Publications

Displaying 501 - 580 of 580
  • Trujillo, J. P., Ozyurek, A., Holler, J., & Drijvers, L. (2021). Speakers exhibit a multimodal Lombard effect in noise. Scientific Reports, 11: 16721. doi:10.1038/s41598-021-95791-0.

    Abstract

    In everyday conversation, we are often challenged with communicating in non-ideal settings, such as in noise. Increased speech intensity and larger mouth movements are used to overcome noise in constrained settings (the Lombard effect). How we adapt to noise in face-to-face interaction, the natural environment of human language use, where manual gestures are ubiquitous, is currently unknown. We asked Dutch adults to wear headphones with varying levels of multi-talker babble while attempting to communicate action verbs to one another. Using quantitative motion capture and acoustic analyses, we found that (1) noise is associated with increased speech intensity and enhanced gesture kinematics and mouth movements, and (2) acoustic modulation only occurs when gestures are not present, while kinematic modulation occurs regardless of co-occurring speech. Thus, in face-to-face encounters the Lombard effect is not constrained to speech but is a multimodal phenomenon where the visual channel carries most of the communicative burden.

    Additional information

    supplementary material
  • Trujillo, J. P., Ozyurek, A., Kan, C. C., Sheftel-Simanova, I., & Bekkering, H. (2021). Differences in the production and perception of communicative kinematics in autism. Autism Research, 14(12), 2640-2653. doi:10.1002/aur.2611.

    Abstract

    In human communication, social intentions and meaning are often revealed in the way we move. In this study, we investigate the flexibility of human communication in terms of kinematic modulation in a clinical population, namely, autistic individuals. The aim of this study was twofold: to assess (a) whether communicatively relevant kinematic features of gestures differ between autistic and neurotypical individuals, and (b) if autistic individuals use communicative kinematic modulation to support gesture recognition. We tested autistic and neurotypical individuals on a silent gesture production task and a gesture comprehension task. We measured movement during the gesture production task using a Kinect motion tracking device in order to determine if autistic individuals differed from neurotypical individuals in their gesture kinematics. For the gesture comprehension task, we assessed whether autistic individuals used communicatively relevant kinematic cues to support recognition. This was done by using stick-light figures as stimuli and testing for a correlation between the kinematics of these videos and recognition performance. We found that (a) silent gestures produced by autistic and neurotypical individuals differ in communicatively relevant kinematic features, such as the number of meaningful holds between movements, and (b) while autistic individuals are overall unimpaired at recognizing gestures, they processed repetition and complexity, measured as the amount of submovements perceived, differently than neurotypicals do. These findings highlight how subtle aspects of neurotypical behavior can be experienced differently by autistic individuals. They further demonstrate the relationship between movement kinematics and social interaction in high-functioning autistic individuals.

    Additional information

    supporting information
  • Trujillo, J. P., Vaitonyte, J., Simanova, I., & Ozyurek, A. (2019). Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research. Behavior Research Methods, 51(2), 769-777. doi:10.3758/s13428-018-1086-8.

    Abstract

    Action, gesture, and sign represent unique aspects of human communication that use form and movement to convey meaning. Researchers typically use manual coding of video data to characterize naturalistic, meaningful movements at various levels of description, but the availability of markerless motion-tracking technology allows for quantification of the kinematic features of gestures or any meaningful human movement. We present a novel protocol for extracting a set of kinematic features from movements recorded with Microsoft Kinect. Our protocol captures spatial and temporal features, such as height, velocity, submovements/strokes, and holds. This approach is based on studies of communicative actions and gestures and attempts to capture features that are consistently implicated as important kinematic aspects of communication. We provide open-source code for the protocol, a description of how the features are calculated, a validation of these features as quantified by our protocol versus manual coders, and a discussion of how the protocol can be applied. The protocol effectively quantifies kinematic features that are important in the production (e.g., characterizing different contexts) as well as the comprehension (e.g., used by addressees to understand intent and semantics) of manual acts. The protocol can also be integrated with qualitative analysis, allowing fast and objective demarcation of movement units, providing accurate coding even of complex movements. This can be useful to clinicians, as well as to researchers studying multimodal communication or human–robot interactions. By making this protocol available, we hope to provide a tool that can be applied to understanding meaningful movement characteristics in human communication.
  • Truong, D. T., Adams, A. K., Paniagua, S., Frijters, J. C., Boada, R., Hill, D. E., Lovett, M. W., Mahone, E. M., Willcutt, E. G., Wolf, M., Defries, J. C., Gialluisi, A., Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., Bosson-Heenan, J., & Gruen, J. R. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 56(8), 557-566. doi:10.1136/jmedgenet-2018-105874.

    Abstract

    Background Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms.

    Objective To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach.

    Methods We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African–American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted.

    Results Genome-wide significant effects were observed at rs1555839 (p=4.03×10−8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer–promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule.

    Conclusion This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene–brain–behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.

    Additional information

    Supplementary data
  • Tsoi, E. Y. L., Yang, W., Chan, A. W. S., & Kidd, E. (2019). Mandarin-English speaking bilingual and Mandarin speaking monolingual children’s comprehension of relative clauses. Applied Psycholinguistics, 40(4), 933-964. doi:10.1017/S0142716419000079.

    Abstract

    The current study investigated the comprehension of subject and object relative clauses (RCs) in bilingual Mandarin-English children (N = 55, Mage = 7;5, SD = 1;8) and language-matched monolingual Mandarin-speaking children (N = 59, Mage = 5;4, SD = 0;7). The children completed a referent selection task that tested their comprehension of subject and object RCs, and standardised assessments of vocabulary knowledge. Results showed a very similar pattern of responding in both groups. In comparison to past studies of Cantonese, the bilingual and monolingual children both showed a significant subject-over-object RC advantage. An error analysis suggested that the children’s difficulty with object RCs reflected the tendency to interpret the sentential subject as the head noun. A subsequent corpus analysis suggested that children’s difficulty with object RCs may be in part due to distributional information favouring subject RC analyses. Individual differences analyses suggested cross-linguistic transfer from English to Mandarin in the bilingual children at the individual but not the group level, with the results indicating that comparative English-dominance makes children vulnerable to error
  • Tsoukala, C., Frank, S. L., Van Den Bosch, A., Valdés Kroff, J., & Broersma, M. (2021). Modeling the auxiliary phrase asymmetry in code-switched Spanish–English. Bilingualism: Language and Cognition, 24(2), 271-280. doi:10.1017/S1366728920000449.

    Abstract

    Spanish–English bilinguals rarely code-switch in the perfect structure between the Spanish auxiliary haber (“to have”) and the participle (e.g., “Ella ha voted”; “She has voted”). However, they are somewhat likely to switch in the progressive structure between the Spanish auxiliary estar (“to be”) and the participle (“Ella está voting”; “She is voting”). This phenomenon is known as the “auxiliary phrase asymmetry”. One hypothesis as to why this occurs is that estar has more semantic weight as it also functions as an independent verb, whereas haber is almost exclusively used as an auxiliary verb. To test this hypothesis, we employed a connectionist model that produces spontaneous code-switches. Through simulation experiments, we showed that i) the asymmetry emerges in the model and that ii) the asymmetry disappears when using haber also as a main verb, which adds semantic weight. Therefore, the lack of semantic weight of haber may indeed cause the asymmetry.
  • Tsoukala, C., Broersma, M., Van den Bosch, A., & Frank, S. L. (2021). Simulating code-switching using a neural network model of bilingual sentence production. Computational Brain & Behavior, 4, 87-100. doi:10.1007/s42113-020-00088-6.

    Abstract

    Code-switching is the alternation from one language to the other during bilingual speech. We present a novel method of researching this phenomenon using computational cognitive modeling. We trained a neural network of bilingual sentence production to simulate early balanced Spanish–English bilinguals, late speakers of English who have Spanish as a dominant native language, and late speakers of Spanish who have English as a dominant native language. The model produced code-switches even though it was not exposed to code-switched input. The simulations predicted how code-switching patterns differ between early balanced and late non-balanced bilinguals; the balanced bilingual simulation code-switches considerably more frequently, which is in line with what has been observed in human speech production. Additionally, we compared the patterns produced by the simulations with two corpora of spontaneous bilingual speech and identified noticeable commonalities and differences. To our knowledge, this is the first computational cognitive model simulating the code-switched production of non-balanced bilinguals and comparing the simulated production of balanced and non-balanced bilinguals with that of human bilinguals.

    Additional information

    dual-path model
  • Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.

    Abstract

    A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.

    SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.
  • Vágvölgyi, R., Bergström, K., Bulajić, A., Klatte, M., Fernandes, T., Grosche, M., Huettig, F., Rüsseler, J., & Lachmann, T. (2021). Functional illiteracy and developmental dyslexia: Looking for common roots. A systematic review. Journal of Cultural Cognitive Science, 5, 159-179. doi:10.1007/s41809-021-00074-9.

    Abstract

    A considerable amount of the population in more economically developed countries are functionally illiterate (i.e., low literate). Despite some years of schooling and basic reading skills, these individuals cannot properly read and write and, as a consequence have problems to understand even short texts. An often-discussed approach (Greenberg et al., 1997) assumes weak phonological processing skills coupled with untreated developmental dyslexia as possible causes of functional illiteracy. Although there is some data suggesting commonalities between low literacy and developmental dyslexia, it is still not clear, whether these reflect shared consequences (i.e., cognitive and behavioral profile) or shared causes. The present systematic review aims at exploring the similarities and differences identified in empirical studies investigating both functional illiterate and developmental dyslexic samples. Nine electronic databases were searched in order to identify all quantitative studies published in English or German. Although a broad search strategy and few limitations were applied, only 5 studies have been identified adequate from the resulting 9269 references. The results point to the lack of studies directly comparing functional illiterate with developmental dyslexic samples. Moreover, a huge variance has been identified between the studies in how they approached the concept of functional illiteracy, particularly when it came to critical categories such the applied definition, terminology, criteria for inclusion in the sample, research focus, and outcome measures. The available data highlight the need for more direct comparisons in order to understand what extent functional illiteracy and dyslexia share common characteristics.

    Additional information

    supplementary materials
  • Van Bergen, G., & Hogeweg, L. (2021). Managing interpersonal discourse expectations: a comparative analysis of contrastive discourse particles in Dutch. Linguistics, 59(2), 333-360. doi:10.1515/ling-2021-0020.

    Abstract

    In this article we investigate how speakers manage discourse expectations in dialogue by comparing the meaning and use of three Dutch discourse particles, i.e. wel, toch and eigenlijk, which all express a contrast between their host utterance and a discourse-based expectation. The core meanings of toch, wel and eigenlijk are formally distinguished on the basis of two intersubjective parameters: (i) whether the particle marks alignment or misalignment between speaker and addressee discourse beliefs, and (ii) whether the particle requires an assessment of the addressee’s representation of mutual discourse beliefs. By means of a quantitative corpus study, we investigate to what extent the intersubjective meaning distinctions between wel, toch and eigenlijk are reflected in statistical usage patterns across different social situations. Results suggest that wel, toch and eigenlijk are lexicalizations of distinct generalized politeness strategies when expressing contrast in social interaction. Our findings call for an interdisciplinary approach to discourse particles in order to enhance our understanding of their functions in language.
  • Van Heukelum, S., Tulva, K., Geers, F. E., van Dulm, S., Ruisch, I. H., Mill, J., Viana, J. F., Beckmann, C. F., Buitelaar, J. K., Poelmans, G., Glennon, J. C., Vogt, B. A., Havenith, M. N., & França, A. S. (2021). A central role for anterior cingulate cortex in the control of pathological aggression. Current Biology, 31, 2321-2333.e5. doi:10.1016/j.cub.2021.03.062.

