Publications

Displaying 501 - 533 of 533
  • Van Uytvanck, D., Zinn, C., Broeder, D., Wittenburg, P., & Gardelleni, M. (2010). Virtual language observatory: The portal to the language resources and technology universe. In N. Calzolari, B. Maegaard, J. Mariani, J. Odjik, K. Choukri, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10) (pp. 900-903). European Language Resources Association (ELRA).

    Abstract

    Over the years, the field of Language Resources and Technology (LRT) hasdeveloped a tremendous amount of resources and tools. However, there is noready-to-use map that researchers could use to gain a good overview andsteadfast orientation when searching for, say corpora or software tools tosupport their studies. It is rather the case that information is scatteredacross project- or organisation-specific sites, which makes it hard if notimpossible for less-experienced researchers to gather all relevant material.Clearly, the provision of metadata is central to resource and softwareexploration. However, in the LRT field, metadata comes in many forms, tastesand qualities, and therefore substantial harmonization and curation efforts arerequired to provide researchers with metadata-based guidance. To address thisissue a broad alliance of LRT providers (CLARIN, the Linguist List, DOBES,DELAMAN, DFKI, ELRA) have initiated the Virtual Language Observatory portal toprovide a low-barrier, easy-to-follow entry point to language resources andtools; it can be accessed via http://www.clarin.eu/vlo
  • Verhagen, J. (2009). Light verbs and the acquisition of finiteness and negation in Dutch as a second language. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 203-234). Berlin: Mouton de Gruyter.
  • Verkerk, A. (2009). A semantic map of secondary predication. In B. Botma, & J. Van Kampen (Eds.), Linguistics in the Netherlands 2009 (pp. 115-126).
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Versteegh, M., Ten Bosch, L., & Boves, L. (2010). Active word learning under uncertain input conditions. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (Interspeech 2010), Makuhari, Japan (pp. 2930-2933). ISCA.

    Abstract

    This paper presents an analysis of phoneme durations of emotional speech in two languages: Dutch and Korean. The analyzed corpus of emotional speech has been specifically developed for the purpose of cross-linguistic comparison, and is more balanced than any similar corpus available so far: a) it contains expressions by both Dutch and Korean actors and is based on judgments by both Dutch and Korean listeners; b) the same elicitation technique and recording procedure were used for recordings of both languages; and c) the phonetics of the carrier phrase were constructed to be permissible in both languages. The carefully controlled phonetic content of the carrier phrase allows for analysis of the role of specific phonetic features, such as phoneme duration, in emotional expression in Dutch and Korean. In this study the mutual effect of language and emotion on phoneme duration is presented.
  • Versteegh, M., Ten Bosch, L., & Boves, L. (2010). Dealing with uncertain input in word learning. In Proceedings of the IXth IEEE International Conference on Development and Learning (ICDL). Ann Arbor, MI, 18-21 Aug. 2010 (pp. 46-51). IEEE.

    Abstract

    In this paper we investigate a computational model of word learning, that is embedded in a cognitively and ecologically plausible framework. Multi-modal stimuli from four different speakers form a varied source of experience. The model incorporates active learning, attention to a communicative setting and clarity of the visual scene. The model's ability to learn associations between speech utterances and visual concepts is evaluated during training to investigate the influence of active learning under conditions of uncertain input. The results show the importance of shared attention in word learning and the model's robustness against noise.
  • Versteegh, M., Sangati, F., & Zuidema, W. (2010). Simulations of socio-linguistic change: Implications for unidirectionality. In A. Smith, M. Schoustra, B. Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 511-512). World Scientific Publishing.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2009). New perspectives in analyzing aspectual distinctions across languages. In W. Klein, & P. Li (Eds.), The expression of time (pp. 195-216). Berlin: Mouton de Gruyter.
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Weber, A., & Poellmann, K. (2010). Identifying foreign speakers with an unfamiliar accent or in an unfamiliar language. In New Sounds 2010: Sixth International Symposium on the Acquisition of Second Language Speech (pp. 536-541). Poznan, Poland: Adam Mickiewicz University.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Weber, A. (2000). Phonotactic and acoustic cues for word segmentation in English. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2000) (pp. 782-785).

    Abstract

    This study investigates the influence of both phonotactic and acoustic cues on the segmentation of spoken English. Listeners detected embedded English words in nonsense sequences (word spotting). Words aligned with phonotactic boundaries were easier to detect than words without such alignment. Acoustic cues to boundaries could also have signaled word boundaries, especially when word onsets lacked phonotactic alignment. However, only one of several durational boundary cues showed a marginally significant correlation with response times (RTs). The results suggest that word segmentation in English is influenced primarily by phonotactic constraints and only secondarily by acoustic aspects of the speech signal.
  • Weber, A. (2009). The role of linguistic experience in lexical recognition [Abstract]. Journal of the Acoustical Society of America, 125, 2759.

