Publications

Displaying 101 - 200 of 268
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.

    Abstract

    This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing.
  • Hagoort, P. (1995). Wat zijn woorden en waar vinden we ze in ons brein? In E. Marani, & J. Lanser (Eds.), Dyslexie: Foutloos spellen alleen weggelegd voor gestoorden? (pp. 37-46). Leiden: Boerhaave Commissie voor Postacademisch Onderwijs in de Geneeskunde, Rijksuniversiteit Leiden.
  • Hagoort, P. (2008). Über Broca, Gehirn und Bindung. In Jahrbuch 2008: Tätigkeitsberichte der Institute. München: Generalverwaltung der Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/306524/forschungsSchwerpunkt1?c=166434.

    Abstract

    Beim Sprechen und beim Sprachverstehen findet man die Wortbedeutung im Gedächtnis auf und kombiniert sie zu größeren Einheiten (Unifikation). Solche Unifikations-Operationen laufen auf unterschiedlichen Ebenen der Sprachverarbeitung ab. In diesem Beitrag wird ein Rahmen vorgeschlagen, in dem psycholinguistische Modelle mit neurobiologischer Sprachbetrachtung in Verbindung gebracht werden. Diesem Vorschlag zufolge spielt der linke inferiore frontale Gyrus (LIFG) eine bedeutende Rolle bei der Unifi kation
  • Hammarström, H., & O'Connor, L. (2013). Dependency sensitive typological distance. In L. Borin, & A. Saxena (Eds.), Approaches to measuring linguistic differences (pp. 337-360). Berlin: Mouton de Gruyter.
  • Hammarström, H. (2013). Noun class parallels in Kordofanian and Niger-Congo: Evidence of genealogical inheritance? In T. C. Schadeberg, & R. M. Blench (Eds.), Nuba Mountain Language Studies (pp. 549-570). Köln: Köppe.
  • Hanulikova, A., & Dietrich, R. (2008). Die variable Coda in der slowakisch-deutschen Interimsprache. In M. Tarvas (Ed.), Tradition und Geschichte im literarischen und sprachwissenschaftlichen Kontext (pp. 119-130). Bern: Peter Lang.
  • Haun, D. B. M., & Over, H. (2013). Like me: A homophily-based account of human culture. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural Evolution: Society, technology, language, and religion (pp. 75-85). Cambridge, MA: MIT Press.
  • Hayano, K. (2013). Question design in conversation. In J. Sidnell, & T. Stivers (Eds.), The handbook of conversation analysis (pp. 395-414). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch19.

    Abstract

    This chapter contains sections titled: Introduction Questions Questioning and the Epistemic Gradient Presuppositions, Agenda Setting and Preferences Social Actions Implemented by Questions Questions as Building Blocks of Institutional Activities Future Directions
  • Hofmeister, P., & Norcliffe, E. (2013). Does resumption facilitate sentence comprehension? In P. Hofmeister, & E. Norcliffe (Eds.), The core and the periphery: Data-driven perspectives on syntax inspired by Ivan A. Sag (pp. 225-246). Stanford, CA: CSLI Publications.
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Huettig, F. (2013). Young children’s use of color information during language-vision mapping. In B. R. Kar (Ed.), Cognition and brain development: Converging evidence from various methodologies (pp. 368-391). Washington, DC: American Psychological Association Press.
  • Jordan, F. M., van Schaik, C. P., Francois, P., Gintis, H., Haun, D. B. M., Hruschka, D. H., Janssen, M. A., Kitts, J. A., Lehmann, L., Mathew, S., Richerson, P. J., Turchin, P., & Wiessner, P. (2013). Cultural evolution of the structure of human groups. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural Evolution: Society, technology, language, and religion (pp. 87-116). Cambridge, MA: MIT Press.
  • Jordan, F. (2013). Comparative phylogenetic methods and the study of pattern and process in kinship. In P. McConvell, I. Keen, & R. Hendery (Eds.), Kinship systems: Change and reconstruction (pp. 43-58). Salt Lake City, UT: University of Utah Press.