    Abstract

    Controlling aggression is a crucial skill in social species like rodents and humans and has been associated with anterior cingulate cortex (ACC). Here, we directly link the failed regulation of aggression in BALB/cJ mice to ACC hypofunction. We first show that ACC in BALB/cJ mice is structurally degraded: neuron density is decreased, with pervasive neuron death and reactive astroglia. Gene-set enrichment analysis suggested that this process is driven by neuronal degeneration, which then triggers toxic astrogliosis. cFos expression across ACC indicated functional consequences: during aggressive encounters, ACC was engaged in control mice, but not BALB/cJ mice. Chemogenetically activating ACC during aggressive encounters drastically suppressed pathological aggression but left species-typical aggression intact. The network effects of our chemogenetic perturbation suggest that this behavioral rescue is mediated by suppression of amygdala and hypothalamus and activation of mediodorsal thalamus. Together, these findings highlight the central role of ACC in curbing pathological aggression.
  • Ip, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E. and 129 moreIp, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E., Border, R., Peterson, R. E., Prinz, J. A., Thiering, E., Seppälä, I., Vilor-Tejedor, N., Ahluwalia, T. S., Day, F. R., Hottenga, J.-J., Allegrini, A. G., Rimfeld, K., Chen, Q., Lu, Y., Martin, J., Soler Artigas, M., Rovira, P., Bosch, R., Español, G., Ramos Quiroga, J. A., Neumann, A., Ensink, J., Grasby, K., Morosoli, J. J., Tong, X., Marrington, S., Middeldorp, C., Scott, J. G., Vinkhuyzen, A., Shabalin, A. A., Corley, R., Evans, L. M., Sugden, K., Alemany, S., Sass, L., Vinding, R., Ruth, K., Tyrrell, J., Davies, G. E., Ehli, E. A., Hagenbeek, F. A., De Zeeuw, E., Van Beijsterveldt, T. C., Larsson, H., Snieder, H., Verhulst, F. C., Amin, N., Whipp, A. M., Korhonen, T., Vuoksimaa, E., Rose, R. J., Uitterlinden, A. G., Heath, A. C., Madden, P., Haavik, J., Harris, J. R., Helgeland, Ø., Johansson, S., Knudsen, G. P. S., Njolstad, P. R., Lu, Q., Rodriguez, A., Henders, A. K., Mamun, A., Najman, J. M., Brown, S., Hopfer, C., Krauter, K., Reynolds, C., Smolen, A., Stallings, M., Wadsworth, S., Wall, T. L., Silberg, J. L., Miller, A., Keltikangas-Järvinen, L., Hakulinen, C., Pulkki-Råback, L., Havdahl, A., Magnus, P., Raitakari, O. T., Perry, J. R. B., Llop, S., Lopez-Espinosa, M.-J., Bønnelykke, K., Bisgaard, H., Sunyer, J., Lehtimäki, T., Arseneault, L., Standl, M., Heinrich, J., Boden, J., Pearson, J., Horwood, L. J., Kennedy, M., Poulton, R., Eaves, L. J., Maes, H. H., Hewitt, J., Copeland, W. E., Costello, E. J., Williams, G. M., Wray, N., Järvelin, M.-R., McGue, M., Iacono, W., Caspi, A., Moffitt, T. E., Whitehouse, A., Pennell, C. E., Klump, K. L., Burt, S. A., Dick, D. M., Reichborn-Kjennerud, T., Martin, N. G., Medland, S. E., Vrijkotte, T., Kaprio, J., Tiemeier, H., Davey Smith, G., Hartman, C. A., Oldehinkel, A. J., Casas, M., Ribasés, M., Lichtenstein, P., Lundström, S., Plomin, R., Bartels, M., Nivard, M. G., & Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11: 413. doi:10.1038/s41398-021-01480-x.
  • van der Burght, C. L., Goucha, T., Friederici, A. D., Kreitewolf, J., & Hartwigsen, G. (2019). Intonation guides sentence processing in the left inferior frontal gyrus. Cortex, 117, 122-134. doi:10.1016/j.cortex.2019.02.011.

    Abstract

    Speech prosody, the variation in sentence melody and rhythm, plays a crucial role in sentence comprehension. Specifically, changes in intonational pitch along a sentence can affect our understanding of who did what to whom. To date, it remains unclear how the brain processes this particular use of intonation and which brain regions are involved. In particular, one central matter of debate concerns the lateralisation of intonation processing. To study the role of intonation in sentence comprehension, we designed a functional MRI experiment in which participants listened to spoken sentences. Critically, the interpretation of these sentences depended on either intonational or grammatical cues. Our results
    showed stronger functional activity in the left inferior frontal gyrus (IFG) when the intonational cue was crucial for sentence comprehension compared to when it was not. When instead a grammatical cue was crucial for sentence comprehension, we found involvement of an overlapping region in the left IFG, as well as in a posterior temporal
    region. A further analysis revealed that the lateralisation of intonation processing depends on its role in syntactic processing: activity in the IFG was lateralised to the left hemisphere when intonation was the only source of information to comprehend the sentence. In contrast, activity in the IFG was right-lateralised when intonation did not contribute to sentence comprehension. Together, these results emphasise the key role of the left IFG in sentence comprehension, showing the importance of this region when intonation
    establishes sentence structure. Furthermore, our results provide evidence for the theory
    that the lateralisation of prosodic processing is modulated by its linguistic role.
  • van der Burght, C. L., Friederici, A. D., Goucha, T., & Hartwigsen, G. (2021). Pitch accents create dissociable syntactic and semantic expectations during sentence processing. Cognition, 212: 104702. doi:10.1016/j.cognition.2021.104702.

    Abstract

    The language system uses syntactic, semantic, as well as prosodic cues to efficiently guide auditory sentence comprehension. Prosodic cues, such as pitch accents, can build expectations about upcoming sentence elements. This study investigates to what extent syntactic and semantic expectations generated by pitch accents can be dissociated and if so, which cues take precedence when contradictory information is present. We used sentences in which one out of two nominal constituents was placed in contrastive focus with a third one. All noun phrases carried overt syntactic information (case-marking of the determiner) and semantic information (typicality of the thematic role of the noun). Two experiments (a sentence comprehension and a sentence completion task) show that focus, marked by pitch accents, established expectations in both syntactic and semantic domains. However, only the syntactic expectations, when violated, were strong enough to interfere with sentence comprehension. Furthermore, when contradictory cues occurred in the same sentence, the local syntactic cue (case-marking) took precedence over the semantic cue (thematic role), and overwrote previous information cued by prosody. The findings indicate that during auditory sentence comprehension the processing system integrates different sources of information for argument role assignment, yet primarily relies on syntactic information.
  • Van Paridon, J., Ostarek, M., Arunkumar, M., & Huettig, F. (2021). Does neuronal recycling result in destructive competition? The influence of learning to read on the recognition of faces. Psychological Science, 32, 459-465. doi:10.1177/0956797620971652.

    Abstract

    Written language, a human cultural invention, is far too recent for dedicated neural
    infrastructure to have evolved in its service. Culturally newly acquired skills (e.g. reading) thus ‘recycle’ evolutionarily older circuits that originally evolved for different, but similar functions (e.g. visual object recognition). The destructive competition hypothesis predicts that this neuronal recycling has detrimental behavioral effects on the cognitive functions a cortical network originally evolved for. In a study with 97 literate, low-literate, and illiterate participants from the same socioeconomic background we find that even after adjusting for cognitive ability and test-taking familiarity, learning to read is associated with an increase, rather than a decrease, in object recognition abilities. These results are incompatible with the claim that neuronal recycling results in destructive competition and consistent with the possibility that learning to read instead fine-tunes general object recognition mechanisms, a hypothesis that needs further neuroscientific investigation.

    Additional information

    supplemental material
  • Van Leeuwen, T. M., Wilsson, L., Norrman, H. N., Dingemanse, M., Bölte, S., & Neufeld, J. (2021). Perceptual processing links autism and synesthesia: A co-twin control study. Cortex, 145, 236-249. doi:10.1016/j.cortex.2021.09.016.
  • Van Leeuwen, T. M., Van Petersen, E., Burghoorn, F., Dingemanse, M., & Van Lier, R. (2019). Autistic traits in synaesthesia: Atypical sensory sensitivity and enhanced perception of details. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190024. doi:10.1098/rstb.2019.0024.

    Abstract

    In synaesthetes specific sensory stimuli (e.g., black letters) elicit additional experiences (e.g. colour). Synaesthesia is highly prevalent among individuals with autism spectrum disorder but the mechanisms of this co-occurrence are not clear. We hypothesized autism and synaesthesia share atypical sensory sensitivity and perception. We assessed autistic traits, sensory sensitivity, and visual perception in two synaesthete populations. In Study 1, synaesthetes (N=79, of different types) scored higher than non-synaesthetes (N=76) on the Attention-to-detail and Social skills subscales of the Autism Spectrum Quotient indexing autistic traits, and on the Glasgow Sensory Questionnaire indexing sensory hypersensitivity and hyposensitivity which frequently occur in autism. Synaesthetes performed two local/global visual tasks because individuals with autism typically show a bias toward detail processing. In synaesthetes, elevated motion coherence thresholds suggested reduced global motion perception and higher accuracy on an embedded figures task suggested enhanced local perception. In Study 2 sequence-space synaesthetes (N=18) completed the same tasks. Questionnaire and embedded figures results qualitatively resembled Study 1 results but no significant group differences with non-synaesthetes (N=20) were obtained. Unexpectedly, sequence-space synaesthetes had reduced motion coherence thresholds. Altogether, our studies suggest atypical sensory sensitivity and a bias towards detail processing are shared features of synaesthesia and autism spectrum disorder.
  • Van Paridon, J., Roelofs, A., & Meyer, A. S. (2019). A lexical bottleneck in shadowing and translating of narratives. Language, Cognition and Neuroscience, 34(6), 803-812. doi:10.1080/23273798.2019.1591470.

    Abstract

    In simultaneous interpreting, speech comprehension and production processes have to be coordinated in close temporal proximity. To examine the coordination, Dutch-English bilingual participants were presented with narrative fragments recorded in English at speech rates varying from 100 to 200 words per minute and they were asked to translate the fragments into Dutch (interpreting) or repeat them in English (shadowing). Interpreting yielded more errors than shadowing at every speech rate, and increasing speech rate had a stronger negative effect on interpreting than on shadowing. To understand the differential effect of speech rate, a computational model was created of sub-lexical and lexical processes in comprehension and production. Computer simulations revealed that the empirical findings could be captured by assuming a bottleneck preventing simultaneous lexical selection in production and comprehension. To conclude, our empirical and modelling results suggest the existence of a lexical bottleneck that limits the translation of narratives at high speed.

    Additional information

    plcp_a_1591470_sm5183.docx
  • Van den Bos, E., & Poletiek, F. H. (2019). Correction to: Effects of grammar complexity on artificial grammar learning (vol 36, pg 1122, 2008). Memory & Cognition, 47(8), 1619-1620. doi:10.3758/s13421-019-00946-0.
  • Van den Broek, G. S. E., Segers, E., Van Rijn, H., Takashima, A., & Verhoeven, L. (2019). Effects of elaborate feedback during practice tests: Costs and benefits of retrieval prompts. Journal of Experimental Psychology: Applied, 25(4), 588-601. doi:10.1037/xap0000212.

    Abstract

    This study explores the effect of feedback with hints on students’ recall of words. In three classroom experiments, high school students individually practiced vocabulary words through computerized retrieval practice with either standard show-answer feedback (display of answer) or hints feedback after incorrect responses. Hints feedback gave students a second chance to find the correct response using orthographic (Experiment 1), mnemonic (Experiment 2), or cross-language hints (Experiment 3). During practice, hints led to a shift of practice time from further repetitions to longer feedback processing but did not reduce (repeated) errors. There was no effect of feedback on later recall except when the hints from practice were also available on the test, indicating limited transfer of practice with hints to later recall without hints (in Experiments 1 and 2). Overall, hints feedback was not preferable over show-answer feedback. The common notion that hints are beneficial may not hold when the total practice time is limited.
  • Van de Geer, J. P., & Levelt, W. J. M. (1963). Detection of visual patterns disturbed by noise: An exploratory study. Quarterly Journal of Experimental Psychology, 15, 192-204. doi:10.1080/17470216308416324.