    Abstract

    Lexical recognition is typically slower in L2 than in L1. Part of the difficulty comes from a not precise enough processing of L2 phonemes. Consequently, L2 listeners fail to eliminate candidate words that L1 listeners can exclude from competing for recognition. For instance, the inability to distinguish /r/ from /l/ in rocket and locker makes for Japanese listeners both words possible candidates when hearing their onset (e.g., Cutler, Weber, and Otake, 2006). The L2 disadvantage can, however, be dispelled: For L2 listeners, but not L1 listeners, L2 speech from a non-native talker with the same language background is known to be as intelligible as L2 speech from a native talker (e.g., Bent and Bradlow, 2003). A reason for this may be that L2 listeners have ample experience with segmental deviations that are characteristic for their own accent. On this account, only phonemic deviations that are typical for the listeners’ own accent will cause spurious lexical activation in L2 listening (e.g., English magic pronounced as megic for Dutch listeners). In this talk, I will present evidence from cross-modal priming studies with a variety of L2 listener groups, showing how the processing of phonemic deviations is accent-specific but withstands fine phonetic differences.
  • Weber, A. (2000). The role of phonotactics in the segmentation of native and non-native continuous speech. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP, Workshop on Spoken Word Access Processes. Nijmegen: MPI for Psycholinguistics.

    Abstract

    Previous research has shown that listeners make use of their knowledge of phonotactic constraints to segment speech into individual words. The present study investigates the influence of phonotactics when segmenting a non-native language. German and English listeners detected embedded English words in nonsense sequences. German listeners also had knowledge of English, but English listeners had no knowledge of German. Word onsets were either aligned with a syllable boundary or not, according to the phonotactics of the two languages. Words aligned with either German or English phonotactic boundaries were easier for German listeners to detect than words without such alignment. Responses of English listeners were influenced primarily by English phonotactic alignment. The results suggest that both native and non-native phonotactic constraints influence lexical segmentation of a non-native, but familiar, language.
  • Willems, R. M., Labruna, L., D'Esposito, M., Ivry, R., & Casasanto, D. (2010). A functional role for the motor system in language understanding: Evidence from rTMS [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 127). York: University of York.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Willems, R. M., & Cristia, A. (2018). Hemodynamic methods: fMRI and fNIRS. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 266-287). Hoboken: Wiley.
  • Willems, R. M., & Van Gerven, M. (2018). New fMRI methods for the study of language. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 975-991). Oxford: Oxford University Press.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Witteman, M. J., Weber, A., & McQueen, J. M. (2010). Rapid and long-lasting adaptation to foreign-accented speech [Abstract]. Journal of the Acoustical Society of America, 128, 2486.

    Abstract

    In foreign-accented speech, listeners have to handle noticeable deviations from the standard pronunciation of a target language. Three cross-modal priming experiments investigated how short- and long-term experiences with a foreign accent influence word recognition by native listeners. In experiment 1, German-accented words were presented to Dutch listeners who had either extensive or limited prior experience with German-accented Dutch. Accented words either contained a diphthong substitution that deviated acoustically quite largely from the canonical form (huis [hys], "house", pronounced as [hoys]), or that deviated acoustically to a lesser extent (lijst [lst], "list", pronounced as [lst]). The mispronunciations never created lexical ambiguity in Dutch. While long-term experience facilitated word recognition for both types of substitutions, limited experience facilitated recognition only of words with acoustically smaller deviations. In experiment 2, Dutch listeners with limited experience listened to the German speaker for 4 min before participating in the cross-modal priming experiment. The results showed that speaker-specific learning effects for acoustically large deviations can be obtained already after a brief exposure, as long as the exposure contains evidence of the deviations. Experiment 3 investigates whether these short-term adaptation effects for foreign-accented speech are speaker-independent.
  • Wittenburg, P. (2010). Culture change in data management. In V. Luzar-Stiffler, I. Jarec, & Z. Bekic (Eds.), Proceedings of the ITI 2010, 32nd International Conference on Information Technology Interfaces (pp. 43 -48). Zagreb, Croatia: University of Zagreb.

    Abstract

    In the emerging e-Science scenario users should be able to easily combine data resources and tools/services; and machines should automatically be able to trace paths and carry out interpretations. Users who want to participate need to move from a down-load first to a cyberinfrastructure paradigm, thus increasing their dependency on the seamless operation of all components in the Internet. Such a scenario is inherently complex and requires compliance to guidelines and standards to keep it working smoothly. Only a change in our culture of dealing with research data and awareness about the way we do data lifecycle management will lead to success. Since we have so many legacy resources that are not compliant with the required guidelines, since we need to admit obvious problems in particular with standardization in the area of semantics and since it will take much time to establish trust at the side of researchers, the e-Science scenario can only be achieved stepwise which will take much time.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.
  • Wittenburg, P., Trilsbeek, P., & Lenkiewicz, P. (2010). Large multimedia archive for world languages. In SSCS'10 - Proceedings of the 2010 ACM Workshop on Searching Spontaneous Conversational Speech, Co-located with ACM Multimedia 2010 (pp. 53-56). New York: Association for Computing Machinery, Inc. (ACM). doi:10.1145/1878101.1878113.