    Abstract

    Anthropology began by comparing aspects of kinship across cultures, while linguists interested in semantic domains such as kinship necessarily compare across languages. In this chapter I show how phylogenetic comparative methods from evolutionary biology can be used to study evolutionary processes relating to kinship and kinship terminologies across language and culture.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2013). Dummies and auxiliaries in the acquisition of L1 and L2 Dutch. In E. Blom, I. Van de Craats, & J. Verhagen (Eds.), Dummy Auxiliaries in First and Second Language Acquisition (pp. 341-368). Berlin: Mouton de Gruyter.
  • Jordens, P., Matsuo, A., & Perdue, C. (2008). Comparing the acquisition of finiteness: A cross-linguistic approach. In B. Ahrenholz, U. Bredel, W. Klein, M. Rost-Roth, & R. Skiba (Eds.), Empirische Forschung und Theoriebildung: Beiträge aus Soziolinguistik, Gesprochene-Sprache- und Zweitspracherwerbsforschung: Festschrift für Norbert Dittmar (pp. 261-276). Frankfurt am Main: Lang.
  • Kallmeyer, L., Osswald, R., & Van Valin Jr., R. D. (2013). Tree wrapping for Role and Reference Grammar. In G. Morrill, & M.-J. Nederhof (Eds.), Formal grammar: 17th and 18th International Conferences, FG 2012/2013, Opole, Poland, August 2012: revised Selected Papers, Düsseldorf, Germany, August 2013: proceedings (pp. 175-190). Heidelberg: Springer.
  • Keating, E. (1995). Pilot questionnaire to investigate social uses of space, especially as related to 1) linguistic practices and 2) social organization. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004227.

    Abstract

    Day-to-day interpretations of “space” are enmeshed in specific cultural and linguistic practices. For example, many cultures have an association between vertical height and social standing; more powerful people may be placed literally higher than others at social gatherings, and be spoken of as having higher status. This questionnaire is a guide for exploring relationships between space, language, and social structure. The goal is to better understand how space is organised in the focus community, and to investigate the extent to which space is used as a model for reproducing social forms.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G., & Harbusch, K. (2008). Comparing linguistic judgments and corpus frequencies as windows on grammatical competence: A study of argument linearization in German clauses. In A. Steube (Ed.), The discourse potential of underspecified structures (pp. 179-192). Berlin: Walter de Gruyter.

    Abstract

    We present an overview of several corpus studies we carried out into the frequencies of argument NP orderings in the midfield of subordinate and main clauses of German. Comparing the corpus frequencies with grammaticality ratings published by Keller’s (2000), we observe a “grammaticality–frequency gap”: Quite a few argument orderings with zero corpus frequency are nevertheless assigned medium–range grammaticality ratings. We propose an explanation in terms of a two-factor theory. First, we hypothesize that the grammatical induction component needs a sufficient number of exposures to a syntactic pattern to incorporate it into its repertoire of more or less stable rules of grammar. Moderately to highly frequent argument NP orderings are likely have attained this status, but not their zero-frequency counterparts. This is why the latter argument sequences cannot be produced by the grammatical encoder and are absent from the corpora. Secondly, we assumed that an extraneous (nonlinguistic) judgment process biases the ratings of moderately grammatical linear order patterns: Confronted with such structures, the informants produce their own “ideal delivery” variant of the to-be-rated target sentence and evaluate the similarity between the two versions. A high similarity score yielded by this judgment then exerts a positive bias on the grammaticality rating—a score that should not be mistaken for an authentic grammaticality rating. We conclude that, at least in the linearization domain studied here, the goal of gaining a clear view of the internal grammar of language users is best served by a combined strategy in which grammar rules are founded on structures that elicit moderate to high grammaticality ratings and attain at least moderate usage frequencies.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kidd, E., Bavin, S. L., & Brandt, S. (2013). The role of the lexicon in the development of the language processor. In D. Bittner, & N. Ruhlig (Eds.), Lexical bootstrapping: The role of lexis and semantics in child language development (pp. 217-244). Berlin: De Gruyter Mouton.
  • Kita, S. (1995). Enter/exit animation for linguistic elicitation. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003394.

    Abstract

    This task investigates the expression of “enter” and “exit” events, and is a supplement to the Motion Elicitation task (https://doi.org/10.17617/2.3003391). Consultants are asked to describe a series of animated clips where a man moves into or out of a house. The clips focus on contrasts to do with perspective (e.g., whether the man appears to move away or towards the viewer) and transitional movement (e.g., whether the man walks or “teleports” into his new location).