    Abstract

    An introductory study of the perception of stochastically specified events is reported. The initial problem was to determine whether the perceiver can split visual input data of this kind into random and determined components. The inability of subjects to do so with the stimulus material used (a filmlike sequence of dot patterns), led to the more general question of how subjects code this kind of visual material. To meet the difficulty of defining the subjects' responses, two experiments were designed. In both, patterns were presented as a rapid sequence of dots on a screen. The patterns were more or less disturbed by “noise,” i.e. the dots did not appear exactly at their proper places. In the first experiment the response was a rating on a semantic scale, in the second an identification from among a set of alternative patterns. The results of these experiments give some insight in the coding systems adopted by the subjects. First, noise appears to be detrimental to pattern recognition, especially to patterns with little spread. Second, this shows connections with the factors obtained from analysis of the semantic ratings, e.g. easily disturbed patterns show a large drop in the semantic regularity factor, when only a little noise is added.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1991). Aspects of computer simulations in education. Education & Computing, 6(3/4), 231-239.

    Abstract

    Computer simulations in an instructional context can be characterized according to four aspects (themes): simulation models, learning goals, learning processes and learner activity. The present paper provides an outline of these four themes. The main classification criterion for simulation models is quantitative vs. qualitative models. For quantitative models a further subdivision can be made by classifying the independent and dependent variables as continuous or discrete. A second criterion is whether one of the independent variables is time, thus distinguishing dynamic and static models. Qualitative models on the other hand use propositions about non-quantitative properties of a system or they describe quantitative aspects in a qualitative way. Related to the underlying model is the interaction with it. When this interaction has a normative counterpart in the real world we call it a procedure. The second theme of learning with computer simulation concerns learning goals. A learning goal is principally classified along three dimensions, which specify different aspects of the knowledge involved. The first dimension, knowledge category, indicates that a learning goal can address principles, concepts and/or facts (conceptual knowledge) or procedures (performance sequences). The second dimension, knowledge representation, captures the fact that knowledge can be represented in a more declarative (articulate, explicit), or in a more compiled (implicit) format, each one having its own advantages and drawbacks. The third dimension, knowledge scope, involves the learning goal's relation with the simulation domain; knowledge can be specific to a particular domain, or generalizable over classes of domains (generic). A more or less separate type of learning goal refers to knowledge acquisition skills that are pertinent to learning in an exploratory environment. Learning processes constitute the third theme. Learning processes are defined as cognitive actions of the learner. Learning processes can be classified using a multilevel scheme. The first (highest) of these levels gives four main categories: orientation, hypothesis generation, testing and evaluation. Examples of more specific processes are model exploration and output interpretation. The fourth theme of learning with computer simulations is learner activity. Learner activity is defined as the ‘physical’ interaction of the learner with the simulations (as opposed to the mental interaction that was described in the learning processes). Five main categories of learner activity are distinguished: defining experimental settings (variables, parameters etc.), interaction process choices (deciding a next step), collecting data, choice of data presentation and metacontrol over the simulation.
  • Van Berkum, J. J. A., & De Jong, T. (1991). Instructional environments for simulations. Education & Computing, 6(3/4), 305-358.

    Abstract

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving context, to practise task performance without stress, to systematically explore both realistic and hypothetical situations, to change the time-scale of events, and to interact with simplified versions of the process or system being simulated. However, learners are often unable to cope with the freedom offered by, and the complexity of, a simulation. As a result many of them resort to an unsystematic, unproductive mode of exploration. There is evidence that simulation-based learning can be improved if the learner is supported while working with the simulation. Constructing such an instructional environment around simulations seems to run counter to the freedom the learner is allowed to in ‘stand alone’ simulations. The present article explores instructional measures that allow for an optimal freedom for the learner. An extensive discussion of learning goals brings two main types of learning goals to the fore: conceptual knowledge and operational knowledge. A third type of learning goal refers to the knowledge acquisition (exploratory learning) process. Cognitive theory has implications for the design of instructional environments around simulations. Most of these implications are quite general, but they can also be related to the three types of learning goals. For conceptual knowledge the sequence and choice of models and problems is important, as is providing the learner with explanations and minimization of error. For operational knowledge cognitive theory recommends learning to take place in a problem solving context, the explicit tracing of the behaviour of the learner, providing immediate feedback and minimization of working memory load. For knowledge acquisition goals, it is recommended that the tutor takes the role of a model and coach, and that learning takes place together with a companion. A second source of inspiration for designing instructional environments can be found in Instructional Design Theories. Reviewing these shows that interacting with a simulation can be a part of a more comprehensive instructional strategy, in which for example also prerequisite knowledge is taught. Moreover, information present in a simulation can also be represented in a more structural or static way and these two forms of presentation provoked to perform specific learning processes and learner activities by tutor controlled variations in the simulation, and by tutor initiated prodding techniques. And finally, instructional design theories showed that complex models and procedures can be taught by starting with central and simple elements of these models and procedures and subsequently presenting more complex models and procedures. Most of the recent simulation-based intelligent tutoring systems involve troubleshooting of complex technical systems. Learners are supposed to acquire knowledge of particular system principles, of troubleshooting procedures, or of both. Commonly encountered instructional features include (a) the sequencing of increasingly complex problems to be solved, (b) the availability of a range of help information on request, (c) the presence of an expert troubleshooting module which can step in to provide criticism on learner performance, hints on the problem nature, or suggestions on how to proceed, (d) the option of having the expert module demonstrate optimal performance afterwards, and (e) the use of different ways of depicting the simulated system. A selection of findings is summarized by placing them under the four themes we think to be characteristic of learning with computer simulations (see de Jong, this volume).
  • Van Bergen, G., Flecken, M., & Wu, R. (2019). Rapid target selection of object categories based on verbs: Implications for language-categorization interactions. Psychophysiology, 56(9): e13395. doi:10.1111/psyp.13395.

    Abstract

    Although much is known about how nouns facilitate object categorization, very little is known about how verbs (e.g., posture verbs such as stand or lie) facilitate object categorization. Native Dutch speakers are a unique population to investigate this issue with because the configurational categories distinguished by staan (to stand) and liggen (to lie) are inherent in everyday Dutch language. Using an ERP component (N2pc), four experiments demonstrate that selection of posture verb categories is rapid (between 220–320 ms). The effect was attenuated, though present, when removing the perceptual distinction between categories. A similar attenuated effect was obtained in native English speakers, where the category distinction is less familiar, and when category labels were implicit for native Dutch speakers. Our results are among the first to demonstrate that category search based on verbs can be rapid, although extensive linguistic experience and explicit labels may not be necessary to facilitate categorization in this case.

    Additional information

    psyp13395-sup-0001-appendixs1.pdf
  • Van Leeuwen, E. J. C., Cronin, K. A., & Haun, D. B. M. (2019). Reply to Farine and Aplin: Chimpanzees choose their association and interaction partners. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 16676-16677. doi:10.1073/pnas.1905745116.

    Abstract

    Farine and Aplin (1) question the validity of our study reporting group-specific social dynamics in chimpanzees (2). As alternative to our approach, Farine and Aplin advance a “prenetwork permutation” methodology that tests against random assortment (3). We appreciate Farine and Aplin’s interest and applied their suggested approaches to our data. The new analyses revealed highly similar results to those of our initial approach. We further dispel Farine and Aplin’s critique by outlining its incompatibility to our study system, methodology, and analysis.First, when we apply the suggested prenetwork permutation to our proximity dataset, we again find significant population-level differences in association rates, while controlling for population size [as derived from Farine and Aplin’s script (4); original result, P < 0.0001; results including prenetwork permutation, P < 0.0001]. Furthermore, when we … ↵1To whom correspondence may be addressed. Email: ejcvanleeuwen{at}gmail.com.
  • Van de Geer, J. P., Levelt, W. J. M., & Plomp, R. (1962). The connotation of musical consonance. Acta Psychologica, 20, 308-319.

    Abstract

    As a preliminary to further research on musical consonance an explanatory investigation was made on the different modes of judgment of musical intervals. This was done by way of a semantic differential. Subjects rated 23 intervals against 10 scales. In a factor analysis three factors appeared: pitch, evaluation and fusion. The relation between these factors and some physical characteristics has been investigated. The scale consonant-dissonant showed to be purely evaluative (in opposition to Stumpf's theory). This evaluative connotation is not in accordance with the musicological meaning of consonance. Suggestions to account for this difference have been given.
  • Van den Boomen, C., Fahrenfort, J. J., Snijders, T. M., & Kemner, C. (2019). Slow segmentation of faces in Autism Spectrum Disorder. Neuropsychologia, 127, 1-8. doi:10.1016/j.neuropsychologia.2019.02.005.

    Abstract

    Atypical visual segmentation, affecting object perception, might contribute to face processing problems in Autism Spectrum Disorder (ASD). The current study investigated impairments in visual segmentation of faces in ASD. Thirty participants (ASD: 16; Control: 14) viewed texture-defined faces, houses, and homogeneous images, while electroencephalographic and behavioral responses were recorded. The ASD group showed slower face-segmentation related brain activity and longer segmentation reaction times than the control group, but no difference in house-segmentation related activity or behavioral performance. Furthermore, individual differences in face-segmentation but not house-segmentation correlated with score on the Autism Quotient. Segmentation is thus selectively impaired for faces in ASD, and relates to the degree of ASD traits. Face segmentation relates to recurrent connectivity from the fusiform face area (FFA) to the visual cortex. These findings thus suggest that atypical connectivity from the FFA might contribute to delayed face processing in ASD.

    Additional information

    Supplementary material
  • Van Es, M. W. J., & Schoffelen, J.-M. (2019). Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response. NeuroImage, 186, 703-712. doi:10.1016/j.neuroimage.2018.11.029.

    Abstract

    The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance.
    Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of
    behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual
    cortical areas leads to faster responses to a visual go cue. We investigated whether there are directly observable
    consequences of trial-by-trial fluctuations in non-invasively observed gamma-band activity on the neuronal
    response. Specifically, we hypothesized that the amplitude of the visual evoked response to a go cue can be
    predicted by gamma power in the visual system, in the window preceding the evoked response. Thirty-three
    human subjects (22 female) performed a visual speeded response task while their magnetoencephalogram
    (MEG) was recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We
    estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the estimated single
    trial amplitude of the most prominent event-related field (ERF) peak within the first 100 ms after the pattern
    reversal. In parieto-occipital cortical areas, the amplitude of the ERF correlated positively with gamma power, and
    correlated negatively with reaction times. No effects were observed for the alpha and beta frequency bands,
    despite clear stimulus onset induced modulation at those frequencies. These results support a mechanistic model,
    in which gamma-band synchronization enhances the neuronal gain to relevant visual input, thus leading to more
    efficient downstream processing and to faster responses.
  • Van Tiel, B., Deliens, G., Geelhand, P., Murillo Oosterwijk, A., & Kissine, M. (2021). Strategic deception in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 51, 255-266. doi:10.1007/s10803-020-04525-0.

    Abstract

    Autism Spectrum Disorder (ASD) is often associated with impaired perspective-taking skills. Deception is an important indicator of perspective-taking, and therefore may be thought to pose difficulties to people with ASD (e.g., Baron-Cohen in J Child Psychol Psychiatry 3:1141–1155, 1992). To test this hypothesis, we asked participants with and without ASD to play a computerised deception game. We found that participants with ASD were equally likely—and in complex cases of deception even more likely—to deceive and detect deception, and learned deception at a faster rate. However, participants with ASD initially deceived less frequently, and were slower at detecting deception. These results suggest that people with ASD readily engage in deception but may do so through conscious and effortful reasoning about other people’s perspectiv
  • Van Paridon, J., & Thompson, B. (2021). subs2vec: Word embeddings from subtitles in 55 languages. Behavior Research Methods, 53(2), 629-655. doi:10.3758/s13428-020-01406-3.

