Publications

Displaying 401 - 415 of 415
  • Virpioja, S., Lehtonen, M., Hulten, A., Salmelin, R., & Lagus, K. (2011). Predicting reaction times in word recognition by unsupervised learning of morphology. In W. Honkela, W. Dutch, M. Girolami, & S. Kaski (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2011 (pp. 275-282). Berlin: Springer.

    Abstract

    A central question in the study of the mental lexicon is how morphologically complex words are processed. We consider this question from the viewpoint of statistical models of morphology. As an indicator of the mental processing cost in the brain, we use reaction times to words in a visual lexical decision task on Finnish nouns. Statistical correlation between a model and reaction times is employed as a goodness measure of the model. In particular, we study Morfessor, an unsupervised method for learning concatenative morphology. The results for a set of inflected and monomorphemic Finnish nouns reveal that the probabilities given by Morfessor, especially the Categories-MAP version, show considerably higher correlations to the reaction times than simple word statistics such as frequency, morphological family size, or length. These correlations are also higher than when any individual test subject is viewed as a model.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2009). New perspectives in analyzing aspectual distinctions across languages. In W. Klein, & P. Li (Eds.), The expression of time (pp. 195-216). Berlin: Mouton de Gruyter.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Wegener, C. (2011). Expression of reciprocity in Savosavo. In N. Evans, A. Gaby, S. C. Levinson, & A. Majid (Eds.), Reciprocals and semantic typology (pp. 213-224). Amsterdam: Benjamins.

    Abstract

    This paper describes how reciprocity is expressed in the Papuan (i.e. non-Austronesian­) language Savosavo, spoken in the Solomon Islands. The main strategy is to use the reciprocal nominal mapamapa, which can occur in different NP positions and always triggers default third person singular masculine agreement, regardless of the number and gender of the referents. After a description of this as well as another strategy that is occasionally used (the ‘joint activity construction’), the paper will provide a detailed analysis of data elicited with set of video stimuli and show that the main strategy is used to describe even clearly asymmetric situations, as long as more than one person acts on more than one person in a joint activity.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Wilkin, K., & Holler, J. (2011). Speakers’ use of ‘action’ and ‘entity’ gestures with definite and indefinite references. In G. Stam, & M. Ishino (Eds.), Integrating gestures: The interdisciplinary nature of gesture (pp. 293-308). Amsterdam: John Benjamins.

    Abstract

    Common ground is an essential prerequisite for coordination in social interaction, including language use. When referring back to a referent in discourse, this referent is ‘given information’ and therefore in the interactants’ common ground. When a referent is being referred to for the first time, a speaker introduces ‘new information’. The analyses reported here are on gestures that accompany such references when they include definite and indefinite grammatical determiners. The main finding from these analyses is that referents referred to by definite and indefinite articles were equally often accompanied by gesture, but speakers tended to accompany definite references with gestures focusing on action information and indefinite references with gestures focusing on entity information. The findings suggest that speakers use speech and gesture together to design utterances appropriate for speakers with whom they share common ground.

    Files private

    Request files
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Willems, R. M. (2015). Cognitive neuroscience of natural language use: Introduction. In Cognitive neuroscience of natural language use (pp. 1-7). Cambridge: Cambridge University Press.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.
  • Wood, N. (2009). Field recording for dummies. In A. Majid (Ed.), Field manual volume 12 (pp. V). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Zeshan, U., & Panda, S. (2011). Reciprocals constructions in Indo-Pakistani sign language. In N. Evans, & A. Gaby (Eds.), Reciprocals and semantic typology (pp. 91-113). Amsterdam: Benjamins.

    Abstract

    Indo-Pakistani Sign Language (IPSL) is the sign language used by deaf communities in a large region across India and Pakistan. This visual-gestural language has a dedicated construction for specifically expressing reciprocal relationships, which can be applied to agreement verbs and to auxiliaries. The reciprocal construction relies on a change in the movement pattern of the signs it applies to. In addition, IPSL has a number of other strategies which can have a reciprocal interpretation, and the IPSL lexicon includes a good number of inherently reciprocal signs. All reciprocal expressions can be modified in complex ways that rely on the grammatical use of the sign space. Considering grammaticalisation and lexicalisation processes linking some of these constructions is also important for a better understanding of reciprocity in IPSL.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page