    Additional information

    1995_Enter_exit_animation_stimuli.zip
  • Kita, S. (1995). Recommendations for data collection for gesture studies. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 35-45). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004287.

    Abstract

    Do our hands 'speak the same language' across cultures? Gesture is the silent partner of spoken languages in face-to-face interaction, but we still have a lot to learn about gesture practices in different speech communities. The primary purpose of this task is to collect data in naturalistic settings that can be used to investigate the linguistic and cultural relativity of gesture performance, especially spatially indicative gestures. It involves video-recording pairs of speakers in both free conversation and more structured communication tasks (e.g., describing film plots).

    Please note: the stimuli mentioned in this entry are available elsewhere: 'The Pear Story', a short film made at the University of California at Berkeley; "Frog, where are you?" from the original Mayer (1969) book, as published in the Appendix of Berman & Slobin (1994).
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klaas, G. (2008). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 11 (pp. vi-vii). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (2008). Sprache innerhalb und ausserhalb der Schule. In Deutschen Akademie für Sprache und Dichtung (Ed.), Jahrbuch 2007 (pp. 140-150). Darmstadt: Wallstein Verlag.
  • Klein, W. (2008). The topic situation. In B. Ahrenholz, U. Bredel, W. Klein, M. Rost-Roth, & R. Skiba (Eds.), Empirische Forschung und Theoriebildung: Beiträge aus Soziolinguistik, Gesprochene-Sprache- und Zweitspracherwerbsforschung: Festschrift für Norbert Dittmar (pp. 287-305). Frankfurt am Main: Lang.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (2008). Time in language, language in time. In P. Indefrey, & M. Gullberg (Eds.), Time to speak: Cognitive and neural prerequisites for time in language (pp. 1-12). Oxford: Blackwell.
  • Klein, W. (2002). Why case marking? In I. Kaufmann, & B. Stiebels (Eds.), More than words: Festschrift for Dieter Wunderlich (pp. 251-273). Berlin: Akademie Verlag.
  • Klein, W. (2013). Basic variety. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 64-65). New York: Routledge.
  • Klein, W. (1984). Bühler Ellipse. In C. F. Graumann, & T. Herrmann (Eds.), Karl Bühlers Axiomatik: Fünfzig Jahre Axiomatik der Sprachwissenschaften (pp. 117-141). Frankfurt am Main: Klostermann.
  • Klein, W., Dietrich, R., & Noyau, C. (1995). Conclusions. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 261-280). Amsterdam: Benjamins.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Musan, R. (2002). (A)Symmetry in language: seit and bis, and others. In C. Maienborn (Ed.), (A)Symmetrien - (A)Symmetry. Beiträge zu Ehren von Ewald Lang - Papers in Honor of Ewald Lang (pp. 283-295). Tübingen: Stauffenburg.
  • Klein, W. (2008). Mündliche Textproduktion: Informationsorganisation in Texten. In N. Janich (Ed.), Textlinguistik: 15 Einführungen (pp. 217-235). Tübingen: Narr Verlag.
  • Klein, W. (1995). Frame of analysis. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 17-29). Amsterdam: Benjamins.
  • Klein, W. (2013). European Science Foundation (ESF) Project. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 220-221). New York: Routledge.
  • Klein, W., Coenen, J., Van Helvert, K., & Hendriks, H. (1995). The acquisition of Dutch. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 117-143). Amsterdam: Benjamins.
  • Klein, W. (1995). The acquisition of English. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 31-70). Amsterdam: Benjamins.
  • Klein, W. (1995). Sprachverhalten. In M. Amelang, & Pawlik (Eds.), Enzyklopädie der Psychologie (pp. 469-505). Göttingen: Hogrefe.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (2013). Von Reichtum und Armut des deutschen Wortschatzes. In Deutsche Akademie für Sprache und Dichtung, & Union der deutschen Akademien der Wissenschaften (Eds.), Reichtum und Armut der deutschen Sprache (pp. 15-55). Boston: de Gruyter.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Kristoffersen, J. H., Troelsgard, T., & Zwitserlood, I. (2013). Issues in sign language lexicography. In H. Jackson (Ed.), The Bloomsbury companion to lexicography (pp. 259-283). London: Bloomsbury.
  • Krott, A., Schreuder, R., & Baayen, R. H. (2002). Analogical hierarchy: Exemplar-based modeling of linkers in Dutch noun-noun compounds. In R. Skousen (Ed.), Analogical modeling: An exemplar-based approach to language (pp. 181-206). Amsterdam: Benjamins.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Ladd, D. R., & Dediu, D. (2013). Genes and linguistic tone. In H. Pashler (Ed.), Encyclopedia of the mind (pp. 372-373). London: Sage Publications.