    Abstract

    This paper introduces a novel collection of word embeddings, numerical representations of lexical semantics, in 55 languages, trained on a large corpus of pseudo-conversational speech transcriptions from television shows and movies. The embeddings were trained on the OpenSubtitles corpus using the fastText implementation of the skipgram algorithm. Performance comparable with (and in some cases exceeding) embeddings trained on non-conversational (Wikipedia) text is reported on standard benchmark evaluation datasets. A novel evaluation method of particular relevance to psycholinguists is also introduced: prediction of experimental lexical norms in multiple languages. The models, as well as code for reproducing the models and all analyses reported in this paper (implemented as a user-friendly Python package), are freely available at: https://github.com/jvparidon/subs2vec.

    Additional information

    https://github.com/jvparidon/subs2vec
  • Van Goch, M. M., Verhoeven, L., & McQueen, J. M. (2019). Success in learning similar-sounding words predicts vocabulary depth above and beyond vocabulary breadth. Journal of Child Language, 46(1), 184-197. doi:10.1017/S0305000918000338.

    Abstract

    In lexical development, the specificity of phonological representations is important. The ability to build phonologically specific lexical representations predicts the number of words a child knows (vocabulary breadth), but it is not clear if it also fosters how well words are known (vocabulary depth). Sixty-six children were studied in kindergarten (age 5;7) and first grade (age 6;8). The predictive value of the ability to learn phonologically similar new words, phoneme discrimination ability, and phonological awareness on vocabulary breadth and depth were assessed using hierarchical regression. Word learning explained unique variance in kindergarten and first-grade vocabulary depth, over the other phonological factors. It did not explain unique variance in vocabulary breadth. Furthermore, even after controlling for kindergarten vocabulary breadth, kindergarten word learning still explained unique variance in first-grade vocabulary depth. Skill in learning phonologically similar words appears to predict knowledge children have about what words mean.
  • Van der Veer, G. C., Bagnara, S., & Kempen, G. (1991). Preface. Acta Psychologica, 78, ix. doi:10.1016/0001-6918(91)90002-H.
  • Van Herpt, C., Van der Meulen, M., & Redl, T. (2019). Voorbeeldzinnen kunnen het goede voorbeeld geven. Levende Talen Magazine, 106(4), 18-21.
  • Varma, S., Takashima, A., Fu, L., & Kessels, R. P. C. (2019). Mindwandering propensity modulates episodic memory consolidation. Aging Clinical and Experimental Research, 31(11), 1601-1607. doi:10.1007/s40520-019-01251-1.

    Abstract

    Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency.

    Additional information

    Supplementary material
  • Varola*, M., Verga*, L., Sroka, M., Villanueva, S., Charrier, I., & Ravignani, A. (2021). Can harbor seals (Phoca vitulina) discriminate familiar conspecific calls after long periods of separation? PeerJ, 9: e12431. doi:10.7717/peerj.12431.

    Abstract

    * - indicates joint first authorship -
    The ability to discriminate between familiar and unfamiliar calls may play a key role in pinnipeds’ communication and survival, as in the case of mother-pup interactions. Vocal discrimination abilities have been suggested to be more developed in pinniped species with the highest selective pressure such as the otariids; yet, in some group-living phocids, such as harbor seals (Phoca vitulina), mothers are also able to recognize their pup’s voice. Conspecifics’ vocal recognition in pups has never been investigated; however, the repeated interaction occurring between pups within the breeding season suggests that long-term vocal discrimination may occur. Here we explored this hypothesis by presenting three rehabilitated seal pups with playbacks of vocalizations from unfamiliar or familiar pups. It is uncommon for seals to come into rehabilitation for a second time in their lifespan, and this study took advantage of these rare cases. A simple visual inspection of the data plots seemed to show more reactions, and of longer duration, in response to familiar as compared to unfamiliar playbacks in two out of three pups. However, statistical analyses revealed no significant difference between the experimental conditions. We also found no significant asymmetry in orientation (left vs. right) towards familiar and unfamiliar sounds. While statistics do not support the hypothesis of an established ability to discriminate familiar vocalizations from unfamiliar ones in harbor seal pups, further investigations with a larger sample size are needed to confirm or refute this hypothesis.

    Additional information

    dataset
  • Vega-Mendoza, M., Pickering, M. J., & Nieuwland, M. S. (2021). Concurrent use of animacy and event-knowledge during comprehension: Evidence from event-related potentials. Neuropsychologia, 152: 107724. doi:10.1016/j.neuropsychologia.2020.107724.

    Abstract

    In two ERP experiments, we investigated whether readers prioritize animacy over real-world event-knowledge during sentence comprehension. We used the paradigm of Paczynski and Kuperberg (2012), who argued that animacy is prioritized based on the observations that the ‘related anomaly effect’ (reduced N400s for context-related anomalous words compared to unrelated words) does not occur for animacy violations, and that animacy violations but not relatedness violations elicit P600 effects. Participants read passive sentences with plausible agents (e.g., The prescription for the mental disorder was written by the psychiatrist) or implausible agents that varied in animacy and semantic relatedness (schizophrenic/guard/pill/fence). In Experiment 1 (with a plausibility judgment task), plausible sentences elicited smaller N400s relative to all types of implausible sentences. Crucially, animate words elicited smaller N400s than inanimate words, and related words elicited smaller N400s than unrelated words, but Bayesian analysis revealed substantial evidence against an interaction between animacy and relatedness. Moreover, at the P600 time-window, we observed more positive ERPs for animate than inanimate words and for related than unrelated words at anterior regions. In Experiment 2 (without judgment task), we observed an N400 effect with animacy violations, but no other effects. Taken together, the results of our experiments fail to support a prioritized role of animacy information over real-world event-knowledge, but they support an interactive, constraint-based view on incremental semantic processing.
  • Verdonschot, R. G., Han, J.-I., & Kinoshita, S. (2021). The proximate unit in Korean speech production: Phoneme or syllable? Quarterly Journal of Experimental Psychology, 74, 187-198. doi:10.1177/1747021820950239.

    Abstract

    We investigated the “proximate unit” in Korean, that is, the initial phonological unit selected in speech production by Korean speakers. Previous studies have shown mixed evidence indicating either a phoneme-sized or a syllable-sized unit. We conducted two experiments in which participants named pictures while ignoring superimposed non-words. In English, for this task, when the picture (e.g., dog) and distractor phonology (e.g., dark) initially overlap, typically the picture target is named faster. We used a range of conditions (in Korean) varying from onset overlap to syllabic overlap, and the results indicated an important role for the syllable, but not the phoneme. We suggest that the basic unit used in phonological encoding in Korean is different from Germanic languages such as English and Dutch and also from Japanese and possibly also Chinese. Models dealing with the architecture of language production can use these results when providing a framework suitable for all languages in the world, including Korean.
  • Verdonschot, R. G., Tokimoto, S., & Miyaoka, Y. (2019). The fundamental phonological unit of Japanese word production: An EEG study using the picture-word interference paradigm. Journal of Neurolinguistics, 51, 184-193. doi:10.1016/j.jneuroling.2019.02.004.

    Abstract

    It has been shown that in Germanic languages (e.g. English, Dutch) phonemes are the primary (or proximate) planning units during the early stages of phonological encoding. Contrastingly, in Chinese and Japanese the phoneme does not seem to play an important role but rather the syllable (Chinese) and mora (Japanese) are essential. However, despite the lack of behavioral evidence, neurocorrelational studies in Chinese suggested that electrophysiological brain responses (i.e. preceding overt responses) may indicate some significance for the phoneme. We investigated this matter in Japanese and our data shows that unlike in Chinese (for which the literature shows mixed effects), in Japanese both the behavioral and neurocorrelational data indicate an important role only for the mora (and not the phoneme) during the early stages of phonological encoding.
  • Verga, L., & Ravignani, A. (2021). Strange seal sounds: Claps, slaps, and multimodal pinniped rhythms. Frontiers in Ecology and Evolution, 9: 644497. doi:10.3389/fevo.2021.644497.
  • Verga, L., Schwartze, M., Stapert, S., Winkens, I., & Kotz, S. A. (2021). Dysfunctional timing in traumatic brain injury patients: Co-occurrence of cognitive, motor, and perceptual deficits. Frontiers in Psychology, 12: 731898. doi:10.3389/fpsyg.2021.731898.

    Abstract

    Timing is an essential part of human cognition and of everyday life activities, such as walking or holding a conversation. Previous studies showed that traumatic brain injury (TBI) often affects cognitive functions such as processing speed and time-sensitive abilities, causing long-term sequelae as well as daily impairments. However, the existing evidence on timing capacities in TBI is mostly limited to perception and the processing of isolated intervals. It is therefore open whether the observed deficits extend to motor timing and to continuous dynamic tasks that more closely match daily life activities. The current study set out to answer these questions by assessing audio motor timing abilities and their relationship with cognitive functioning in a group of TBI patients (n=15) and healthy matched controls. We employed a comprehensive set of tasks aiming at testing timing abilities across perception and production and from single intervals to continuous auditory sequences. In line with previous research, we report functional impairments in TBI patients concerning cognitive processing speed and perceptual timing. Critically, these deficits extended to motor timing: The ability to adjust to tempo changes in an auditory pacing sequence was impaired in TBI patients, and this motor timing deficit covaried with measures of processing speed. These findings confirm previous evidence on perceptual and cognitive timing deficits resulting from TBI and provide first evidence for comparable deficits in motor behavior. This suggests basic co-occurring perceptual and motor timing impairments that may factor into a wide range of daily activities. Our results thus place TBI into the wider range of pathologies with well-documented timing deficits (such as Parkinson’s disease) and encourage the search for novel timing-based therapeutic interventions (e.g., employing dynamic and/or musical stimuli) with high transfer potential to everyday life activities.

    Additional information

    supplementary material
  • Verga, L., & Kotz, S. A. (2019). Putting language back into ecological communication contexts. Language, Cognition and Neuroscience, 34(4), 536-544. doi:10.1080/23273798.2018.1506886.

    Abstract

    Language is a multi-faceted form of communication. It is not until recently though that language research moved on from simple stimuli and protocols toward a more ecologically valid approach, namely “shifting” from words and simple sentences to stories with varying degrees of contextual complexity. While much needed, the use of ecologically valid stimuli such as stories should also be explored in interactive rather than individualistic experimental settings leading the way to an interactive neuroscience of language. Indeed, mounting evidence suggests that cognitive processes and their underlying neural activity significantly differ between social and individual experiences. We aim at reviewing evidence, which indicates that the characteristics of linguistic and extra-linguistic contexts may significantly influence communication–including spoken language comprehension. In doing so, we provide evidence on the use of new paradigms and methodological advancements that may enable the study of complex language features in a truly interactive, ecological way.
  • Verga, L., & Kotz, S. A. (2019). Spatial attention underpins social word learning in the right fronto-parietal network. NeuroImage, 195, 165-173. doi:10.1016/j.neuroimage.2019.03.071.

    Abstract

    In a multi- and inter-cultural world, we daily encounter new words. Adult learners often rely on a situational context to learn and understand a new word's meaning. Here, we explored whether interactive learning facilitates word learning by directing the learner's attention to a correct new word referent when a situational context is non-informative. We predicted larger involvement of inferior parietal, frontal, and visual cortices involved in visuo-spatial attention during interactive learning. We scanned participants while they played a visual word learning game with and without a social partner. As hypothesized, interactive learning enhanced activity in the right Supramarginal Gyrus when the situational context provided little information. Activity in the right Inferior Frontal Gyrus during interactive learning correlated with post-scanning behavioral test scores, while these scores correlated with activity in the Fusiform Gyrus in the non-interactive group. These results indicate that attention is involved in interactive learning when the situational context is minimal and suggest that individual learning processes may be largely different from interactive ones. As such, they challenge the ecological validity of what we know about individual learning and advocate the exploration of interactive learning in naturalistic settings.
  • Verhoef, T., & Ravignani, A. (2021). Melodic universals emerge or are sustained through cultural evolution. Frontiers in Psychology, 12: 668300. doi:10.3389/fpsyg.2021.668300.

