Publications

Displaying 201 - 300 of 943
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain, 137, 2027-2039. doi:10.1093/brain/awu113.

    Abstract

    Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke’s to Broca’s region (i.e. long segment), Wernicke’s to Geschwind’s region (i.e. posterior segment) and Broca’s to Geschwind’s region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28–87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = −0.630, t(−3.129), P = 0.011]. For the right hemisphere, age [beta = −0.678, t(–3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.

    Additional information

    supplementary information
  • Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell'Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73-84. doi:10.1016/j.cortex.2012.09.005.

    Abstract

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top–down modulation of early visual processing.

    Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the ‘inferior fronto-occipital fasciculus’ (iFOF) has not been demonstrated. Conversely, a ‘superior fronto-occipital fasciculus’ (sFOF), also referred to as ‘subcallosal bundle’ by some authors, is reported in monkey axonal tracing studies but not in human dissections.

    In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the ‘subcallosal bundle’ in animals (1893).

    Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an ‘occipital extension’ of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract.

    In conclusion, our experimental findings and review of the literature suggest that a ventral pathway in humans, namely the iFOF, mediates a direct communication between occipital and frontal lobes. Whether the iFOF represents a unique human pathway awaits further ad hoc investigations in animals.
  • Francks, C., DeLisi, L. E., Fisher, S. E., Laval, S. H., Rue, J. E., Stein, J. F., & Monaco, A. P. (2003). Confirmatory evidence for linkage of relative hand skill to 2p12-q11 [Letter to the editor]. American Journal of Human Genetics, 72(2), 499-502. doi:10.1086/367548.
  • Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., Marlow, A. J., MacPhie, I. L., Walter, J., Pennington, B. F., Fisher, S. E., Olson, R. K., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75(6), 1046-1058. doi:10.1086/426404.

    Abstract

    Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of ∼12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability.
  • Francks, C., Fisher, S. E., Marlow, A. J., MacPhie, I. L., Taylor, K. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Familial and genetic effects on motor coordination, laterality, and reading-related cognition. American Journal of Psychiatry, 160(11), 1970-1977. doi:10.1176/appi.ajp.160.11.1970.

    Abstract

    OBJECTIVE: Recent research has provided evidence for a genetically mediated association between language or reading-related cognitive deficits and impaired motor coordination. Other studies have identified relationships between lateralization of hand skill and cognitive abilities. With a large sample, the authors aimed to investigate genetic relationships between measures of reading-related cognition, hand motor skill, and hand skill lateralization.

    METHOD: The authors applied univariate and bivariate correlation and familiality analyses to a range of measures. They also performed genomewide linkage analysis of hand motor skill in a subgroup of 195 sibling pairs.

    RESULTS: Hand motor skill was significantly familial (maximum heritability=41%), as were reading-related measures. Hand motor skill was weakly but significantly correlated with reading-related measures, such as nonword reading and irregular word reading. However, these correlations were not significantly familial in nature, and the authors did not observe linkage of hand motor skill to any chromosomal regions implicated in susceptibility to dyslexia. Lateralization of hand skill was not correlated with reading or cognitive ability.

    CONCLUSIONS: The authors confirmed a relationship between lower motor ability and poor reading performance. However, the genetic effects on motor skill and reading ability appeared to be largely or wholly distinct, suggesting that the correlation between these traits may have arisen from environmental influences. Finally, the authors found no evidence that reading disability and/or low general cognitive ability were associated with ambidexterity.
  • Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of Life Reviews, 30, 22-24. doi:10.1016/j.plrev.2019.07.004.
  • Francks, C., DeLisi, L. E., Shaw, S. H., Fisher, S. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Human Molecular Genetics, 12(24), 3225-3230. doi:10.1093/hmg/ddg362.

    Abstract

    Schizophrenia and non-right-handedness are moderately associated, and both traits are often accompanied by abnormalities of asymmetrical brain morphology or function. We have found linkage previously of chromosome 2p12-q11 to a quantitative measure of handedness, and we have also found linkage of schizophrenia/schizoaffective disorder to this same chromosomal region in a separate study. Now, we have found that in one of our samples (191 reading-disabled sibling pairs), the relative hand skill of siblings was correlated more strongly with paternal than maternal relative hand skill. This led us to re-analyse 2p12-q11 under parent-of-origin linkage models. We found linkage of relative hand skill in the RD siblings to 2p12-q11 with P=0.0000037 for paternal identity-by-descent sharing, whereas the maternally inherited locus was not linked to the trait (P>0.2). Similarly, in affected-sib-pair analysis of our schizophrenia dataset (241 sibling pairs), we found linkage to schizophrenia for paternal sharing with LOD=4.72, P=0.0000016, within 3 cM of the peak linkage to relative hand skill. Maternal linkage across the region was weak or non-significant. These similar paternal-specific linkages suggest that the causative genetic effects on 2p12-q11 are related. The linkages may be due to a single maternally imprinted influence on lateralized brain development that contains common functional polymorphisms.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2003). Modeling knowledge-based inferences in story comprehension. Cognitive Science, 27(6), 875-910. doi:10.1016/j.cogsci.2003.07.002.

    Abstract

    A computational model of inference during story comprehension is presented, in which story situations are represented distributively as points in a high-dimensional “situation-state space.” This state space organizes itself on the basis of a constructed microworld description. From the same description, causal/temporal world knowledge is extracted. The distributed representation of story situations is more flexible than Golden and Rumelhart’s [Discourse Proc 16 (1993) 203] localist representation. A story taking place in the microworld corresponds to a trajectory through situation-state space. During the inference process, world knowledge is applied to the story trajectory. This results in an adjusted trajectory, reflecting the inference of propositions that are likely to be the case. Although inferences do not result from a search for coherence, they do cause story coherence to increase. The results of simulations correspond to empirical data concerning inference, reading time, and depth of processing. An extension of the model for simulating story retention shows how coherence is preserved during retention without controlling the retention process. Simulation results correspond to empirical data concerning story recall and intrusion.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.

    Abstract

    Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models.
  • Frega, M., Linda, K., Keller, J. M., Gümüş-Akay, G., Mossink, B., Van Rhijn, J. R., Negwer, M., Klein Gunnewiek, T., Foreman, K., Kompier, N., Schoenmaker, C., Van den Akker, W., Van der Werf, I., Oudakker, A., Zhou, H., Kleefstra, T., Schubert, D., Van Bokhoven, H., & Nadif Kasri, N. (2019). Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nature Communications, 10: 4928. doi:10.1038/s41467-019-12947-3.

    Abstract

    Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.

    Additional information

    supplementary information
  • French, C. A., Vinueza Veloz, M. F., Zhou, K., Peter, S., Fisher, S. E., Costa, R. M., & De Zeeuw, C. I. (2019). Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 24, 447-462. doi:10.1038/s41380-018-0199-x.

    Abstract

    Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Friederici, A. D., & Levelt, W. J. M. (1986). Cognitive processes of spatial coordinate assignment: On weighting perceptual cues. Naturwissenschaften, 73, 455-458.
  • Friederici, A., & Levelt, W. J. M. (1990). Spatial reference in weightlessness: Perceptual factors and mental representations. Perception and Psychophysics, 47, 253-266.