    Abstract

    It is usually assumed that the language spoken by a human community is independent of the community's genetic makeup, an assumption supported by an overwhelming amount of evidence. However, the possibility that language is influenced by its speakers' genes cannot be ruled out a priori, and a recently discovered correlation between the geographic distribution of tone languages and two human genes seems to point to a genetically influenced bias affecting language. This entry describes this specific correlation and highlights its major implications. Voice pitch has a variety of communicative functions. Some of these are probably universal, such as conveying information about the speaker's sex, age, and emotional state. In many languages, including the European languages, voice pitch also conveys certain sentence-level meanings such as signaling that an utterance is a question or an exclamation; these uses of pitch are known as intonation. Some languages, however, known as tone languages, nian ...
  • Lausberg, H., & Sloetjes, H. (2013). NEUROGES in combination with the annotation tool ELAN. In H. Lausberg (Ed.), Understanding body movement: A guide to empirical research on nonverbal behaviour with an introduction to the NEUROGES coding system (pp. 199-200). Frankfurt a/M: Lang.
  • Levelt, W. J. M. (2002). Phonological encoding in speech production: Comments on Jurafsky et al., Schiller et al., and van Heuven & Haan. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology VII (pp. 87-99). Berlin: Mouton de Gruyter.
  • Levelt, W. J. M., & Ruijssenaars, A. (1995). Levensbericht Johan Joseph Dumont. In Jaarboek Koninklijke Nederlandse Akademie van Wetenschappen (pp. 31-36).
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Levelt, W. J. M. (1995). Chapters of psychology: An interview with Wilhelm Wundt. In R. L. Solso, & D. W. Massaro (Eds.), The science of mind: 2001 and beyond (pp. 184-202). Oxford University Press.
  • Levelt, W. J. M. (1984). Geesteswetenschappelijke theorie als kompas voor de gangbare mening. In S. Dresden, & D. Van de Kaa (Eds.), Wetenschap ten goede en ten kwade (pp. 42-52). Amsterdam: North Holland.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1995). Psycholinguistics. In C. C. French, & A. M. Colman (Eds.), Cognitive psychology (reprint, pp. 39- 57). London: Longman.
  • Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. Van Doorn, W. A. Van de Grind, & J. J. Koenderink (Eds.), Limits in perception (pp. 323-358). Utrecht: VNU Science Press.
  • Levelt, W. J. M. (2008). What has become of formal grammars in linguistics and psycholinguistics? [Postscript]. In Formal Grammars in linguistics and psycholinguistics (pp. 1-17). Amsterdam: John Benjamins.
  • Levinson, S. C. (1995). 'Logical' Connectives in Natural Language: A First Questionnaire. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 61-69). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513476.

    Abstract

    It has been hypothesised that human reasoning has a non-linguistic foundation, but is nevertheless influenced by the formal means available in a language. For example, Western logic is transparently related to European sentential connectives (e.g., and, if … then, or, not), some of which cannot be unambiguously expressed in other languages. The questionnaire explores reasoning tools and practices through investigating translation equivalents of English sentential connectives and collecting examples of “reasoned arguments”.
  • Levinson, S. C. (2013). Action formation and ascription. In T. Stivers, & J. Sidnell (Eds.), The handbook of conversation analysis (pp. 103-130). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch6.