    Abstract

    To understand why music is structured the way it is, we need an explanation that accounts for both the universality and variability found in musical traditions. Here we test whether statistical universals that have been identified for melodic structures in music can emerge as a result of cultural adaptation to human biases through iterated learning. We use data from an experiment in which artificial whistled systems, where sounds were produced with a slide whistle, were learned by human participants and transmitted multiple times from person to person. These sets of whistled signals needed to be memorized and recalled and the reproductions of one participant were used as the input set for the next. We tested for the emergence of seven different melodic features, such as discrete pitches, motivic patterns, or phrase repetition, and found some evidence for the presence of most of these statistical universals. We interpret this as promising evidence that, similarly to rhythmic universals, iterated learning experiments can also unearth melodic statistical universals. More, ideally cross-cultural, experiments are nonetheless needed. Simulating the cultural transmission of artificial proto-musical systems can help unravel the origins of universal tendencies in musical structures.
  • Verhoef, E., Grove, J., Shapland, C. Y., Demontis, D., Burgess, S., Rai, D., Børglum, A. D., & St Pourcain, B. (2021). Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 12: 6534. doi:10.1038/s41467-021-26755-1.

    Abstract

    Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610–766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.

    Additional information

    supplementary information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental origins of genetic factors influencing language and literacy: Associations with early-childhood vocabulary. Journal of Child Psychology and Psychiatry, 62(6), 728-738. doi:10.1111/jcpp.13327.

    Abstract

    Background

    The heritability of language and literacy skills increases from early‐childhood to adolescence. The underlying mechanisms are little understood and may involve (a) the amplification of genetic influences contributing to early language abilities, and/or (b) the emergence of novel genetic factors (innovation). Here, we investigate the developmental origins of genetic factors influencing mid‐childhood/early‐adolescent language and literacy. We evaluate evidence for the amplification of early‐childhood genetic factors for vocabulary, in addition to genetic innovation processes.
    Methods

    Expressive and receptive vocabulary scores at 38 months, thirteen language‐ and literacy‐related abilities and nonverbal cognition (7–13 years) were assessed in unrelated children from the Avon Longitudinal Study of Parents and Children (ALSPAC, Nindividuals ≤ 6,092). We investigated the multivariate genetic architecture underlying early‐childhood expressive and receptive vocabulary, and each of 14 mid‐childhood/early‐adolescent language, literacy or cognitive skills with trivariate structural equation (Cholesky) models as captured by genome‐wide genetic relationship matrices. The individual path coefficients of the resulting structural models were finally meta‐analysed to evaluate evidence for overarching patterns.
    Results

    We observed little support for the emergence of novel genetic sources for language, literacy or cognitive abilities during mid‐childhood or early adolescence. Instead, genetic factors of early‐childhood vocabulary, especially those unique to receptive skills, were amplified and represented the majority of genetic variance underlying many of these later complex skills (≤99%). The most predictive early genetic factor accounted for 29.4%(SE = 12.9%) to 45.1%(SE = 7.6%) of the phenotypic variation in verbal intelligence and literacy skills, but also for 25.7%(SE = 6.4%) in performance intelligence, while explaining only a fraction of the phenotypic variation in receptive vocabulary (3.9%(SE = 1.8%)).
    Conclusions

    Genetic factors contributing to many complex skills during mid‐childhood and early adolescence, including literacy, verbal cognition and nonverbal cognition, originate developmentally in early‐childhood and are captured by receptive vocabulary. This suggests developmental genetic stability and overarching aetiological mechanisms.

    Additional information

    supporting information
  • Verhoef, E., Demontis, D., Burgess, S., Shapland, C. Y., Dale, P. S., Okbay, A., Neale, B. M., Faraone, S. V., iPSYCH-Broad-PGC ADHD Consortium, Stergiakouli, E., Davey Smith, G., Fisher, S. E., Borglum, A., & St Pourcain, B. (2019). Disentangling polygenic associations between Attention-Deficit/Hyperactivity Disorder, educational attainment, literacy and language. Translational Psychiatry, 9: 35. doi:10.1038/s41398-018-0324-2.

    Abstract

    Interpreting polygenic overlap between ADHD and both literacy-related and language-related impairments is challenging as genetic associations might be influenced by indirectly shared genetic factors. Here, we investigate genetic overlap between polygenic ADHD risk and multiple literacy-related and/or language-related abilities (LRAs), as assessed in UK children (N ≤ 5919), accounting for genetically predictable educational attainment (EA). Genome-wide summary statistics on clinical ADHD and years of schooling were obtained from large consortia (N ≤ 326,041). Our findings show that ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, most consistently with reading-related abilities, and explained ≤1.6% phenotypic variation. These polygenic links were then dissected into both ADHD effects shared with and independent of EA, using multivariable regressions (MVR). Conditional on EA, polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, phonemic awareness and verbal intelligence, but not listening comprehension and non-word repetition. Using conservative ADHD-instruments (P-threshold < 5 × 10−8), this corresponded, for example, to a 0.35 SD decrease in pooled reading performance per log-odds in ADHD-liability (P = 9.2 × 10−5). Using subthreshold ADHD-instruments (P-threshold < 0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds in ADHD risk (P = 1.4 × 10−6), although the predictive accuracy increased. However, polygenic ADHD-effects shared with EA were of equal strength and at least equal magnitude compared to those independent of EA, for all LRAs studied, and detectable using subthreshold instruments. Thus, ADHD-related polygenic links with LRAs are to a large extent due to shared genetic effects with EA, although there is evidence for an ADHD-specific association profile, independent of EA, that primarily involves literacy-related impairments.

    Additional information

    41398_2018_324_MOESM1_ESM.docx
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 17(2): e1009144. doi:10.1371/journal.pgen.1009144.

    Abstract

    Individual differences in early-life vocabulary measures are heritable and associated with subsequent reading and cognitive abilities, although the underlying mechanisms are little understood. Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary in early-life and (ii) assess timing of emerging genetic associations with mid-childhood verbal and non-verbal skills. We studied longitudinally assessed early-life vocabulary measures (15–38 months) and later-life verbal and non-verbal skills (7–8 years) in up to 6,524 unrelated children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We dissected the phenotypic variance of rank-transformed scores into genetic and residual components by fitting multivariate structural equation models to genome-wide genetic-relationship matrices. Our findings show that the genetic architecture of early-life vocabulary involves multiple distinct genetic factors. Two of these genetic factors are developmentally stable and also contribute to genetic variation in mid-childhood skills: One genetic factor emerging with expressive vocabulary at 24 months (path coefficient: 0.32(SE = 0.06)) was also related to later-life reading (path coefficient: 0.25(SE = 0.12)) and verbal intelligence (path coefficient: 0.42(SE = 0.13)), explaining up to 17.9% of the phenotypic variation. A second, independent genetic factor emerging with receptive vocabulary at 38 months (path coefficient: 0.15(SE = 0.07)), was more generally linked to verbal and non-verbal cognitive abilities in mid-childhood (reading path coefficient: 0.57(SE = 0.07); verbal intelligence path coefficient: 0.60(0.10); performance intelligence path coefficient: 0.50(SE = 0.08)), accounting for up to 36.1% of the phenotypic variation and the majority of genetic variance in these later-life traits (≥66.4%). Thus, the genetic foundations of mid-childhood reading and cognitive abilities are diverse. They involve at least two independent genetic factors that emerge at different developmental stages during early language development and may implicate differences in cognitive processes that are already detectable during toddlerhood.

    Additional information

    supporting information
  • Vernes, S. C., Kriengwatana, B. P., Beeck, V. C., Fischer, J., Tyack, P. L., Ten Cate, C., & Janik, V. M. (2021). The multi-dimensional nature of vocal learning. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200236. doi:10.1098/rstb.2020.0236.

    Abstract

    How learning affects vocalizations is a key question in the study of animal
    communication and human language. Parallel efforts in birds and humans
    have taught us much about how vocal learning works on a behavioural
    and neurobiological level. Subsequent efforts have revealed a variety of
    cases among mammals in which experience also has a major influence on
    vocal repertoires. Janik and Slater (Anim. Behav. 60, 1–11. (doi:10.1006/
    anbe.2000.1410)) introduced the distinction between vocal usage and pro-
    duction learning, providing a general framework to categorize how
    different types of learning influence vocalizations. This idea was built on
    by Petkov and Jarvis (Front. Evol. Neurosci. 4, 12. (doi:10.3389/fnevo.2012.
    00012)) to emphasize a more continuous distribution between limited and
    more complex vocal production learners. Yet, with more studies providing
    empirical data, the limits of the initial frameworks become apparent.
    We build on these frameworks to refine the categorization of vocal learning
    in light of advances made since their publication and widespread agreement
    that vocal learning is not a binary trait. We propose a novel classification
    system, based on the definitions by Janik and Slater, that deconstructs
    vocal learning into key dimensions to aid in understanding the mechanisms
    involved in this complex behaviour. We consider how vocalizations can
    change without learning, and a usage learning framework that considers
    context specificity and timing. We identify dimensions of vocal production
    learning, including the copying of auditory models (convergence/
    divergence on model sounds, accuracy of copying), the degree of change
    (type and breadth of learning) and timing (when learning takes place, the
    length of time it takes and how long it is retained). We consider grey
    areas of classification and current mechanistic understanding of these beha-
    viours. Our framework identifies research needs and will help to inform
    neurobiological and evolutionary studies endeavouring to uncover the
    multi-dimensional nature of vocal learning.
    This article is part of the theme issue ‘Vocal learning in animals and
    humans’.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (Eds.). (2021). Vocal learning in animals and humans [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (2021). Vocal learning in animals and humans. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200234. doi:10.1098/rstb.2020.0234.
  • Versace, E., Rogge, J. R., Shelton-May, N., & Ravignani, A. (2019). Positional encoding in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 22, 825-838. doi:10.1007/s10071-019-01277-y.

    Abstract

    Strategies used in artificial grammar learning can shed light into the abilities of different species to extract regularities from the environment. In the A(X)nB rule, A and B items are linked, but assigned to different positional categories and separated by distractor items. Open questions are how widespread is the ability to extract positional regularities from A(X)nB patterns, which strategies are used to encode positional regularities and whether individuals exhibit preferences for absolute or relative position encoding. We used visual arrays to investigate whether cotton-top tamarins (Saguinusoedipus) can learn this rule and which strategies they use. After training on a subset of exemplars, two of the tested monkeys successfully generalized to novel combinations. These tamarins discriminated between categories of tokens with different properties (A, B, X) and detected a positional relationship between non-adjacent items even in the presence of novel distractors. The pattern of errors revealed that successful subjects used visual similarity with training stimuli to solve the task and that successful tamarins extracted the relative position of As and Bs rather than their absolute position, similarly to what has been observed in other species. Relative position encoding appears to be favoured in different tasks and taxa. Generalization, though, was incomplete, since we observed a failure with items that during training had always been presented in reinforced arrays, showing the limitations in grasping the underlying positional rule. These results suggest the use of local strategies in the extraction of positional rules in cotton-top tamarins.

    Additional information

    Supplementary file
  • Verspeek, J., Staes, N., Van Leeuwen, E. J. C., Eens, M., & Stevens, J. M. G. (2019). Bonobo personality predicts friendship. Scientific Reports, 9: 19245. doi:10.1038/s41598-019-55884-3.