    Abstract

    The role of gravity in spatial coordinate assignment and the mental representation of space were studiedin three experiments, varying different perceptual cues systematically: the retinal, the visual background, the vestibular, and proprioceptive information. Verbal descriptions of visually presented arrays were required under different head positions (straight/tilt) and under different gravitational conditions (gravity present/gravity absent). The results of two experiments conducted with 2 subjects who participated in a space flight revealed that subjects are able to adequately assign positions in space in the absence of gravitational information, and that they do this by using their head—retinal coordinates as primary references. This indicates that they cognitively adapted to the perceptually new situation.The findings from a third experiment conducted with a larger group of subjects under a condition in which the gravitational information was present but irrelevant to the task being solved (subjects were in a-horizontal 8upine-position) show that subjects, in general, are flexible in using cues other than gravitational ones as references when the latter cannot serve as a referential system. These findings, together with the observation that consistent spatial assignment is possible evenimmediately after first exposure to the perceptually totally novel situation of weightlessness, seem to suggest that the mental representation of space, onto which given perceptual information is mapped, is independent of a particular percept.
  • Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2019). Mark my words: High frequency marker words impact early stages of language learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1883-1898. doi:10.1037/xlm0000683.

    Abstract

    High frequency words have been suggested to benefit both speech segmentation and grammatical categorization of the words around them. Despite utilizing similar information, these tasks are usually investigated separately in studies examining learning. We determined whether including high frequency words in continuous speech could support categorization when words are being segmented for the first time. We familiarized learners with continuous artificial speech comprising repetitions of target words, which were preceded by high-frequency marker words. Crucially, marker words distinguished targets into 2 distributionally defined categories. We measured learning with segmentation and categorization tests and compared performance against a control group that heard the artificial speech without these marker words (i.e., just the targets, with no cues for categorization). Participants segmented the target words from speech in both conditions, but critically when the marker words were present, they influenced acquisition of word-referent mappings in a subsequent transfer task, with participants demonstrating better early learning for mappings that were consistent (rather than inconsistent) with the distributional categories. We propose that high-frequency words may assist early grammatical categorization, while speech segmentation is still being learned.

    Additional information

    Supplemental Material
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Additional information

    Supplementary Information
  • Furman, R., Kuntay, A., & Ozyurek, A. (2014). Early language-specificity of children's event encoding in speech and gesture: Evidence from caused motion in Turkish. Language, Cognition and Neuroscience, 29, 620-634. doi:10.1080/01690965.2013.824993.

    Abstract

    Previous research on language development shows that children are tuned early on to the language-specific semantic and syntactic encoding of events in their native language. Here we ask whether language-specificity is also evident in children's early representations in gesture accompanying speech. In a longitudinal study, we examined the spontaneous speech and cospeech gestures of eight Turkish-speaking children aged one to three and focused on their caused motion event expressions. In Turkish, unlike in English, the main semantic elements of caused motion such as Action and Path can be encoded in the verb (e.g. sok- ‘put in’) and the arguments of a verb can be easily omitted. We found that Turkish-speaking children's speech indeed displayed these language-specific features and focused on verbs to encode caused motion. More interestingly, we found that their early gestures also manifested specificity. Children used iconic cospeech gestures (from 19 months onwards) as often as pointing gestures and represented semantic elements such as Action with Figure and/or Path that reinforced or supplemented speech in language-specific ways until the age of three. In the light of previous reports on the scarcity of iconic gestures in English-speaking children's early productions, we argue that the language children learn shapes gestures and how they get integrated with speech in the first three years of life.
  • Gaby, A. R. (2004). Extended functions of Thaayorre body part terms. Papers in Linguistics and Applied Linguistics, 4(2), 24-34.
  • Galbiati, A., Verga, L., Giora, E., Zucconi, M., & Ferini-Strambi, L. (2019). The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Medicine Reviews, 43, 37-46. doi:10.1016/j.smrv.2018.09.008.

    Abstract

    Several studies report an association between REM Sleep Behavior Disorder (RBD) and neurodegenerative diseases, in particular synucleinopathies. Interestingly, the onset of RBD precedes the development of neurodegeneration by several years. This review and meta-analysis aims to establish the rate of conversion of RBD into neurodegenerative diseases. Longitudinal studies were searched from the PubMed, Web of Science, and SCOPUS databases. Using random-effect modeling, we performed a meta-analysis on the rate of RBD conversions into neurodegeneration. Furthermore, we fitted a Kaplan-Meier analysis and compared the differences between survival curves of different diseases with log-rank tests. The risk for developing neurodegenerative diseases was 33.5% at five years follow-up, 82.4% at 10.5 years and 96.6% at 14 years. The average conversion rate was 31.95% after a mean duration of follow-up of 4.75 ± 2.43 years. The majority of RBD patients converted to Parkinson's Disease (43%), followed by Dementia with Lewy Bodies (25%). The estimated risk for RBD patients to develop a neurodegenerative disease over a long-term follow-up is more than 90%. Future studies should include control group for the evaluation of REM sleep without atonia as marker for neurodegeneration also in non-clinical population and target RBD as precursor of neurodegeneration to develop protective trials.
  • Ganushchak, L., Konopka, A. E., & Chen, Y. (2014). What the eyes say about planning of focused referents during sentence formulation: a cross-linguistic investigation. Frontiers in Psychology, 5: 1124. doi:10.3389/fpsyg.2014.01124.

    Abstract

    This study investigated how sentence formulation is influenced by a preceding discourse context. In two eye-tracking experiments, participants described pictures of two-character transitive events in Dutch (Experiment 1) and Chinese (Experiment 2). Focus was manipulated by presenting questions before each picture. In the Neutral condition, participants first heard ‘What is happening here?’ In the Object or Subject Focus conditions, the questions asked about the Object or Subject character (What is the policeman stopping? Who is stopping the truck?). The target response was the same in all conditions (The policeman is stopping the truck). In both experiments, sentence formulation in the Neutral condition showed the expected pattern of speakers fixating the subject character (policeman) before the object character (truck). In contrast, in the focus conditions speakers rapidly directed their gaze preferentially only to the character they needed to encode to answer the question (the new, or focused, character). The timing of gaze shifts to the new character varied by language group (Dutch vs. Chinese): shifts to the new character occurred earlier when information in the question can be repeated in the response with the same syntactic structure (in Chinese but not in Dutch). The results show that discourse affects the timecourse of linguistic formulation in simple sentences and that these effects can be modulated by language-specific linguistic structures such as parallels in the syntax of questions and declarative sentences.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gao, Y., Zheng, L., Liu, X., Nichols, E. S., Zhang, M., Shang, L., Ding, G., Meng, Z., & Liu, L. (2019). First and second language reading difficulty among Chinese–English bilingual children: The prevalence and influences from demographic characteristics. Frontiers in Psychology, 10: 2544. doi:10.3389/fpsyg.2019.02544.