    Abstract

    Since the core matrix for language use is interaction, the main job of language
    is not to express propositions or abstract meanings, but to deliver actions.
    For in order to respond in interaction we have to ascribe to the prior turn
    a primary ‘action’ – variously thought of as an ‘illocution’, ‘speech act’, ‘move’,
    etc. – to which we then respond. The analysis of interaction also relies heavily
    on attributing actions to turns, so that, e.g., sequences can be characterized in
    terms of actions and responses. Yet the process of action ascription remains way
    understudied. We don’t know much about how it is done, when it is done, nor even
    what kind of inventory of possible actions might exist, or the degree to which they
    are culturally variable.
    The study of action ascription remains perhaps the primary unfulfilled task in
    the study of language use, and it needs to be tackled from conversationanalytic,
    psycholinguistic, cross-linguistic and anthropological perspectives.
    In this talk I try to take stock of what we know, and derive a set of goals for and
    constraints on an adequate theory. Such a theory is likely to employ, I will suggest,
    a top-down plus bottom-up account of action perception, and a multi-level notion
    of action which may resolve some of the puzzles that have repeatedly arisen.
  • Levinson, S. C. (2013). Cross-cultural universals and communication structures. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 67-80). Cambridge, MA: MIT Press.

    Abstract

    Given the diversity of languages, it is unlikely that the human capacity for language resides in rich universal syntactic machinery. More likely, it resides centrally in the capacity for vocal learning combined with a distinctive ethology for communicative interaction, which together (no doubt with other capacities) make diverse languages learnable. This chapter focuses on face-to-face communication, which is characterized by the mapping of sounds and multimodal signals onto speech acts and which can be deeply recursively embedded in interaction structure, suggesting an interactive origin for complex syntax. These actions are recognized through Gricean intention recognition, which is a kind of “ mirroring” or simulation distinct from the classic mirror neuron system. The multimodality of conversational interaction makes evident the involvement of body, hand, and mouth, where the burden on these can be shifted, as in the use of speech and gesture, or hands and face in sign languages. Such shifts having taken place during the course of human evolution. All this suggests a slightly different approach to the mystery of music, whose origins should also be sought in joint action, albeit with a shift from turn-taking to simultaneous expression, and with an affective quality that may tap ancient sources residual in primate vocalization. The deep connection of language to music can best be seen in the only universal form of music, namely song.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2002). Appendix to the 2002 Supplement, version 1, for the “Manual” for the field season 2001. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 62-64). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C. (2002). Landscape terms and place names in Yélî Dnye, the language of Rossel Island, PNG. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (1995). Interactional biases in human thinking. In E. N. Goody (Ed.), Social intelligence and interaction (pp. 221-260). Cambridge: Cambridge University Press.
  • Levinson, S. C., & Majid, A. (2008). Preface and priorities. In A. Majid (Ed.), Field manual volume 11 (pp. iii-iv). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press.
  • Levinson, S. C. (1995). Three levels of meaning. In F. Palmer (Ed.), Grammar and meaning: Essays in honour of Sir John Lyons (pp. 90-115). Cambridge University Press.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2008). Time and space questionnaire. In A. Majid (Ed.), Field Manual Volume 11 (pp. 42-49). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492955.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Magyari, L. (2008). A mentális lexikon modelljei és a magyar nyelv (Models of mental lexicon and the Hungarian language). In J. Gervain, & C. Pléh (Eds.), A láthatatlan nyelv (Invisible Language). Budapest: Gondolat Kiadó.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2008). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 11 (pp. 37-41). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492960.

    Abstract

    This Field Manual entry has been superceded by the 2009 version:
    https://doi.org/10.17617/2.883570

    Files private

    Request files
  • Majid, A. (2008). Focal colours. In A. Majid (Ed.), Field Manual Volume 11 (pp. 8-10). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492958.

    Abstract

    In this task we aim to find what the best exemplars or “focal colours” of each basic colour term is in our field languages. This is an important part of the evidence we need in order to understand the colour data collected using 'The Language of Vision I: Colour'. This task consists of an experiment where participants pick out the best exemplar for the colour terms in their language. The goal is to establish language specific focal colours.
  • Majid, A. (2013). Psycholinguistics. In J. L. Jackson (Ed.), Oxford Bibliographies Online: Anthropology. Oxford: Oxford University Press.
  • Martin, A., & Van Turennout, M. (2002). Searching for the neural correlates of object priming. In L. R. Squire, & D. L. Schacter (Eds.), The Neuropsychology of Memory (pp. 239-247). New York: Guilford Press.
  • Mauner, G., Koenig, J.-P., Melinger, A., & Bienvenue, B. (2002). The lexical source of unexpressed participants and their role in sentence and discourse understanding. In P. Merlo, & S. Stevenson (Eds.), The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues (pp. 233-254). Amsterdam: John Benjamins.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Mishra, R. K., Olivers, C. N. L., & Huettig, F. (2013). Spoken language and the decision to move the eyes: To what extent are language-mediated eye movements automatic? In V. S. C. Pammi, & N. Srinivasan (Eds.), Progress in Brain Research: Decision making: Neural and behavioural approaches (pp. 135-149). New York: Elsevier.

