contributes to pragmatic typology: the typology of systems of language use and the principles that shape them.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Drozdova, P. (2018). The effects of nativeness and background noise on the perceptual learning of voices and ambiguous sounds. PhD Thesis, Radboud University, Nijmegen.
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Drude, S. (1997). Wörterbücher, integrativ interpretiert, am Beispiel des Guaraní. Magister Thesis, Freie Universität Berlin.
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Ernestus, M. (2016). L'utilisation des corpus oraux pour la recherche en (psycho)linguistique. In M. Kilani-Schoch, C. Surcouf, & A. Xanthos (Eds.), Nouvelles technologies et standards méthodologiques en linguistique (pp. 65-93). Lausanne: Université de Lausanne.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Estruch, S. B. (2018). Characterization of transcription factors in monogenic disorders of speech and language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Filippi, P. (2005). Gilbert Ryle: Pensare la Mente. Master Thesis, Università degli Studi di Palermo, Palermo.

    Abstract

    This study focuses on the main work of Gilbert Ryle, “The concept of Mind” (1949). Here the author demolishes what he refers to as the cartesian dogma of “the ghost in the machine”, highlighting the absurdity of categorical ordering in dualist systems, where mental activities are explained as separate from physical actions. Surprisingly, the Italian translator of “The concept of Mind”, Ferruccio Rossi-Landi, missed this key aspect of Ryle’s work, writing up what resulted into a significantly misleading translation. This can be clearly noticed from the title already: “Lo spirito come comportamento” [The ghost as behavior]. This erroneous translation affected the interpretation of “The concept of Mind” as a mere study on behavioral reductionism in Italy. Here, I argue in favor of the originality of Ryle’s approach in pointing out the socio-cultural dynamics as the non - physical dimensions of the human mind, and yet, linked to the human brain. In doing so, I trace the crucial influence of Wittgenstein’s philosophy in Ryle’s interpretation of the concept of mind, which helps in grasping a better understanding of his work. Wittgenstein’s influence shows clearly in Ryle’s conceptual operation of grounding the acquisition of dispositions and competences - which ultimately define the rational subjects as rational agents – in the shared background of social and cultural dynamics. In a nutshell, this social dimension is the defining characteristic of the human mind and of all human actions in Ryle’s philosophy. As Ryle argues in “On thinking” (1979), this intrinsic quality of human actions can reveal itself in actions that one performs absent-mindendly in everyday life, as well as in more complex ones: for instance, when the mind reflects upon itself.
  • Fisher, S. E. (2016). A molecular genetic perspective on speech and language. In G. Hickok, & S. Small (Eds.), Neurobiology of Language (pp. 13-24). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407794-2.00002-X.

    Abstract

    The rise of genomic technologies has yielded exciting new routes for studying the biological foundations of language. Researchers have begun to identify genes implicated in neurodevelopmental disorders that disrupt speech and language skills. This chapter illustrates how such work can provide powerful entry points into the critical neural pathways using FOXP2 as an example. Rare mutations of this gene cause problems with learning to sequence mouth movements during speech, accompanied by wide-ranging impairments in language production and comprehension. FOXP2 encodes a regulatory protein, a hub in a network of other genes, several of which have also been associated with language-related impairments. Versions of FOXP2 are found in similar form in many vertebrate species; indeed, studies of animals and birds suggest conserved roles in the development and plasticity of certain sets of neural circuits. Thus, the contributions of this gene to human speech and language involve modifications of evolutionarily ancient functions.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Floyd, S. (2016). Insubordination in Interaction: The Cha’palaa counter-assertive. In N. Evans, & H. Wananabe (Eds.), Dynamics of Insubordination (pp. 341-366). Amsterdam: John Benjamins.