    Abstract

    In bonobos, strong bonds have been documented between unrelated females and between mothers
    and their adult sons, which can have important fitness benefits. Often age, sex or kinship similarity
    have been used to explain social bond strength variation. Recent studies in other species also stress
    the importance of personality, but this relationship remains to be investigated in bonobos. We used
    behavioral observations on 39 adult and adolescent bonobos housed in 5 European zoos to study the
    role of personality similarity in dyadic relationship quality. Dimension reduction analyses on individual
    and dyadic behavioral scores revealed multidimensional personality (Sociability, Openness, Boldness,
    Activity) and relationship quality components (value, compatibility). We show that, aside from
    relatedness and sex combination of the dyad, relationship quality is also associated with personality
    similarity of both partners. While similarity in Sociability resulted in higher relationship values, lower
    relationship compatibility was found between bonobos with similar Activity scores. The results of this
    study expand our understanding of the mechanisms underlying social bond formation in anthropoid
    apes. In addition, we suggest that future studies in closely related species like chimpanzees should
    implement identical methods for assessing bond strength to shed further light on the evolution of this
    phenomenon.

    Additional information

    Supplementary material
  • Von Holzen, K., & Bergmann, C. (2021). The development of infants’ responses to mispronunciations: A meta-analysis. Developmental Psychology, 57(1), 1-18. doi:10.1037/dev0001141.

    Abstract

    As they develop into mature speakers of their native language, infants must not only learn words but also the sounds that make up those words. To do so, they must strike a balance between accepting speaker dependent variation (e.g. mood, voice, accent), but appropriately rejecting variation when it (potentially) changes a word's meaning (e.g. cat vs. hat). This meta-analysis focuses on studies investigating infants' ability to detect mispronunciations in familiar words, or mispronunciation sensitivity. Our goal was to evaluate the development of infants' phonological representations for familiar words as well as explore the role of experimental manipulations related to theoretical questions and analysis choices. The results show that although infants are sensitive to mispronunciations, they still accept these altered forms as labels for target objects. Interestingly, this ability is not modulated by age or vocabulary size, suggesting that a mature understanding of native language phonology may be present in infants from an early age, possibly before the vocabulary explosion. These results also support several theoretical assumptions made in the literature, such as sensitivity to mispronunciation size and position of the mispronunciation. We also shed light on the impact of data analysis choices that may lead to different conclusions regarding the development of infants' mispronunciation sensitivity. Our paper concludes with recommendations for improved practice in testing infants' word and sentence processing on-line.
  • De Vos, J., Schriefers, H., Bosch, L. t., & Lemhöfer, K. (2019). Interactive L2 vocabulary acquisition in a lab-based immersion setting. Language, Cognition and Neuroscience, 34(7), 916-935. doi:10.1080/23273798.2019.1599127.

    Abstract

    ABSTRACTWe investigated to what extent L2 word learning in spoken interaction takes place when learners are unaware of taking part in a language learning study. Using a novel paradigm for approximating naturalistic (but not necessarily non-intentional) L2 learning in the lab, German learners of Dutch were led to believe that the study concerned judging the price of objects. Dutch target words (object names) were selected individually such that these words were unknown to the respective participant. Then, in a dialogue-like task with the experimenter, the participants were first exposed to and then tested on the target words. In comparison to a no-input control group, we observed a clear learning effect especially from the first two exposures, and better learning for cognates than for non-cognates, but no modulating effect of the exposure-production lag. Moreover, some of the acquired knowledge persisted over a six-month period.
  • Wagner, M. A., Broersma, M., McQueen, J. M., Dhaene, S., & Lemhöfer, K. (2021). Phonetic convergence to non-native speech: Acoustic and perceptual evidence. Journal of Phonetics, 88: 101076. doi:10.1016/j.wocn.2021.101076.

    Abstract

    While the tendency of speakers to align their speech to that of others acoustic-phonetically has been widely studied among native speakers, very few studies have examined whether natives phonetically converge to non-native speakers. Here we measured native Dutch speakers’ convergence to a non-native speaker with an unfamiliar accent in a novel non-interactive task. Furthermore, we assessed the role of participants’ perceptions of the non-native accent in their tendency to converge. In addition to a perceptual measure (AXB ratings), we examined convergence on different acoustic dimensions (e.g., vowel spectra, fricative CoG, speech rate, overall f0) to determine what dimensions, if any, speakers converge to. We further combined these two types of measures to discover what dimensions weighed in raters’ judgments of convergence. The results reveal overall convergence to our non-native speaker, as indexed by both perceptual and acoustic measures. However, the ratings suggest the stronger participants rated the non-native accent to be, the less likely they were to converge. Our findings add to the growing body of evidence that natives can phonetically converge to non-native speech, even without any apparent socio-communicative motivation to do so. We argue that our results are hard to integrate with a purely social view of convergence.
  • Warren, C. M., Tona, K. D., Ouwekerk, L., Van Paridon, J., Poletiek, F. H., Bosch, J. A., & Nieuwenhuis, S. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635-642. doi:10.1016/j.brs.2018.12.224.

    Abstract

    Background

    Transcutaneous vagus nerve stimulation (tVNS) is a new, non-invasive technique being investigated as an intervention for a variety of clinical disorders, including epilepsy and depression. It is thought to exert its therapeutic effect by increasing central norepinephrine (NE) activity, but the evidence supporting this notion is limited.
    Objective

    In order to test for an impact of tVNS on psychophysiological and hormonal indices of noradrenergic function, we applied tVNS in concert with assessment of salivary alpha amylase (SAA) and cortisol, pupil size, and electroencephalograph (EEG) recordings.
    Methods

    Across three experiments, we applied real and sham tVNS to 61 healthy participants while they performed a set of simple stimulus-discrimination tasks. Before and after the task, as well as during one break, participants provided saliva samples and had their pupil size recorded. EEG was recorded throughout the task. The target for tVNS was the cymba conchae, which is heavily innervated by the auricular branch of the vagus nerve. Sham stimulation was applied to the ear lobe.
    Results

    P3 amplitude was not affected by tVNS (Experiment 1A: N=24; Experiment 1B: N=20; Bayes factor supporting null model=4.53), nor was pupil size (Experiment 2: N=16; interaction of treatment and time: p=0.79). However, tVNS increased SAA (Experiments 1A and 2: N=25) and attenuated the decline of salivary cortisol compared to sham (Experiment 2: N=17), as indicated by significant interactions involving treatment and time (p=.023 and p=.040, respectively).
    Conclusion

    These findings suggest that tVNS modulates hormonal indices but not psychophysiological indices of noradrenergic function.
  • Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.

    Abstract

    New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.
  • Weber, K., Micheli, C., Ruigendijk, E., & Rieger, J. (2019). Sentence processing is modulated by the current linguistic environment and a priori information: An fMRI study. Brain and Behavior, 9(7): e01308. doi:10.1002/brb3.1308.

    Abstract

    Introduction
    Words are not processed in isolation but in rich contexts that are used to modulate and facilitate language comprehension. Here, we investigate distinct neural networks underlying two types of contexts, the current linguistic environment and verb‐based syntactic preferences.

    Methods
    We had two main manipulations. The first was the current linguistic environment, where the relative frequencies of two syntactic structures (prepositional object [PO] and double‐object [DO]) would either follow everyday linguistic experience or not. The second concerned the preference toward one or the other structure depending on the verb; learned in everyday language use and stored in memory. German participants were reading PO and DO sentences in German while brain activity was measured with functional magnetic resonance imaging.

    Results
    First, the anterior cingulate cortex (ACC) showed a pattern of activation that integrated the current linguistic environment with everyday linguistic experience. When the input did not match everyday experience, the unexpected frequent structure showed higher activation in the ACC than the other conditions and more connectivity from the ACC to posterior parts of the language network. Second, verb‐based surprisal of seeing a structure given a verb (PO verb preference but DO structure presentation) resulted, within the language network (left inferior frontal and left middle/superior temporal gyrus) and the precuneus, in increased activation compared to a predictable verb‐structure pairing.

    Conclusion
    In conclusion, (1) beyond the canonical language network, brain areas engaged in prediction and error signaling, such as the ACC, might use the statistics of syntactic structures to modulate language processing, (2) the language network is directly engaged in processing verb preferences. These two networks show distinct influences on sentence processing.

    Additional information

    Supporting information
  • Wilkinson, G. S., Adams, D. M., Haghani, A., Lu, A. T., Zoller, J., Breeze, C. E., Arnold, B. D., Ball, H. C., Carter, G. G., Cooper, L. N., Dechmann, D. K. N., Devanna, P., Fasel, N. J., Galazyuk, A. V., Günther, L., Hurme, E., Jones, G., Knörnschild, M., Lattenkamp, E. Z., Li, C. Z. and 17 moreWilkinson, G. S., Adams, D. M., Haghani, A., Lu, A. T., Zoller, J., Breeze, C. E., Arnold, B. D., Ball, H. C., Carter, G. G., Cooper, L. N., Dechmann, D. K. N., Devanna, P., Fasel, N. J., Galazyuk, A. V., Günther, L., Hurme, E., Jones, G., Knörnschild, M., Lattenkamp, E. Z., Li, C. Z., Mayer, F., Reinhardt, J. A., Medellin, R. A., Nagy, M., Pope, B., Power, M. L., Ransome, R. D., Teeling, E. C., Vernes, S. C., Zamora-Mejías, D., Zhang, J., Faure, P. A., Greville, L. J., Herrera M., L. G., Flores-Martínez, J. J., & Horvath, S. (2021). DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature Communications, 12: 1615. doi:10.1038/s41467-021-21900-2.

    Abstract

    Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.

    Additional information

    supplementary information
  • Willems, R. M., & Peelen, M. V. (2021). How context changes the neural basis of perception and language. iScience, 24(5): 102392. doi:10.1016/j.isci.2021.102392.

    Abstract

    Cognitive processes—from basic sensory analysis to language understanding—are typically contextualized. While the importance of considering context for understanding cognition has long been recognized in psychology and philosophy, it has not yet had much impact on cognitive neuroscience research, where cognition is often studied in decontextualized paradigms. Here, we present examples of recent studies showing that context changes the neural basis of diverse cognitive processes, including perception, attention, memory, and language. Within the domains of perception and language, we review neuroimaging results showing that context interacts with stimulus processing, changes activity in classical perception and language regions, and recruits additional brain regions that contribute crucially to naturalistic perception and language. We discuss how contextualized cognitive neuroscience will allow for discovering new principles of the mind and brain.
  • Wirthlin, M., Chang, E. F., Knörnschild, M., Krubitzer, L. A., Mello, C. V., Miller, C. T., Pfenning, A. R., Vernes, S. C., Tchernichovski, O., & Yartsev, M. M. (2019). A modular approach to vocal learning: Disentangling the diversity of a complex behavioral trait. Neuron, 104(1), 87-99. doi:10.1016/j.neuron.2019.09.036.

    Abstract

    Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.

    Files private

    Request files
  • Woensdregt, M., Cummins, C., & Smith, K. (2021). A computational model of the cultural co-evolution of language and mindreading. Synthese, 199, 1347-1385. doi:10.1007/s11229-020-02798-7.

    Abstract

    Several evolutionary accounts of human social cognition posit that language has co-evolved with the sophisticated mindreading abilities of modern humans. It has also been argued that these mindreading abilities are the product of cultural, rather than biological, evolution. Taken together, these claims suggest that the evolution of language has played an important role in the cultural evolution of human social cognition. Here we present a new computational model which formalises the assumptions that underlie this hypothesis, in order to explore how language and mindreading interact through cultural evolution. This model treats communicative behaviour as an interplay between the context in which communication occurs, an agent’s individual perspective on the world, and the agent’s lexicon. However, each agent’s perspective and lexicon are private mental representations, not directly observable to other agents. Learners are therefore confronted with the task of jointly inferring the lexicon and perspective of their cultural parent, based on their utterances in context. Simulation results show that given these assumptions, an informative lexicon evolves not just under a pressure to be successful at communicating, but also under a pressure for accurate perspective-inference. When such a lexicon evolves, agents become better at inferring others’ perspectives; not because their innate ability to learn about perspectives changes, but because sharing a language (of the right type) with others helps them to do so.
  • Wolf, M. C., Meyer, A. S., Rowland, C. F., & Hintz, F. (2021). The effects of input modality, word difficulty and reading experience on word recognition accuracy. Collabra: Psychology, 7(1): 24919. doi:10.1525/collabra.24919.