    Abstract

    Recent eye-tracking research has revealed that spoken language can guide eye gaze very rapidly (and closely time-locked to the unfolding speech) toward referents in the visual world. We discuss whether, and to what extent, such language-mediated eye movements are automatic rather than subject to conscious and controlled decision-making. We consider whether language-mediated eye movements adhere to four main criteria of automatic behavior, namely, whether they are fast and efficient, unintentional, unconscious, and overlearned (i.e., arrived at through extensive practice). Current evidence indicates that language-driven oculomotor behavior is fast but not necessarily always efficient. It seems largely unintentional though there is also some evidence that participants can actively use the information in working memory to avoid distraction in search. Language-mediated eye movements appear to be for the most part unconscious and have all the hallmarks of an overlearned behavior. These data are suggestive of automatic mechanisms linking language to potentially referred-to visual objects, but more comprehensive and rigorous testing of this hypothesis is needed.
  • Nas, G., Kempen, G., & Hudson, P. (1984). De rol van spelling en klank bij woordherkenning tijdens het lezen. In A. Thomassen, L. Noordman, & P. Elling (Eds.), Het leesproces. Lisse: Swets & Zeitlinger.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Osswald, R., & Van Valin Jr., R. D. (2013). FrameNet, frame structure and the syntax-semantics interface. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Frames and concept types: Applications in language and philosophy. Heidelberg: Springer.
  • Pederson, E. (1995). Questionnaire on event realization. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 54-60). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004359.

    Abstract

    "Event realisation" refers to the normal final state of the affected entity of an activity described by a verb. For example, the sentence John killed the mosquito entails that the mosquito is afterwards dead – this is the full realisation of a killing event. By contrast, a sentence such as John hit the mosquito does not entail the mosquito’s death (even though we might assume this to be a likely result). In using a certain verb, which features of event realisation are entailed and which are just likely? This questionnaire supports cross-linguistic exploration of event realisation for a range of event types.
  • Perniss, P. M., & Ozyurek, A. (2008). Representations of action, motion and location in sign space: A comparison of German (DGS) and Turkish (TID) sign language narratives. In J. Quer (Ed.), Signs of the time: Selected papers from TISLR 8 (pp. 353-376). Seedorf: Signum Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions in Kata Kolok (Bali). In Possessive and existential constructions in sign languages. Nijmegen: Ishara Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions: Introduction and overview. In Possessive and existential constructions in sign languages (pp. 1-31). Nijmegen: Ishara Press.
  • Razafindrazaka, H., & Brucato, N. (2008). Esclavage et diaspora Africaine. In É. Crubézy, J. Braga, & G. Larrouy (Eds.), Anthropobiologie: Évolution humaine (pp. 326-328). Issy-les-Moulineaux: Elsevier Masson.
  • Razafindrazaka, H., Brucato, N., & Mazières, S. (2008). Les Noirs marrons. In É. Crubézy, J. Braga, & G. Larrouy (Eds.), Anthropobiologie: Évolution humaine (pp. 319-320). Issy-les-Moulineaux: Elsevier Masson.
  • Reesink, G. (2002). The Eastern bird's head languages. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 1-44). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). A grammar sketch of Sougb. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 181-275). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). Mansim, a lost language of the Bird's Head. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 277-340). Canberra: Pacific Linguistics.
  • Roberts, L. (2008). Processing temporal constraints and some implications for the investigation of second language sentence processing and acquisition. Commentary on Baggio. In P. Indefrey, & M. Gullberg (Eds.), Time to speak: Cognitive and neural prerequisites for time in language (pp. 57-61). Oxford: Blackwell.
  • Roberts, L. (2013). Discourse processing. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 190-194). New York: Routledge.
  • Roberts, L. (2013). Sentence processing in bilinguals. In R. Van Gompel (Ed.), Sentence processing. London: Psychology Press.
  • Roelofs, A. (2002). Storage and computation in spoken word production. In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 183-216). Dordrecht: Kluwer.

Share this page