    Abstract

    In the Cha’palaa language of Ecuador the main-clause use of the otherwise non-finite morpheme -ba can be accounted for by a specific interactive practice: the ‘counter-assertion’ of statement or implicature of a previous conversational turn. Attention to the ways in which different constructions are deployed in such recurrent conversational contexts reveals a plausible account for how this type of dependent clause has come to be one of the options for finite clauses. After giving some background on Cha’palaa and placing ba clauses within a larger ecology of insubordination constructions in the language, this chapter uses examples from a video corpus of informal conversation to illustrate how interactive data provides answers that may otherwise be elusive for understanding how the different grammatical options for Cha’palaa finite verb constructions have been structured by insubordination
  • Floyd, S., & Norcliffe, E. (2016). Switch reference systems in the Barbacoan languages and their neighbors. In R. Van Gijn, & J. Hammond (Eds.), Switch Reference 2.0 (pp. 207-230). Amsterdam: Benjamins.

    Abstract

    This chapter surveys the available data on Barbacoan languages and their neighbors to explore a case study of switch reference within a single language family and in a situation of areal contact. To the extent possible given the available data, we weigh accounts appealing to common inheritance and areal convergence to ask what combination of factors led to the current state of these languages. We discuss the areal distribution of switch reference systems in the northwest Andean region, the different types of systems and degrees of complexity observed, and scenarios of contact and convergence, particularly in the case of Barbacoan and Ecuadorian Quechua. We then covers each of the Barbacoan languages’ systems (with the exception of Totoró, represented by its close relative Guambiano), identifying limited formal cognates, primarily between closely-related Tsafiki and Cha’palaa, as well as broader functional similarities, particularly in terms of interactions with topic/focus markers. n accounts for the current state of affairs with a complex scenario of areal prevalence of switch reference combined with deep structural family inheritance and formal re-structuring of the systems over time
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Francken, J. C. (2016). Viewing the world through language-tinted glasses: Elucidating the neural mechanisms of language-perception interactions. PhD Thesis, Radboud University, Nijmegen.
  • Franken, M. K. (2018). Listening for speaking: Investigations of the relationship between speech perception and production. PhD Thesis, Radboud University, Nijmegen.

    Abstract

    Speaking and listening are complex tasks that we perform on a daily basis, almost without conscious effort. Interestingly, speaking almost never occurs without listening: whenever we speak, we at least hear our own speech. The research in this thesis is concerned with how the perception of our own speech influences our speaking behavior. We show that unconsciously, we actively monitor this auditory feedback of our own speech. This way, we can efficiently take action and adapt articulation when an error occurs and auditory feedback does not correspond to our expectation. Processing the auditory feedback of our speech does not, however, automatically affect speech production. It is subject to a number of constraints. For example, we do not just track auditory feedback, but also its consistency. If auditory feedback is more consistent over time, it has a stronger influence on speech production. In addition, we investigated how auditory feedback during speech is processed in the brain, using magnetoencephalography (MEG). The results suggest the involvement of a broad cortical network including both auditory and motor-related regions. This is consistent with the view that the auditory center of the brain is involved in comparing auditory feedback to our expectation of auditory feedback. If this comparison yields a mismatch, motor-related regions of the brain can be recruited to alter the ongoing articulations.

    Additional information

    full text via Radboud Repository
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Gordon, P. C., Lowder, M. W., & Hoedemaker, R. S. (2016). Reading in normally aging adults. In H. Wright (Ed.), Cognitive-Linguistic Processes and Aging (pp. 165-192). Amsterdam: Benjamins. doi:10.1075/z.200.07gor.

