Publications

Displaying 301 - 306 of 306
  • Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3: 39, pp. 39. doi:10.3389/neuro.09.039.2009.

    Abstract

    If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009). During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.
  • Willems, R. M., & Hagoort, P. (2009). Broca's region: Battles are not won by ignoring half of the facts. Trends in Cognitive Sciences, 13(3), 101. doi:10.1016/j.tics.2008.12.001.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage, 47, 1992-2004. doi:10.1016/j.neuroimage.2009.05.066.

    Abstract

    Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and language information. We exploited the fact that the semantic relationship between language and different forms of action (i.e. co-speech gestures and pantomimes) is radically different. Speech and co-speech gestures are always produced together, and gestures are not unambiguously understood without speech. On the contrary, pantomimes are not necessarily produced together with speech and can be easily understood without speech. We presented speech together with these two types of communicative hand actions in matching or mismatching combinations to manipulate semantic integration load. Left and right pSTS/MTG were only involved in semantic integration of speech and pantomimes. Left IFG on the other hand was involved in integration of speech and co-speech gestures as well as of speech and pantomimes. Effective connectivity analyses showed that depending upon the semantic relationship between language and action, LIFG modulates activation levels in left pSTS.

    This suggests that integration in pSTS/MTG involves the matching of two input streams for which there is a relatively stable common object representation, whereas integration in LIFG is better characterized as the on-line construction of a new and unified representation of the input streams. In conclusion, pSTS/MTG and LIFG are differentially involved in multimodal integration, crucially depending upon the semantic relationship between the input streams.

    Additional information

    Supplementary table S1
  • Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90-104. doi:10.1016/j.brainres.2009.02.057.

    Abstract

    It has been argued that we map observed actions onto our own motor system. Here we added to this issue by investigating whether hand preference influences the neural correlates of action observation of simple, essentially meaningless hand actions. Such an influence would argue for an intricate neural coupling between action production and action observation, which goes beyond effects of motor repertoire or explicit motor training, as has been suggested before. Indeed, parts of the human motor system exhibited a close coupling between action production and action observation. Ventral premotor and inferior and superior parietal cortices showed differential activation for left- and right-handers that was similar during action production as well as during action observation. This suggests that mapping observed actions onto the observer's own motor system is a core feature of action observation - at least for actions that do not have a clear goal or meaning. Basic differences in the way we act upon the world are not only reflected in neural correlates of action production, but can also influence the brain basis of action observation.
  • Zwitserlood, I. (2009). Het Corpus NGT. Levende Talen Magazine, 6, 44-45.

    Abstract

    The Corpus NGT
  • Zwitserlood, I. (2009). Het Corpus NGT en de dagelijkse lespraktijk (1). Levende Talen Magazine, 8, 40-41.

Share this page