    Abstract

    Learning to read a second language (L2) can pose a great challenge for children who have already been struggling to read in their first language (L1). Moreover, it is not clear whether, to what extent, and under what circumstances L1 reading difficulty increases the risk of L2 reading difficulty. This study investigated Chinese (L1) and English (L2) reading skills in a large representative sample of 1,824 Chinese–English bilingual children in Grades 4 and 5 from both urban and rural schools in Beijing. We examined the prevalence of reading difficulty in Chinese only (poor Chinese readers, PC), English only (poor English readers, PE), and both Chinese and English (poor bilingual readers, PB) and calculated the co-occurrence, that is, the chances of becoming a poor reader in English given that the child was already a poor reader in Chinese. We then conducted a multinomial logistic regression analysis and compared the prevalence of PC, PE, and PB between children in Grade 4 versus Grade 5, in urban versus rural areas, and in boys versus girls. Results showed that compared to girls, boys demonstrated significantly higher risk of PC, PE, and PB. Meanwhile, compared to the 5th graders, the 4th graders demonstrated significantly higher risk of PC and PB. In addition, children enrolled in the urban schools were more likely to become better second language readers, thus leading to a concerning rural–urban gap in the prevalence of L2 reading difficulty. Finally, among these Chinese–English bilingual children, regardless of sex and school location, poor reading skill in Chinese significantly increased the risk of also being a poor English reader, with a considerable and stable co-occurrence of approximately 36%. In sum, this study suggests that despite striking differences between alphabetic and logographic writing systems, L1 reading difficulty still significantly increases the risk of L2 reading difficulty. This indicates the shared meta-linguistic skills in reading different writing systems and the importance of understanding the universality and the interdependent relationship of reading between different writing systems. Furthermore, the male disadvantage (in both L1 and L2) and the urban–rural gap (in L2) found in the prevalence of reading difficulty calls for special attention to disadvantaged populations in educational practice.
  • Gao, X., Dera, J., Nijhoff, A. D., & Willems, R. M. (2019). Is less readable liked better? The case of font readability in poetry appreciation. PLoS One, 14(12): e0225757. doi:10.1371/journal.pone.0225757.

    Abstract

    Previous research shows conflicting findings for the effect of font readability on comprehension and memory for language. It has been found that—perhaps counterintuitively–a hard to read font can be beneficial for language comprehension, especially for difficult language. Here we test how font readability influences the subjective experience of poetry reading. In three experiments we tested the influence of poem difficulty and font readability on the subjective experience of poems. We specifically predicted that font readability would have opposite effects on the subjective experience of easy versus difficult poems. Participants read poems which could be more or less difficult in terms of conceptual or structural aspects, and which were presented in a font that was either easy or more difficult to read. Participants read existing poems and subsequently rated their subjective experience (measured through four dependent variables: overall liking, perceived flow of the poem, perceived topic clarity, and perceived structure). In line with previous literature we observed a Poem Difficulty x Font Readability interaction effect for subjective measures of poetry reading. We found that participants rated easy poems as nicer when presented in an easy to read font, as compared to when presented in a hard to read font. Despite the presence of the interaction effect, we did not observe the predicted opposite effect for more difficult poems. We conclude that font readability can influence reading of easy and more difficult poems differentially, with strongest effects for easy poems.

    Additional information

    https://osf.io/jwcqt/
  • Garcia, R., Roeser, J., & Höhle, B. (2019). Thematic role assignment in the L1 acquisition of Tagalog: Use of word order and morphosyntactic markers. Language Acquisition, 26(3), 235-261. doi:10.1080/10489223.2018.1525613.

    Abstract

    It is a common finding across languages that young children have problems in understanding patient-initial sentences. We used Tagalog, a verb-initial language with a reliable voice-marking system and highly frequent patient voice constructions, to test the predictions of several accounts that have been proposed to explain this difficulty: the frequency account, the Competition Model, and the incremental processing account. Study 1 presents an analysis of Tagalog child-directed speech, which showed that the dominant argument order is agent-before-patient and that morphosyntactic markers are highly valid cues to thematic role assignment. In Study 2, we used a combined self-paced listening and picture verification task to test how Tagalog-speaking adults and 5- and 7-year-old children process reversible transitive sentences. Results showed that adults performed well in all conditions, while children’s accuracy and listening times for the first noun phrase indicated more difficulty in interpreting patient-initial sentences in the agent voice compared to the patient voice. The patient voice advantage is partly explained by both the frequency account and incremental processing account.
  • Gaskell, M. G., Warker, J., Lindsay, S., Frost, R. L. A., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep Underpins the Plasticity of Language Production. Psychological Science, 25(7), 1457-1465. doi:10.1177/0956797614535937.

    Abstract

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep.

    Additional information

    https://osf.io/zqg9y/
  • Gehrig, J., Michalareas, G., Forster, M.-T., Lei, J., Hok, P., Laufs, H., Senft, C., Seifert, V., Schoffelen, J.-M., Hanslmayr, H., & Kell, C. A. (2019). Low-frequency oscillations code speech during verbal working memory. The Journal of Neuroscience, 39(33), 6498-6512. doi:10.1523/JNEUROSCI.0018-19.2019.

    Abstract

    The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time.
    During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired
    knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be
    represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical
    evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings
    in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery.
    Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed
    that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory.
    The positive relationship between beta power during working memory and task performance suggests that working memory
    representations benefit from increased phase separation.
  • Ghatan, P. H., Hsieh, J. C., Petersson, K. M., Stone-Elander, S., & Ingvar, M. (1998). Coexistence of attention-based facilitation and inhibition in the human cortex. NeuroImage, 7, 23-29.

    Abstract

    A key function of attention is to select an appropriate subset of available information by facilitation of attended processes and/or inhibition of irrelevant processing. Functional imaging studies, using positron emission tomography, have during different experimental tasks revealed decreased neuronal activity in areas that process input from unattended sensory modalities. It has been hypothesized that these decreases reflect a selective inhibitory modulation of nonrelevant cortical processing. In this study we addressed this question using a continuous arithmetical task with and without concomitant disturbing auditory input (task-irrelevant speech). During the arithmetical task, irrelevant speech did not affect task-performance but yielded decreased activity in the auditory and midcingulate cortices and increased activity in the left posterior parietal cortex. This pattern of modulation is consistent with a top down inhibitory modulation of a nonattended input to the auditory cortex and a coexisting, attention-based facilitation of taskrelevant processing in higher order cortices. These findings suggest that task-related decreases in cortical activity may be of functional importance in the understanding of both attentional mechanisms and taskrelated information processing.
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.

    Abstract

    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Gisselgard, J., Petersson, K. M., & Ingvar, M. (2004). The irrelevant speech effect and working memory load. NeuroImage, 22, 1107-1116. doi:10.1016/j.neuroimage.2004.02.031.

    Abstract

    Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation
  • Gisselgard, J., Petersson, K. M., Baddeley, A., & Ingvar, M. (2003). The irrelevant speech effect: A PET study. Neuropsychologia, 41, 1899-1911. doi:10.1016/S0028-3932(03)00122-2.