    Abstract

    In this paper, we describe the core pillars of a large archive oflanguage material recorded worldwide partly about languages that are highly endangered. The bases for the documentation of these languages are audio/video recordings which are then annotated at several linguistic layers. The digital age completely changed the requirements of long-term preservation and it is discussed how the archive met these new challenges. An extensive solution for data replication has been worked out to guarantee bit-stream preservation. Due to an immediate conversion of the incoming data to standards -based formats and checks at upload time lifecycle management of all 50 Terabyte of data is widely simplified. A suitable metadata framework not only allowing users to describe and discover resources, but also allowing them to organize their resources is enabling the management of this amount of resources very efficiently. Finally, it is the Language Archiving Technology software suite which allows users to create, manipulate, access and enrich all archived resources given that they have access permissions.
  • Wittenburg, P., Bel, N., Borin, L., Budin, G., Calzolari, N., Hajicova, E., Koskenniemi, K., Lemnitzer, L., Maegaard, B., Piasecki, M., Pierrel, J.-M., Piperidis, S., Skadina, I., Tufis, D., Van Veenendaal, R., Váradi, T., & Wynne, M. (2010). Resource and service centres as the backbone for a sustainable service infrastructure. In N. Calzolari, B. Maegaard, J. Mariani, J. Odjik, K. Choukri, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10) (pp. 60-63). European Language Resources Association (ELRA).

    Abstract

    Currently, research infrastructures are being designed and established in manydisciplines since they all suffer from an enormous fragmentation of theirresources and tools. In the domain of language resources and tools the CLARINinitiative has been funded since 2008 to overcome many of the integration andinteroperability hurdles. CLARIN can build on knowledge and work from manyprojects that were carried out during the last years and wants to build stableand robust services that can be used by researchers. Here service centres willplay an important role that have the potential of being persistent and thatadhere to criteria as they have been established by CLARIN. In the last year ofthe so-called preparatory phase these centres are currently developing four usecases that can demonstrate how the various pillars CLARIN has been working oncan be integrated. All four use cases fulfil the criteria of beingcross-national.
  • Wood, N. (2009). Field recording for dummies. In A. Majid (Ed.), Field manual volume 12 (pp. V). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Xiao, M., Kong, X., Liu, J., & Ning, J. (2009). TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications & Workshops.

    Abstract

    Set is widely used as a kind of basic data structure. However, when it is used for large scale data set the cost of storage, search and transport is overhead. The bloom filter uses a fixed size bit string to represent elements in a static set, which can reduce storage space and search cost that is a fixed constant. The time-space efficiency is achieved at the cost of a small probability of false positive in membership query. However, for many applications the space savings and locating time constantly outweigh this drawback. Dynamic bloom filter (DBF) can support concisely representation and approximate membership queries of dynamic set instead of static set. It has been proved that DBF not only possess the advantage of standard bloom filter, but also has better features when dealing with dynamic set. This paper proposes a time-dependent multiple bit-strings bloom filter (TMBF) which roots in the DBF and targets on dynamic incremental set. TMBF uses multiple bit-strings in time order to present a dynamic increasing set and uses backward searching to test whether an element is in a set. Based on the system logs from a real P2P file sharing system, the evaluation shows a 20% reduction in searching cost compared to DBF.
  • Zavala, R. (2000). Multiple classifier systems in Akatek (Mayan). In G. Senft (Ed.), Systems of nominal classification (pp. 114-146). Cambridge University Press.
  • Zeshan, U. (2005). Sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 558-559). Oxford: Oxford University Press.
  • Zeshan, U. (2005). Question particles in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 564-567). Oxford: Oxford University Press.
  • Zeshan, U., Pfau, R., & Aboh, E. (2005). When a wh-word is not a wh-word: the case of Indian sign language. In B. Tanmoy (Ed.), Yearbook of South Asian languages and linguistics 2005 (pp. 11-43). Berlin: Mouton de Gruyter.
  • Zeshan, U. (2005). Irregular negatives in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 560-563). Oxford: Oxford University Press.
  • Zinn, C., Wittenburg, P., & Ringersma, J. (2010). An evolving eScience environment for research data in linguistics. In N. Calzolari, B. Maegaard, J. Mariani, J. Odjik, K. Choukri, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10) (pp. 894-899). European Language Resources Association (ELRA).

    Abstract

    The amount of research data in the Humanities is increasing at fastspeed. Metadata helps describing and making accessible this data tointerested researchers within and across institutions. While metadatainteroperability is an issue that is being recognised and addressed,the systematic and user-driven provision of annotations and thelinking together of resources into new organisational layers havereceived much less attention. This paper gives an overview of ourevolving technological eScience environment to support suchfunctionality. It describes two tools, ADDIT and ViCoS, which enableresearchers, rather than archive managers, to organise and reorganiseresearch data to fit their particular needs. The two tools, which areembedded into our institute's existing software landscape, are aninitial step towards an eScience environment that gives our scientistseasy access to (multimodal) research data of their interest, andempowers them to structure, enrich, link together, and share such dataas they wish.

Share this page