    Abstract

    Language users encounter words in at least two different modalities. Arguably, the most frequent encounters are in spoken or written form. Previous research has shown that – compared to the spoken modality – written language features more difficult words. Thus, frequent reading might have effects on word recognition. In the present study, we investigated 1) whether input modality (spoken, written, or bimodal) has an effect on word recognition accuracy, 2) whether this modality effect interacts with word difficulty, 3) whether the interaction of word difficulty and reading experience impacts word recognition accuracy, and 4) whether this interaction is influenced by input modality. To do so, we re-analysed a dataset that was collected in the context of a vocabulary test development to assess in which modality test words should be presented. Participants had carried out a word recognition task, where non-words and words of varying difficulty were presented in auditory, visual and audio-visual modalities. In addition to this main experiment, participants had completed a receptive vocabulary and an author recognition test to measure their reading experience. Our re-analyses did not reveal evidence for an effect of input modality on word recognition accuracy, nor for interactions with word difficulty or language experience. Word difficulty interacted with reading experience in that frequent readers were more accurate in recognizing difficult words than individuals who read less frequently. Practical implications are discussed.
  • Wolf, M. C., Muijselaar, M. M. L., Boonstra, A. M., & De Bree, E. H. (2019). The relationship between reading and listening comprehension: Shared and modality-specific components. Reading and Writing, 32(7), 1747-1767. doi:10.1007/s11145-018-9924-8.

    Abstract

    This study aimed to increase our understanding on the relationship between reading and listening comprehension. Both in comprehension theory and in educational practice, reading and listening comprehension are often seen as interchangeable, overlooking modality-specific aspects of them separately. Three questions were addressed. First, it was examined to what extent reading and listening comprehension comprise modality-specific, distinct skills or an overlapping, domain-general skill in terms of the amount of explained variance in one comprehension type by the opposite comprehension type. Second, general and modality-unique subskills of reading and listening comprehension were sought by assessing the contributions of the foundational skills word reading fluency, vocabulary, memory, attention, and inhibition to both comprehension types. Lastly, the practice of using either listening comprehension or vocabulary as a proxy of general comprehension was investigated. Reading and listening comprehension tasks with the same format were assessed in 85 second and third grade children. Analyses revealed that reading comprehension explained 34% of the variance in listening comprehension, and listening comprehension 40% of reading comprehension. Vocabulary and word reading fluency were found to be shared contributors to both reading and listening comprehension. None of the other cognitive skills contributed significantly to reading or listening comprehension. These results indicate that only part of the comprehension process is indeed domain-general and not influenced by the modality in which the information is provided. Especially vocabulary seems to play a large role in this domain-general part. The findings warrant a more prominent focus of modality-specific aspects of both reading and listening comprehension in research and education.
  • Wongratwanich, P., Shimabukuro, K., Konishi, M., Nagasaki, T., Ohtsuka, M., Suei, Y., Nakamoto, T., Verdonschot, R. G., Kanesaki, T., Sutthiprapaporn, P., & Kakimoto, N. (2021). Do various imaging modalities provide potential early detection and diagnosis of medication-related osteonecrosis of the jaw? A review. Dentomaxillofacial Radiology, 50: 20200417. doi:10.1259/dmfr.20200417.

    Abstract


    Objective: Patients with medication-related osteonecrosis of the jaw (MRONJ) often visit their dentists at advanced stages and subsequently require treatments that greatly affect quality of life. Currently, no clear diagnostic criteria exist to assess MRONJ, and the definitive diagnosis solely relies on clinical bone exposure. This ambiguity leads to a diagnostic delay, complications, and unnecessary burden. This article aims to identify imaging modalities' usage and findings of MRONJ to provide possible approaches for early detection.

    Methods: Literature searches were conducted using PubMed, Web of Science, Scopus, and Cochrane Library to review all diagnostic imaging modalities for MRONJ.

    Results: Panoramic radiography offers a fundamental understanding of the lesions. Imaging findings were comparable between non-exposed and exposed MRONJ, showing osteolysis, osteosclerosis, and thickened lamina dura. Mandibular cortex index Class II could be a potential early MRONJ indicator. While three-dimensional modalities, CT and CBCT, were able to show more features unique to MRONJ such as a solid type periosteal reaction, buccal predominance of cortical perforation, and bone-within-bone appearance. MRI signal intensities of vital bones are hypointense on T1WI and hyperintense on T2WI and STIR when necrotic bone shows hypointensity on all T1WI, T2WI, and STIR. Functional imaging is the most sensitive method but is usually performed in metastasis detection rather than being a diagnostic tool for early MRONJ.

    Conclusion: Currently, MRONJ-specific imaging features cannot be firmly established. However, the current data are valuable as it may lead to a more efficient diagnostic procedure along with a more suitable selection of imaging modalities.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., Hino, Y., & Lupker, S. J. (2021). Orthographic properties of distractors do influence phonological Stroop effects: Evidence from Japanese Romaji distractors. Memory & Cognition, 49(3), 600-612. doi:10.3758/s13421-020-01103-8.

    Abstract

    In attempting to understand mental processes, it is important to use a task that appropriately reflects the underlying processes being investigated. Recently, Verdonschot and Kinoshita (Memory & Cognition, 46,410-425, 2018) proposed that a variant of the Stroop task-the "phonological Stroop task"-might be a suitable tool for investigating speech production. The major advantage of this task is that the task is apparently not affected by the orthographic properties of the stimuli, unlike other, commonly used, tasks (e.g., associative-cuing and word-reading tasks). The viability of this proposal was examined in the present experiments by manipulating the script types of Japanese distractors. For Romaji distractors (e.g., "kushi"), color-naming responses were faster when the initial phoneme was shared between the color name and the distractor than when the initial phonemes were different, thereby showing a phoneme-based phonological Stroop effect (Experiment1). In contrast, no such effect was observed when the same distractors were presented in Katakana (e.g., "< ") pound, replicating Verdonschot and Kinoshita's original results (Experiment2). A phoneme-based effect was again found when the Katakana distractors used in Verdonschot and Kinoshita's original study were transcribed and presented in Romaji (Experiment3). Because the observation of a phonemic effectdirectly depended on the orthographic properties of the distractor stimuli, we conclude that the phonological Stroop task is also susceptible to orthographic influences.
  • Zaadnoordijk, L., Buckler, H., Cusack, R., Tsuji, S., & Bergmann, C. (2021). A global perspective on testing infants online: Introducing ManyBabies-AtHome. Frontiers in Psychology, 12: 703234. doi:10.3389/fpsyg.2021.703234.

    Abstract

    Online testing holds great promise for infant scientists. It could increase participant diversity, improve reproducibility and collaborative possibilities, and reduce costs for researchers and participants. However, despite the rise of platforms and participant databases, little work has been done to overcome the challenges of making this approach available to researchers across the world. In this paper, we elaborate on the benefits of online infant testing from a global perspective and identify challenges for the international community that have been outside of the scope of previous literature. Furthermore, we introduce ManyBabies-AtHome, an international, multi-lab collaboration that is actively working to facilitate practical and technical aspects of online testing as well as address ethical concerns regarding data storage and protection, and cross-cultural variation. The ultimate goal of this collaboration is to improve the method of testing infants online and make it globally available.
  • Yu, C., Zhang, Y., Slone, L. K., & Smith, L. B. (2021). The infant’s view redefines the problem of referential uncertainty in early word learning. Proceedings of the National Academy of Sciences of the United States of America, 118(52): e2107019118. doi:10.1073/pnas.2107019118.

    Abstract

    The learning of first object names is deemed a hard problem due to the uncertainty inherent in mapping a heard name to the intended referent in a cluttered and variable world. However, human infants readily solve this problem. Despite considerable theoretical discussion, relatively little is known about the uncertainty infants face in the real world. We used head-mounted eye tracking during parent–infant toy play and quantified the uncertainty by measuring the distribution of infant attention to the potential referents when a parent named both familiar and unfamiliar toy objects. The results show that infant gaze upon hearing an object name is often directed to a single referent which is equally likely to be a wrong competitor or the intended target. This bimodal gaze distribution clarifies and redefines the uncertainty problem and constrains possible solutions.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2021). Cross-situational learning from ambiguous egocentric input is a continuous process: Evidence using the human simulation paradigm. Cognitive Science, 45(7): e13010. doi:10.1111/cogs.13010.

    Abstract

    Recent laboratory experiments have shown that both infant and adult learners can acquire word-referent mappings using cross-situational statistics. The vast majority of the work on this topic has used unfamiliar objects presented on neutral backgrounds as the visual contexts for word learning. However, these laboratory contexts are much different than the real-world contexts in which learning occurs. Thus, the feasibility of generalizing cross-situational learning beyond the laboratory is in question. Adapting the Human Simulation Paradigm, we conducted a series of experiments examining cross-situational learning from children's egocentric videos captured during naturalistic play. Focusing on individually ambiguous naming moments that naturally occur during toy play, we asked how statistical learning unfolds in real time through accumulating cross-situational statistics in naturalistic contexts. We found that even when learning situations were individually ambiguous, learners' performance gradually improved over time. This improvement was driven in part by learners' use of partial knowledge acquired from previous learning situations, even when they had not yet discovered correct word-object mappings. These results suggest that word learning is a continuous process by means of real-time information integration.
  • Zheng, X., & Lemhöfer, K. (2019). The “semantic P600” in second language processing: When syntax conflicts with semantics. Neuropsychologia, 127, 131-147. doi:10.1016/j.neuropsychologia.2019.02.010.

    Abstract

    In sentences like “the mouse that chased the cat was hungry”, the syntactically correct interpretation (the mouse chases the cat) is contradicted by semantic and pragmatic knowledge. Previous research has shown that L1 speakers sometimes base sentence interpretation on this type of knowledge (so-called “shallow” or “good-enough” processing). We made use of both behavioural and ERP measurements to investigate whether L2 learners differ from native speakers in the extent to which they engage in “shallow” syntactic processing. German learners of Dutch as well as Dutch native speakers read sentences containing relative clauses (as in the example above) for which the plausible thematic roles were or were not reversed, and made plausibility judgments. The results show that behaviourally, L2 learners had more difficulties than native speakers to discriminate plausible from implausible sentences. In the ERPs, we replicated the previously reported finding of a “semantic P600” for semantic reversal anomalies in native speakers, probably reflecting the effort to resolve the syntax-semantics conflict. In L2 learners, though, this P600 was largely attenuated and surfaced only in those trials that were judged correctly for plausibility. These results generally point at a more prevalent, but not exclusive occurrence of shallow syntactic processing in L2 learners.
  • Zhong, S., Wei, L., Zhao, C., Yang, L., Di, Z., Francks, C., & Gong, G. (2021). Interhemispheric relationship of genetic influence on human brain connectivity. Cerebral Cortex, 31(1), 77-88. doi:10.1093/cercor/bhaa207.