    Abstract

    Positron emission tomography (PET) was performed in normal volunteers during a serial recall task under the influence of irrelevant speech comprising both single item repetition and multi-item sequences. An interaction approach was used to identify brain areas specifically related to the irrelevant speech effect. We interpreted activations as compensatory recruitment of complementary working memory processing, and decreased activity in terms of suppression of task relevant areas invoked by the irrelevant speech. The interaction between the distractors and working memory revealed a significant effect in the left, and to a lesser extent in the right, superior temporal region, indicating that initial phonological processing was relatively suppressed. Additional areas of decreased activity were observed in an a priori defined cortical network related to verbalworking memory, incorporating the bilateral superior temporal and inferior/middle frontal corticesn extending into Broca’s area on the left. We also observed a weak activation in the left inferior parietal cortex, a region suggested to reflect the phonological store, the subcomponent where the interference is assumed to take place. The results suggest that the irrelevant speech effect is correlated with and thus tentatively may be explained in terms of a suppression of components of the verbal working memory network as outlined. The results can be interpreted in terms of inhibitory top–down attentional mechanisms attenuating the influence of the irrelevant speech, although additional studies are clearly necessary to more fully characterize the nature of this phenomenon and its theoretical implications for existing short-term memory models
  • Glock, P., Raum, B., Heermann, T., Kretschmer, S., Schweizer, J., Mücksch, J., Alagöz, G., & Schwille, P. (2019). Stationary patterns in a two-protein reaction-diffusion system. ACS Synthetic Biology, 8(1), 148-157. doi:10.1021/acssynbio.8b00415.

    Abstract

    Patterns formed by reaction-diffusion mechanisms are crucial for the development or sustenance of most organisms in nature. Patterns include dynamic waves, but are more often found as static distributions, such as animal skin patterns. Yet, a simplistic biological model system to reproduce and quantitatively investigate static reaction-diffusion patterns has been missing so far. Here, we demonstrate that the Escherichia coli MM system, known for its oscillatory behavior between the cell poles, is under certain conditions capable of transitioning to quasi-stationary protein distributions on membranes closely resembling Turing patterns. We systematically titrated both proteins, MinD and MinE, and found that removing all purification tags and linkers from the N-terminus of MinE was critical for static patterns to occur. At small bulk heights, dynamic patterns dominate, such as in rod-shaped microcompartments. We see implications of this work for studying pattern formation in general, but also for creating artificial gradients as downstream cues in synthetic biology applications.
  • Goldrick, M., McClain, R., Cibelli, E., Adi, Y., Gustafson, E., Moers, C., & Keshet, J. (2019). The influence of lexical selection disruptions on articulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(6), 1107-1141. doi:10.1037/xlm0000633.

    Abstract

    Interactive models of language production predict that it should be possible to observe long-distance interactions; effects that arise at one level of processing influence multiple subsequent stages of representation and processing. We examine the hypothesis that disruptions arising in nonform-based levels of planning—specifically, lexical selection—should modulate articulatory processing. A novel automatic phonetic analysis method was used to examine productions in a paradigm yielding both general disruptions to formulation processes and, more specifically, overt errors during lexical selection. This analysis method allowed us to examine articulatory disruptions at multiple levels of analysis, from whole words to individual segments. Baseline performance by young adults was contrasted with young speakers’ performance under time pressure (which previous work has argued increases interaction between planning and articulation) and performance by older adults (who may have difficulties inhibiting nontarget representations, leading to heightened interactive effects). The results revealed the presence of interactive effects. Our new analysis techniques revealed these effects were strongest in initial portions of responses, suggesting that speech is initiated as soon as the first segment has been planned. Interactive effects did not increase under response pressure, suggesting interaction between planning and articulation is relatively fixed. Unexpectedly, lexical selection disruptions appeared to yield some degree of facilitation in articulatory processing (possibly reflecting semantic facilitation of target retrieval) and older adults showed weaker, not stronger interactive effects (possibly reflecting weakened connections between lexical and form-level representations).
  • Goncharova, M. V., & Klenova, A. V. (2019). Siberian crane chick calls reflect their thermal state. Bioacoustics, 28, 115-128. doi:10.1080/09524622.2017.1399827.

    Abstract

    Chicks can convey information about their needs with calls. But it is still unknown if there are any universal need indicators in chick vocalizations. Previous studies have shown that in some species vocal activity and/or temporal-frequency variables of calls are related to the chick state, whereas other studies did not confirm it. Here, we tested experimentally whether vocal activity and temporal-frequency variables of calls change with cooling. We studied 10 human-raised
    Siberian crane (Grus leucogeranus) chicks at 3–15 days of age. We found that the cooled chicks produced calls higher in fundamental
    frequency and power variables, longer in duration and at a higher calling rate than in the control chicks. However, we did not find
    significant changes in level of entropy and occurrence of non-linear phenomena in chick calls recorded during the experimental cooling. We suggest that the level of vocal activity is a universal indicator of need for warmth in precocial and semi-precocial birds (e.g. cranes), but not in altricial ones. We also assume that coding of needs via temporal-frequency variables of calls is typical in species whose adults could not confuse their chicks with other chicks. Siberian cranes stay on separate territories during their breeding season, so parents do not need to check individuality of their offspring in the home area. In this case, all call characteristics are available for other purposes and serve to communicate chicks’ vital needs.
  • Gonzalez da Silva, C., Petersson, K. M., Faísca, L., Ingvar, M., & Reis, A. (2004). The effects of literacy and education on the quantitative and qualitative aspects of semantic verbal fluency. Journal of Clinical and Experimental Neuropsychology, 26(2), 266-277. doi:10.1076/jcen.26.2.266.28089.

    Abstract

    Semantic verbal fluency tasks are commonly used in neuropsychological assessment. Investigations of the influence of level of literacy have not yielded consistent results in the literature. This prompted us to investigate the ecological relevance of task specifics, in particular, the choice of semantic criteria used. Two groups of literate and illiterate subjects were compared on two verbal fluency tasks using different semantic criteria. The performance on a food criterion (supermarket fluency task), considered more ecologically relevant for the two literacy groups, and an animal criterion (animal fluency task) were compared. The data were analysed using both quantitative and qualitative measures. The quantitative analysis indicated that the two literacy groups performed equally well on the supermarket fluency task. In contrast, results differed significantly during the animal fluency task. The qualitative analyses indicated differences between groups related to the strategies used, especially with respect to the animal fluency task. The overall results suggest that there is not a substantial difference between literate and illiterate subjects related to the fundamental workings of semantic memory. However, there is indication that the content of semantic memory reflects differences in shared cultural background - in other words, formal education –, as indicated by the significant interaction between level of literacy and semantic criterion.
  • Gonzalez Gomez, N., Hayashi, A., Tsuji, S., Mazuka, R., & Nazzi, T. (2014). The role of the input on the development of the LC bias: A crosslinguistic comparison. Cognition, 132(3), 301-311. doi:10.1016/j.cognition.2014.04.004.