    Abstract

    The activity of reading raises fundamental theoretical and practical questions about healthy cognitive aging. Reading relies greatly on knowledge of patterns of language and of meaning at the level of words and topics of text. Further, this knowledge must be rapidly accessed so that it can be coordinated with processes of perception, attention, memory and motor control that sustain skilled reading at rates of four-to-five words a second. As such, reading depends both on crystallized semantic intelligence which grows or is maintained through healthy aging, and on components of fluid intelligence which decline with age. Reading is important to older adults because it facilitates completion of everyday tasks that are essential to independent living. In addition, it entails the kind of active mental engagement that can preserve and deepen the cognitive reserve that may mitigate the negative consequences of age-related changes in the brain. This chapter reviews research on the front end of reading (word recognition) and on the back end of reading (text memory) because both of these abilities are surprisingly robust to declines associated with cognitive aging. For word recognition, that robustness is surprising because rapid processing of the sort found in reading is usually impaired by aging; for text memory, it is surprising because other types of episodic memory performance (e.g., paired associates) substantially decline in aging. These two otherwise quite different levels of reading comprehension remain robust because they draw on the knowledge of language that older adults gain through a life-time of experience with language.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Hagoort, P., & Brown, C. M. (1994). Brain responses to lexical ambiguity resolution and parsing. In C. Clifton Jr, L. Frazier, & K. Rayner (Eds.), Perspectives on sentence processing (pp. 45-81). Hilsdale NY: Lawrence Erlbaum Associates.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Haveman, A. (1997). The open-/closed-class distinction in spoken-word recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057704.
  • Hill, C. (2018). Person reference and interaction in Umpila/Kuuku Ya'u narrative. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Irizarri van Suchtelen, P. (2016). Spanish as a heritage language in the Netherlands. A cognitive linguistic exploration. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Janssen, R. (2018). Let the agents do the talking: On the influence of vocal tract anatomy no speech during ontogeny. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Jesse, A. (2005). Towards a lexical fuzzy logical model of perception: The time-course of information in lexical identification of face-to-face speech. PhD Thesis, University of California, Santa Cruz.

    Abstract

    In face-to-face communication, information from the face as well as from the voice contributes to the identification of spoken words. This dissertation investigates the time-course of the evaluation and integration of visual and auditory speech in audiovisual word identification. A large-scale audiovisual gating study extends previous research on this topic by (1) using a set of words that includes all possible initial consonants in English in three vowel contexts, (2) tracking the information processing for individual words not only across modalities, but also over time, and (3) testing quantitative models of the time-course of multimodal word recognition. There was an advantage in accuracy for audiovisual speech over auditory-only and visual-only speech. Auditory performance was, however, close to ceiling while performance on visual-only trials was near the floor of the scale, but well above chance. Visual information was used at all gates to identify the presented words. Information theoretic feature analyses of the confusion matrices revealed that the auditory signal is highly informative about voicing, manner, frication, duration, and place of articulation. Visual speech is mostly informative about place of articulation, but also about frication and duration. The auditory signal provides more information about the place of articulation for back consonants, whereas the visual signal provides more information for the labial consonants. The data were sufficient to discriminate between models of audiovisual word recognition. The Fuzzy Logical Model of Perception (FLMP; Massaro, 1998) gave a better account of the confusion matrix data than additive models of perception. A dynamic version of the FLMP was expanded to account for the evaluation and integration of information over time. This dynamic FLMP provided a better description of the data than dynamic additive competitor models. The present study builds a good foundation to investigate the role of the complex interplay between stimulus information and the structure of the lexicon. It provides an important step in building a formal representation of a lexical dynamic FLMP that can account not only for the time-course of speech information and its perceptual processing, but also for lexical influences.
  • St. John-Saaltink, E. (2016). When the past influences the present: Modulations of the sensory response by prior knowledge and task set. PhD Thesis, Radboud University, Nijmegen.
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jongman, S. R. (2016). Sustained attention in language production. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kirsch, J. (2018). Listening for the WHAT and the HOW: Older adults' processing of semantic and affective information in speech. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W. (1994). Für eine rein zeitliche Deutung von Tempus und Aspekt. In R. Baum (Ed.), Lingua et Traditio: Festschrift für Hans Helmut Christmann zum 65. Geburtstag (pp. 409-422). Tübingen: Narr.
  • Klein, W. (1994). Keine Känguruhs zur Linken: Über die Variabilität von Raumvorstellungen und ihren Ausdruck in der Sprache. In H.-J. Kornadt, J. Grabowski, & R. Mangold-Allwinn (Eds.), Sprache und Kognition (pp. 163-182). Heidelberg, Berlin, Oxford: Spektrum.

Share this page