    Abstract

    To understand the origins of interhemispheric differences and commonalities/coupling in human brain wiring, it is crucial to determine how homologous interregional connectivities of the left and right hemispheres are genetically determined and related. To address this, in the present study, we analyzed human twin and pedigree samples with high-quality diffusion magnetic resonance imaging tractography and estimated the heritability and genetic correlation of homologous left and right white matter (WM) connections. The results showed that the heritability of WM connectivity was similar and coupled between the 2 hemispheres and that the degree of overlap in genetic factors underlying homologous WM connectivity (i.e., interhemispheric genetic correlation) varied substantially across the human brain: from complete overlap to complete nonoverlap. Particularly, the heritability was significantly stronger and the chance of interhemispheric complete overlap in genetic factors was higher in subcortical WM connections than in cortical WM connections. In addition, the heritability and interhemispheric genetic correlations were stronger for long-range connections than for short-range connections. These findings highlight the determinants of the genetics underlying WM connectivity and its interhemispheric relationships, and provide insight into genetic basis of WM connectivity asymmetries in both healthy and disease states.

    Additional information

    Supplementary data
  • Zhou, W., Broersma, M., & Cutler, A. (2021). Asymmetric memory for birth language perception versus production in young international adoptees. Cognition, 213: 104788. doi:10.1016/j.cognition.2021.104788.

    Abstract

    Adults who as children were adopted into a different linguistic community retain knowledge of their birth language. The possession (without awareness) of such knowledge is known to facilitate the (re)learning of birth-language speech patterns; this perceptual learning predicts such adults' production success as well, indicating that the retained linguistic knowledge is abstract in nature. Adoptees' acquisition of their adopted language is fast and complete; birth-language mastery disappears rapidly, although this latter process has been little studied. Here, 46 international adoptees from China aged four to 10 years, with Dutch as their new language, plus 47 matched non-adopted Dutch-native controls and 40 matched non-adopted Chinese controls, undertook across a two-week period 10 blocks of training in perceptually identifying Chinese speech contrasts (one segmental, one tonal) which were unlike any Dutch contrasts. Chinese controls easily accomplished all these tasks. The same participants also provided speech production data in an imitation task. In perception, adoptees and Dutch controls scored equivalently poorly at the outset of training; with training, the adoptees significantly improved while the Dutch controls did not. In production, adoptees' imitations both before and after training could be better identified, and received higher goodness ratings, than those of Dutch controls. The perception results confirm that birth-language knowledge is stored and can facilitate re-learning in post-adoption childhood; the production results suggest that although processing of phonological category detail appears to depend on access to the stored knowledge, general articulatory dimensions can at this age also still be remembered, and may facilitate spoken imitation.

    Additional information

    stimulus materials
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Zimianiti, E. (2021). Adjective-noun constructions in Griko: Focusing on measuring adjectives and their placement in the nominal domain. LingUU Journal, 5(2), 62-75.

    Abstract

    This paper examines adjectival placement in Griko, an Italian-Greek lan-
    guage variety. Guardiano and Stavrou (2019, 2014) have argued that
    there is a gap of evidence in the diachrony of adjectives in prenominal
    position and in particular, of measuring adjectives. Evidence is presented
    in this paper contradicting the aforementioned claims. After considering
    the placement of adjectives in Greek and Italian, and their similarities
    and differences, the adjectival pattern of Griko is analysed. The analysis
    is based mostly on written data from the early 20th century proving the
    prenominal position of adjectives and adding to the diachronic schema of
    adjectival placement in Griko.
  • Zinken, J., Kaiser, J., Weidner, M., Mondada, L., Rossi, G., & Sorjonen, M.-L. (2021). Rule talk: Instructing proper play with impersonal deontic statements. Frontiers in Communication, 6: 660394. doi:10.3389/fcomm.2021.660394.

    Abstract

    The present paper explores how rules are enforced and talked about in everyday life. Drawing on a corpus of board game recordings across European languages, we identify a sequential and praxeological context for rule talk. After a game rule is breached, a participant enforces proper play and then formulates a rule with an impersonal deontic statement (e.g. ‘It’s not allowed to do this’). Impersonal deontic statements express what may or may not be done without tying the obligation to a particular individual. Our analysis shows that such statements are used as part of multi-unit and multi-modal turns where rule talk is accomplished through both grammatical and embodied means. Impersonal deontic statements serve multiple interactional goals: they account for having changed another’s behavior in the moment and at the same time impart knowledge for the future. We refer to this complex action as an “instruction”. The results of this study advance our understanding of rules and rule-following in everyday life, and of how resources of language and the body are combined to enforce and formulate rules.
  • Zora, H., Riad, T., Ylinen, S., & Csépe, V. (2021). Phonological variations are compensated at the lexical level: Evidence from auditory neural activity. Frontiers in Human Neuroscience, 15: 622904. doi:10.3389/fnhum.2021.622904.

    Abstract

    Dealing with phonological variations is important for speech processing. This article addresses whether phonological variations introduced by assimilatory processes are compensated for at the pre-lexical or lexical level, and whether the nature of variation and the phonological context influence this process. To this end, Swedish nasal regressive place assimilation was investigated using the mismatch negativity (MMN) component. In nasal regressive assimilation, the coronal nasal assimilates to the place of articulation of a following segment, most clearly with a velar or labial place of articulation, as in utan mej “without me” > [ʉːtam mɛjː]. In a passive auditory oddball paradigm, 15 Swedish speakers were presented with Swedish phrases with attested and unattested phonological variations and contexts for nasal assimilation. Attested variations – a coronal-to-labial change as in utan “without” > [ʉːtam] – were contrasted with unattested variations – a labial-to-coronal change as in utom “except” > ∗[ʉːtɔn] – in appropriate and inappropriate contexts created by mej “me” [mɛjː] and dej “you” [dɛjː]. Given that the MMN amplitude depends on the degree of variation between two stimuli, the MMN responses were expected to indicate to what extent the distance between variants was tolerated by the perceptual system. Since the MMN response reflects not only low-level acoustic processing but also higher-level linguistic processes, the results were predicted to indicate whether listeners process assimilation at the pre-lexical and lexical levels. The results indicated no significant interactions across variations, suggesting that variations in phonological forms do not incur any cost in lexical retrieval; hence such variation is compensated for at the lexical level. However, since the MMN response reached significance only for a labial-to-coronal change in a labial context and for a coronal-to-labial change in a coronal context, the compensation might have been influenced by the nature of variation and the phonological context. It is therefore concluded that while assimilation is compensated for at the lexical level, there is also some influence from pre-lexical processing. The present results reveal not only signal-based perception of phonological units, but also higher-level lexical processing, and are thus able to reconcile the bottom-up and top-down models of speech processing.
  • Zora, H., Riad, T., & Ylinen, S. (2019). Prosodically controlled derivations in the mental lexicon. Journal of Neurolinguistics, 52: 100856. doi:10.1016/j.jneuroling.2019.100856.

    Abstract

    Swedish morphemes are classified as prosodically specified or prosodically unspecified, depending on lexical or phonological stress, respectively. Here, we investigate the allomorphy of the suffix -(i)sk, which indicates the distinction between lexical and phonological stress; if attached to a lexically stressed morpheme, it takes a non-syllabic form (-sk), whereas if attached to a phonologically stressed morpheme, an epenthetic vowel is inserted (-isk). Using mismatch negativity (MMN), we explored the neural processing of this allomorphy across lexically stressed and phonologically stressed morphemes. In an oddball paradigm, participants were occasionally presented with congruent and incongruent derivations, created by the suffix -(i)sk, within the repetitive presentation of their monomorphemic stems. The results indicated that the congruent derivation of the lexically stressed stem elicited a larger MMN than the incongruent sequences of the same stem and the derivational suffix, whereas after the phonologically stressed stem a non-significant tendency towards an opposite pattern was observed. We argue that the significant MMN response to the congruent derivation in the lexical stress condition is in line with lexical MMN, indicating a holistic processing of the sequence of lexically stressed stem and derivational suffix. The enhanced MMN response to the incongruent derivation in the phonological stress condition, on the other hand, is suggested to reflect combinatorial processing of the sequence of phonologically stressed stem and derivational suffix. These findings bring a new aspect to the dual-system approach to neural processing of morphologically complex words, namely the specification of word stress.
  • Zora, H., & Csépe, V. (2021). Perception of Prosodic Modulations of Linguistic and Paralinguistic Origin: Evidence From Early Auditory Event-Related Potentials. Frontiers in Neuroscience, 15: 797487. doi:10.3389/fnins.2021.797487.

    Abstract

    How listeners handle prosodic cues of linguistic and paralinguistic origin is a central question for spoken communication. In the present EEG study, we addressed this question by examining neural responses to variations in pitch accent (linguistic) and affective (paralinguistic) prosody in Swedish words, using a passive auditory oddball paradigm. The results indicated that changes in pitch accent and affective prosody elicited mismatch negativity (MMN) responses at around 200 ms, confirming the brain’s pre-attentive response to any prosodic modulation. The MMN amplitude was, however, statistically larger to the deviation in affective prosody in comparison to the deviation in pitch accent and affective prosody combined, which is in line with previous research indicating not only a larger MMN response to affective prosody in comparison to neutral prosody but also a smaller MMN response to multidimensional deviants than unidimensional ones. The results, further, showed a significant P3a response to the affective prosody change in comparison to the pitch accent change at around 300 ms, in accordance with previous findings showing an enhanced positive response to emotional stimuli. The present findings provide evidence for distinct neural processing of different prosodic cues, and statistically confirm the intrinsic perceptual and motivational salience of paralinguistic information in spoken communication.
  • Zormpa, E., Meyer, A. S., & Brehm, L. (2019). Slow naming of pictures facilitates memory for their names. Psychonomic Bulletin & Review, 26(5), 1675-1682. doi:10.3758/s13423-019-01620-x.

    Abstract

    Speakers remember their own utterances better than those of their interlocutors, suggesting that language production is beneficial to memory. This may be partly explained by a generation effect: The act of generating a word is known to lead to a memory advantage (Slamecka & Graf, 1978). In earlier work, we showed a generation effect for recognition of images (Zormpa, Brehm, Hoedemaker, & Meyer, 2019). Here, we tested whether the recognition of their names would also benefit from name generation. Testing whether picture naming improves memory for words was our primary aim, as it serves to clarify whether the representations affected by generation are visual or conceptual/lexical. A secondary aim was to assess the influence of processing time on memory. Fifty-one participants named pictures in three conditions: after hearing the picture name (identity condition), backward speech, or an unrelated word. A day later, recognition memory was tested in a yes/no task. Memory in the backward speech and unrelated conditions, which required generation, was superior to memory in the identity condition, which did not require generation. The time taken by participants for naming was a good predictor of memory, such that words that took longer to be retrieved were remembered better. Importantly, that was the case only when generation was required: In the no-generation (identity) condition, processing time was not related to recognition memory performance. This work has shown that generation affects conceptual/lexical representations, making an important contribution to the understanding of the relationship between memory and language.
  • Zormpa, E., Brehm, L., Hoedemaker, R. S., & Meyer, A. S. (2019). The production effect and the generation effect improve memory in picture naming. Memory, 27(3), 340-352. doi:10.1080/09658211.2018.1510966.

    Abstract

    The production effect (better memory for words read aloud than words read silently) and the picture superiority effect (better memory for pictures than words) both improve item memory in a picture naming task (Fawcett, J. M., Quinlan, C. K., & Taylor, T. L. (2012). Interplay of the production and picture superiority effects: A signal detection analysis. Memory (Hove, England), 20(7), 655–666. doi:10.1080/09658211.2012.693510). Because picture naming requires coming up with an appropriate label, the generation effect (better memory for generated than read words) may contribute to the latter effect. In two forced-choice memory experiments, we tested the role of generation in a picture naming task on later recognition memory. In Experiment 1, participants named pictures silently or aloud with the correct name or an unreadable label superimposed. We observed a generation effect, a production effect, and an interaction between the two. In Experiment 2, unreliable labels were included to ensure full picture processing in all conditions. In this experiment, we observed a production and a generation effect but no interaction, implying the effects are dissociable. This research demonstrates the separable roles of generation and production in picture naming and their impact on memory. As such, it informs the link between memory and language production and has implications for memory asymmetries between language production and comprehension.

    Additional information

    pmem_a_1510966_sm9257.pdf

Share this page