    Abstract

    Previous studies have described the existence of a phonotactic bias called the Labial–Coronal (LC) bias, corresponding to a tendency to produce more words beginning with a labial consonant followed by a coronal consonant (i.e. “bat”) than the opposite CL pattern (i.e. “tap”). This bias has initially been interpreted in terms of articulatory constraints of the human speech production system. However, more recently, it has been suggested that this presumably language-general LC bias in production might be accompanied by LC and CL biases in perception, acquired in infancy on the basis of the properties of the linguistic input. The present study investigates the origins of these perceptual biases, testing infants learning Japanese, a language that has been claimed to possess more CL than LC sequences, and comparing them with infants learning French, a language showing a clear LC bias in its lexicon. First, a corpus analysis of Japanese IDS and ADS revealed the existence of an overall LC bias, except for plosive sequences in ADS, which show a CL bias across counts. Second, speech preference experiments showed a perceptual preference for CL over LC plosive sequences (all recorded by a Japanese speaker) in 13- but not in 7- and 10-month-old Japanese-learning infants (Experiment 1), while revealing the emergence of an LC preference between 7 and 10 months in French-learning infants, using the exact same stimuli. These crosslinguistic behavioral differences, obtained with the same stimuli, thus reflect differences in processing in two populations of infants, which can be linked to differences in the properties of the lexicons of their respective native languages. These findings establish that the emergence of a CL/LC bias is related to exposure to a linguistic input.
  • Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review, 21(5), 1287-1293. doi:10.3758/s13423-014-0593-6.

    Abstract

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people’s attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
  • Gori, M., Vercillo, T., Sandini, G., & Burr, D. (2014). Tactile feedback improves auditory spatial localization. Frontiers in Psychology, 5: 1121. doi:10.3389/fpsyg.2014.01121.

    Abstract

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gon etal., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial.The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Gretsch, P. (2004). What does finiteness mean to children? A cross-linguistic perspective onroot infinitives. Linguistics, 42(2), 419-468. doi:10.1515/ling.2004.014.

    Abstract

    The discussion on root infinitives has mainly centered around their supposed modal usage. This article aims at modelling the form-function relation of the root infinitive phenomenon by taking into account the full range of interpretational facets encountered cross-linguistically and interindividually. Following the idea of a subsequent ‘‘cell partitioning’’ in the emergence of form-function correlations, I claim that it is the major fission between [+-finite] which is central to express temporal reference different from the default here&now in tense-oriented languages. In aspectual-oriented languages, a similar opposition is mastered with the marking of early aspectual forms. It is observed that in tense-oriented languages like Dutch and German, the progression of functions associated with the infinitival form proceeds from nonmodal to modal, whereas the reverse progression holds for the Russian infinitive. Based on this crucial observation, a model of acquisition is proposed which allows for a flexible and systematic relationship between morphological forms and their respective interpretational biases dependent on their developmental context. As for early child language, I argue that children entertain only two temporal parameters: one parameter is fixed to the here&now point in time, and a second parameter relates to the time talked about, the topic time; this latter time overlaps the situation time as long as no empirical evidence exists to support the emergence of a proper distinction between tense and aspect.

    Files private

    Request files
  • Grey, S., Schubel, L. C., McQueen, J. M., & Van Hell, J. G. (2019). Processing foreign-accented speech in a second language: Evidence from ERPs during sentence comprehension in bilinguals. Bilingualism: Language and Cognition, 22(5), 912-929. doi:10.1017/S1366728918000937.

    Abstract

    This study examined electrophysiological correlates of sentence comprehension of native-accented and foreign-accented
    speech in a second language (L2), for sentences produced in a foreign accent different from that associated with the listeners’
    L1. Bilingual speaker-listeners process different accents in their L2 conversations, but the effects on real-time L2 sentence
    comprehension are unknown. Dutch–English bilinguals listened to native American-English accented sentences and foreign
    (and for them unfamiliarly-accented) Chinese-English accented sentences while EEG was recorded. Behavioral sentence
    comprehension was highly accurate for both native-accented and foreign-accented sentences. ERPs showed different patterns
    for L2 grammar and semantic processing of native- and foreign-accented speech. For grammar, only native-accented speech
    elicited an Nref. For semantics, both native- and foreign-accented speech elicited an N400 effect, but with a delayed onset
    across both accent conditions. These findings suggest that the way listeners comprehend native- and foreign-accented
    sentences in their L2 depends on their familiarity with the accent.
  • Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K. and 55 moreGrove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K., Demontis, D., De Rubeis, S., Devlin, B., Djurovic, S., Dumont, A., Goldstein, J., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Hope, S., Howrigan, D. P., Huang, H., Hultman, C., Klei, L., Maller, J., Martin, J., Martin, A. R., Moran, J., Nyegaard, M., Nærland, T., Palmer, D. S., Palotie, A., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., St Pourcain, B., Qvist, P., Rehnström, K., Reichenberg, A., Reichert, J., Robinson, E. B., Roeder, K., Roussos, P., Saemundsen, E., Sandin, S., Satterstrom, F. K., Smith, G. D., Stefansson, H., Stefansson, K., Steinberg, S., Stevens, C., Sullivan, P. F., Turley, P., Walters, G. B., Xu, X., Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, BUPGEN, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Me Research Team, Geschwind, D., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Neale, B. M., Daly, M. J., & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51, 431-444. doi:10.1038/s41588-019-0344-8.

    Abstract

    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.

    Additional information

    Supplementary Text and Figures
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Le Guen, O. (2003). Quand les morts reviennent, réflexion sur l'ancestralité chez les Mayas des Basses Terres. Journal de la Société des Américanistes, 89(2), 171-205.

    Abstract

    When the dead come home… Remarks on ancestor worship among the Lowland Mayas. In Amerindian ethnographical literature, ancestor worship is often mentioned but evidence of its existence is lacking. This article will try to demonstrate that some Lowland Maya do worship ancestors ; it will use precise criteria taken from ethnological studies of societies where ancestor worship is common, compared to maya beliefs and practices. The All Souls’ Day, or hanal pixan, seems to be the most significant manifestation of this cult. Our approach will be comparative, through time – using colonial and ethnographical data of the twentieth century, and space – contemplating uses and beliefs of two maya groups, the Yucatec and the Lacandon Maya.
  • Guerra, E., & Knoeferle, P. (2014). Spatial distance effects on incremental semantic interpretation of abstract sentences: Evidence from eye tracking. Cognition, 133(3), 535-552. doi:10.1016/j.cognition.2014.07.007.

    Abstract

    A large body of evidence has shown that visual context information can rapidly modulate language comprehension for concrete sentences and when it is mediated by a referential or a lexical-semantic link. What has not yet been examined is whether visual context can also modulate comprehension of abstract sentences incrementally when it is neither referenced by, nor lexically associated with, the sentence. Three eye-tracking reading experiments examined the effects of spatial distance between words (Experiment 1) and objects (Experiment 2 and 3) on participants’ reading times for sentences that convey similarity or difference between two abstract nouns (e.g., ‘Peace and war are certainly different...’). Before reading the sentence, participants inspected a visual context with two playing cards that moved either far apart or close together. In Experiment 1, the cards turned and showed the first two nouns of the sentence (e.g., ‘peace’, ‘war’). In Experiments 2 and 3, they turned but remained blank. Participants’ reading times at the adjective (Experiment 1: first-pass reading time; Experiment 2: total times) and at the second noun phrase (Experiment 3: first-pass times) were faster for sentences that expressed similarity when the preceding words/objects were close together (vs. far apart) and for sentences that expressed dissimilarity when the preceding words/objects were far apart (vs. close together). Thus, spatial distance between words or entirely unrelated objects can rapidly and incrementally modulate the semantic interpretation of abstract sentences.

    Additional information

    mmc1.doc
  • Guerrero, L., & Van Valin Jr., R. D. (2004). Yaqui and the analysis of primary object languages. International Journal of American Linguistics, 70(3), 290-319. doi:10.1086/425603.

    Abstract

    The central topic of this study is to investigate three- and four-place predicate in Yaqui, which are characterized by having multiple object arguments. As with other Southern Uto-Aztecan languages, it has been said that Yaqui follows the Primary/Secondary Object pattern (Dryer 1986). Actually, Yaqui presents three patterns: verbs like nenka ‘sell’ follow the direct–indirect object pattern, verbs like miika ‘give’ follow the primary object pattern, and verbs like chijakta ‘sprinkle’ follow the locative alternation pattern; the primary object pattern is the exclusive one found with derived verbs. This paper shows that the contrast between direct object and primary object languages is not absolute but rather one of degree, and hence two “object” selection principles are needed to explain this mixed system. The two principles are not limited to Yaqui but are found in other languages as well, including English.
  • Guest, O., Kanayet, F. J., & Love, B. C. (2019). Gerrymandering and computational redistricting. Journal of Computational Social Science, 2, 119-131. doi:10.1007/s42001-019-00053-9.

    Abstract

    Partisan gerrymandering poses a threat to democracy. Moreover, the complexity of the districting task may exceed human capacities. One potential solution is using computational models to automate the districting process by optimizing objective and open criteria, such as how spatially compact districts are. We formulated one such model that minimised pairwise distance between voters within a district. Using US Census Bureau data, we confirmed our prediction that the difference in compactness between the computed and actual districts would be greatest for states that are large and, therefore, difficult for humans to properly district given their limited capacities. The computed solutions highlighted differences in how humans and machines solve this task with machine solutions more fully optimised and displaying emergent properties not evident in human solutions. These results suggest a division of labour in which humans debate and formulate districting criteria whereas machines optimise the criteria to draw the district boundaries. We discuss how criteria can be expanded beyond notions of compactness to include other factors, such as respecting municipal boundaries, historic communities, and relevant legislation.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Gullberg, M. (2004). [Review of the book Pointing: Where language, culture and cognition meet ed. by Sotaro Kita]. Gesture, 4(2), 235-248. doi:10.1075/gest.4.2.08gul.
  • Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J. and 7 moreGunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J., St Pourcain, B., Hublin, J.-J., Franke, B., Pääbo, S., Macciardi, F., Grabe, H. J., & Fisher, S. E. (2019). Neandertal introgression sheds light on modern human endocranial globularity. Current Biology, 29(1), 120-127. doi:10.1016/j.cub.2018.10.065.

    Abstract

    One of the features that distinguishes modern humans from our extinct relatives
    and ancestors is a globular shape of the braincase [1-4]. As the endocranium
    closely mirrors the outer shape of the brain, these differences might reflect
    altered neural architecture [4,5]. However, in the absence of fossil brain tissue the
    underlying neuroanatomical changes as well as their genetic bases remain
    elusive. To better understand the biological foundations of modern human
    endocranial shape, we turn to our closest extinct relatives, the Neandertals.
    Interbreeding between modern humans and Neandertals has resulted in
    introgressed fragments of Neandertal DNA in the genomes of present-day non-
    Africans [6,7]. Based on shape analyses of fossil skull endocasts, we derive a
    measure of endocranial globularity from structural magnetic resonance imaging
    (MRI) scans of thousands of modern humans, and study the effects of
    introgressed fragments of Neandertal DNA on this phenotype. We find that
    Neandertal alleles on chromosomes 1 and 18 are associated with reduced
    endocranial globularity. These alleles influence expression of two nearby genes,
    UBR4 and PHLPP1, which are involved in neurogenesis and myelination,
    respectively. Our findings show how integration of fossil skull data with archaic
    genomics and neuroimaging can suggest developmental mechanisms that may
    contribute to the unique modern human endocranial shape.

    Additional information

    mmc1.pdf mmc2.xlsx
  • Hagoort, P., Wassenaar, M., & Brown, C. M. (2003). Syntax-related ERP-effects in Dutch. Cognitive Brain Research, 16(1), 38-50. doi:10.1016/S0926-6410(02)00208-2.

    Abstract

    In two studies subjects were required to read Dutch sentences that in some cases contained a syntactic violation, in other cases a semantic violation. All syntactic violations were word category violations. The design excluded differential contributions of expectancy to influence the syntactic violation effects. The syntactic violations elicited an Anterior Negativity between 300 and 500 ms. This negativity was bilateral and had a frontal distribution. Over posterior sites the same violations elicited a P600/SPS starting at about 600 ms. The semantic violations elicited an N400 effect. The topographic distribution of the AN was more frontal than the distribution of the classical N400 effect, indicating that the underlying generators of the AN and the N400 are, at least to a certain extent, non-overlapping. Experiment 2 partly replicated the design of Experiment 1, but with differences in rate of presentation and in the distribution of items over subjects, and without semantic violations. The word category violations resulted in the same effects as were observed in Experiment 1, showing that they were independent of some of the specific parameters of Experiment 1. The discussion presents a tentative account of the functional differences in the triggering conditions of the AN and the P600/SPS.
  • Hagoort, P., Wassenaar, M., & Brown, C. M. (2003). Real-time semantic compensation in patients with agrammatic comprehension: Electrophysiological evidence for multiple-route plasticity. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4340-4345. doi:10.1073/pnas.0230613100.

    Abstract

    To understand spoken language requires that the brain provides rapid access to different kinds of knowledge, including the sounds and meanings of words, and syntax. Syntax specifies constraints on combining words in a grammatically well formed manner. Agrammatic patients are deficient in their ability to use these constraints, due to a lesion in the perisylvian area of the languagedominant hemisphere. We report a study on real-time auditory sentence processing in agrammatic comprehenders, examining
    their ability to accommodate damage to the language system. We recorded event-related brain potentials (ERPs) in agrammatic comprehenders, nonagrammatic aphasics, and age-matched controls. When listening to sentences with grammatical violations, the agrammatic aphasics did not show the same syntax-related ERP effect as the two other subject groups. Instead, the waveforms of the agrammatic aphasics were dominated by a meaning-related ERP effect, presumably reflecting their attempts to achieve understanding by the use of semantic constraints. These data demonstrate that although agrammatic aphasics are impaired in their ability to exploit syntactic information in real time, they can reduce the consequences of a syntactic deficit by exploiting a semantic route. They thus provide evidence for the compensation of a syntactic deficit by a stronger reliance on another route in mapping
    sound onto meaning. This is a form of plasticity that we refer to as multiple-route plasticity.
  • Hagoort, P. (1998). De electrofysiologie van taal: Wat hersenpotentialen vertellen over het menselijk taalvermogen. Neuropraxis, 2, 223-229.
  • Hagoort, P. (1998). De spreker als sprinter. Psychologie, 17, 48-49.
  • Hagoort, P. (1990). [Review of the book Neurolinguistics and linguistic aphasiology: An introduction by David Caplan]. Linguistics, 5, 1069-1073.
  • Hagoort, P. (2003). How the brain solves the binding problem for language: A neurocomputational model of syntactic processing. NeuroImage, 20(suppl. 1), S18-S29. doi:10.1016/j.neuroimage.2003.09.013.

    Abstract

    Syntax is one of the components in the architecture of language processing that allows the listener/reader to bind single-word information into a unified interpretation of multiword utterances. This paper discusses ERP effects that have been observed in relation to syntactic processing. The fact that these effects differ from the semantic N400 indicates that the brain honors the distinction between semantic and syntactic binding operations. Two models of syntactic processing attempt to account for syntax-related ERP effects. One type of model is serial, with a first phase that is purely syntactic in nature (syntax-first model). The other type of model is parallel and assumes that information immediately guides the interpretation process once it becomes available. This is referred to as the immediacy model. ERP evidence is presented in support of the latter model. Next, an explicit computational model is proposed to explain the ERP data. This Unification Model assumes that syntactic frames are stored in memory and retrieved on the basis of the spoken or written word form input. The syntactic frames associated with the individual lexical items are unified by a dynamic binding process into a structural representation that spans the whole utterance. On the basis of a meta-analysis of imaging studies on syntax, it is argued that the left posterior inferior frontal cortex is involved in binding syntactic frames together, whereas the left superior temporal cortex is involved in retrieval of the syntactic frames stored in memory. Lesion data that support the involvement of this left frontotemporal network in syntactic processing are discussed.
  • Hagoort, P., Hald, L. A., Bastiaansen, M. C. M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304(5669), 438-441. doi:10.1126/science.1095455.

    Abstract

    Although the sentences that we hear or read have meaning, this does not necessarily mean that they are also true. Relatively little is known about the critical brain structures for, and the relative time course of, establishing the meaning and truth of linguistic expressions. We present electroencephalogram data that show the rapid parallel integration of both semantic and world
    knowledge during the interpretation of a sentence. Data from functional magnetic resonance imaging revealed that the left inferior prefrontal cortex is involved in the integration of both meaning and world knowledge. Finally, oscillatory brain responses indicate that the brain keeps a record of what makes a sentence hard to interpret.
  • Hagoort, P. (2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15(6), 883-899. doi:10.1162/089892903322370807.

    Abstract

    This study investigated the effects of combined semantic and syntactic violations in relation to the effects of single semantic and single syntactic violations on language-related event-related brain potential (ERP) effects (N400 and P600/ SPS). Syntactic violations consisted of a mismatch in grammatical gender or number features of the definite article and the noun in sentence-internal or sentence-final noun phrases (NPs). Semantic violations consisted of semantically implausible adjective–noun combinations in the same NPs. Combined syntactic and semantic violations were a summation of these two respective violation types. ERPs were recorded while subjects read the sentences with the different types of violations and the correct control sentences. ERP effects were computed relative to ERPs elicited by the sentence-internal or sentence-final nouns. The size of the N400 effect to the semantic violation was increased by an additional syntactic violation (the syntactic boost). In contrast, the size of the P600/ SPS to the syntactic violation was not affected by an additional semantic violation. This suggests that in the absence of syntactic ambiguity, the assignment of syntactic structure is independent of semantic context. However, semantic integration is influenced by syntactic processing. In the sentence-final position, additional global processing consequences were obtained as a result of earlier violations in the sentence. The resulting increase in the N400 amplitude to sentence-final words was independent of the nature of the violation. A speeded anomaly detection task revealed that it takes substantially longer to detect semantic than syntactic anomalies. These results are discussed in relation to the latency and processing characteristics of the N400 and P600/SPS effects. Overall, the results reveal an asymmetry in the interplay between syntax and semantics during on-line sentence comprehension.
  • Hagoort, P. (1998). Hersenen en taal in onderzoek en praktijk. Neuropraxis, 6, 204-205.
  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.

    Abstract

    Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
  • Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190301. doi:10.1098/rstb.2019.0301.

    Abstract

    In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information.
  • Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. doi:10.1126/science.aax0289.

    Abstract

    In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributions

    Files private

    Request files
  • Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.

    Abstract

    A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.
  • Hagoort, P. (1992). Vertraagde lexicale integratie bij afatisch taalverstaan. Stem, Spraak- en Taalpathologie, 1, 5-23.
  • Hammarstroem, H., & Güldemann, T. (2014). Quantifying geographical determinants of large-scale distributions of linguistic features. Language Dynamics and Change, 4, 87-115. doi:10.1163/22105832-00401002.

    Abstract

    In the recent past the work on large-scale linguistic distributions across the globe has intensified considerably. Work on macro-areal relationships in Africa (Güldemann, 2010) suggests that the shape of convergence areas may be determined by climatic factors and geophysical features such as mountains, water bodies, coastlines, etc. Worldwide data is now available for geophysical features as well as linguistic features, including numeral systems and basic constituent order. We explore the possibility that the shape of areal aggregations of individual features in these two linguistic domains correlates with Köppen-Geiger climate zones. Furthermore, we test the hypothesis that the shape of such areal feature aggregations is determined by the contour of adjacent geophysical features like mountain ranges or coastlines. In these first basic tests, we do not find clear evidence that either Köppen-Geiger climate zones or the contours of geophysical features are major predictors for the linguistic data at hand

    Files private

    Request files
  • Hammarstroem, H., & Donohue, M. (2014). Some principles on the use of macro-areas in typological comparison. Language Dynamics and Change, 4, 167-187. doi:10.1163/22105832-00401001.

    Abstract

    While the notion of the ‘area’ or ‘Sprachbund’ has a long history in linguistics, with geographically-defined regions frequently cited as a useful means to explain typological distributions, the problem of delimiting areas has not been well addressed. Lists of general-purpose, largely independent ‘macro-areas’ (typically continent size) have been proposed as a step to rule out contact as an explanation for various large-scale linguistic phenomena. This squib points out some problems in some of the currently widely-used predetermined areas, those found in the World Atlas of Language Structures (Haspelmath et al., 2005). Instead, we propose a principled division of the world’s landmasses into six macro-areas that arguably have better geographical independence properties
  • Hammarström, H. (2014). [Review of the book A grammar of the great Andamanese language: An ethnolinguistic study by Anvita Abbi]. Journal of South Asian Languages and Linguistics, 1, 111-116. doi:10.1515/jsall-2014-0007.
  • Han, J.-I., & Verdonschot, R. G. (2019). Spoken-word production in Korean: A non-word masked priming and phonological Stroop task investigation. Quarterly Journal of Experimental Psychology, 72(4), 901-912. doi:10.1177/1747021818770989.

    Abstract

    Speech production studies have shown that phonological unit initially used to fill the metrical frame during phonological encoding is language specific, that is, a phoneme for English and Dutch, an atonal syllable for Mandarin Chinese, and a mora for Japanese. However, only a few studies chronometrically investigated speech production in Korean, and they obtained mixed results. Korean is particularly interesting as there might be both phonemic and syllabic influences during phonological encoding. The purpose of this study is to further examine the initial phonological preparation unit in Korean, employing a masked priming task (Experiment 1) and a phonological Stroop task (Experiment 2). The results showed that significant onset (and onset-plus, that is, consonant-vowel [CV]) effects were found in both experiments, but there was no compelling evidence for a prominent role for the syllable. When the prime words were presented in three different forms related to the targets, namely, without any change, with re-syllabified codas, and with nasalised codas, there were no significant differences in facilitation among the three forms. Alternatively, it is also possible that participants may not have had sufficient time to process the primes up to the point that re-syllabification or nasalisation could have been carried out. In addition, the results of a Stroop task demonstrated that the onset phoneme effect was not driven by any orthographic influence. These findings suggest that the onset segment and not the syllable is the initial (or proximate) phonological unit used in the segment-to-frame encoding process during speech planning in Korean.

    Additional information

    stimuli for experiment 1 and 2
  • Harmon, Z., Idemaru, K., & Kapatsinski, V. (2019). Learning mechanisms in cue reweighting. Cognition, 189, 76-88. doi:10.1016/j.cognition.2019.03.011.

    Abstract

    Feedback has been shown to be effective in shifting attention across perceptual cues to a phonological contrast in speech perception (Francis, Baldwin & Nusbaum, 2000). However, the learning mechanisms behind this process remain obscure. We compare the predictions of supervised error-driven learning (Rescorla & Wagner, 1972) and reinforcement learning (Sutton & Barto, 1998) using computational simulations. Supervised learning predicts downweighting of an informative cue when the learner receives evidence that it is no longer informative. In contrast, reinforcement learning suggests that a reduction in cue weight requires positive evidence for the informativeness of an alternative cue. Experimental evidence supports the latter prediction, implicating reinforcement learning as the mechanism behind the effect of feedback on cue weighting in speech perception. Native English listeners were exposed to either bimodal or unimodal VOT distributions spanning the unaspirated/aspirated boundary (bear/pear). VOT is the primary cue to initial stop voicing in English. However, lexical feedback in training indicated that VOT was no longer predictive of voicing. Reduction in the weight of VOT was observed only when participants could use an alternative cue, F0, to predict voicing. Frequency distributions had no effect on learning. Overall, the results suggest that attention shifting in learning the phonetic cues to phonological categories is accomplished using simple reinforcement learning principles that also guide the choice of actions in other domains.
  • Harneit, A., Braun, U., Geiger, L. S., Zang, Z., Hakobjan, M., Van Donkelaar, M. M. J., Schweiger, J. I., Schwarz, K., Gan, G., Erk, S., Heinz, A., Romanczuk‐Seiferth, N., Witt, S., Rietschel, M., Walter, H., Franke, B., Meyer‐Lindenberg, A., & Tost, H. (2019). MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Human Brain Mapping, 40(18), 5202-5212. doi:10.1002/hbm.24766.

    Abstract

    Previous studies have linked the low expression variant of a variable number of tandem repeat polymorphism in the monoamine oxidase A gene (MAOA‐L) to the risk for impulsivity and aggression, brain developmental abnormalities, altered cortico‐limbic circuit function, and an exaggerated neural serotonergic tone. However, the neurobiological effects of this variant on human brain network architecture are incompletely understood. We studied healthy individuals and used multimodal neuroimaging (sample size range: 219–284 across modalities) and network‐based statistics (NBS) to probe the specificity of MAOA‐L‐related connectomic alterations to cortical‐limbic circuits and the emotion processing domain. We assessed the spatial distribution of affected links across several neuroimaging tasks and data modalities to identify potential alterations in network architecture. Our results revealed a distributed network of node links with a significantly increased connectivity in MAOA‐L carriers compared to the carriers of the high expression (H) variant. The hyperconnectivity phenotype primarily consisted of between‐lobe (“anisocoupled”) network links and showed a pronounced involvement of frontal‐temporal connections. Hyperconnectivity was observed across functional magnetic resonance imaging (fMRI) of implicit emotion processing (pFWE = .037), resting‐state fMRI (pFWE = .022), and diffusion tensor imaging (pFWE = .044) data, while no effects were seen in fMRI data of another cognitive domain, that is, spatial working memory (pFWE = .540). These observations are in line with prior research on the MAOA‐L variant and complement these existing data by novel insights into the specificity and spatial distribution of the neurogenetic effects. Our work highlights the value of multimodal network connectomic approaches for imaging genetics.
  • Haun, D. B. M. (2003). What's so special about spatial cognition. De Psychonoom, 18, 3-4.
  • Haun, D. B. M., Rekers, Y., & Tomasello, M. (2014). Children conform the behavior of peers; Other great apes stick with what they know. Psychological Science, 25, 2160-2167. doi:10.1177/0956797614553235.

    Abstract

    All primates learn things from conspecifics socially, but it is not clear whether they conform to the behavior of these conspecifics—if conformity is defined as overriding individually acquired behavioral tendencies in order to copy peers’ behavior. In the current study, chimpanzees, orangutans, and 2-year-old human children individually acquired a problem-solving strategy. They then watched several conspecific peers demonstrate an alternative strategy. The children switched to this new, socially demonstrated strategy in roughly half of all instances, whereas the other two great-ape species almost never adjusted their behavior to the majority’s. In a follow-up study, children switched much more when the peer demonstrators were still present than when they were absent, which suggests that their conformity arose at least in part from social motivations. These results demonstrate an important difference between the social learning of humans and great apes, a difference that might help to account for differences in human and nonhuman cultures

    Additional information

    Haun_Rekers_Tomasello_2014_supp.pdf
  • Haworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L. and 15 moreHaworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L., Timmers, P. R. H. J., UK10K consortium, Davey Smith, G., Fisher, S. E., Wilson, J. F., Cole, T. J., Fernandez-Orth, D., Bønnelykke, K., Bisgaard, H., Pennell, C. E., Jaddoe, V. W. V., Dedoussis, G., Timpson, N. J., Zeggini, E., Vitart, V., & St Pourcain, B. (2019). Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 10: 357. doi:10.1038/s41467-018-07863-x.

    Abstract

    Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences affecting these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic influences and low-frequency genetic variation. To understand these influences, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV+HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.

    Additional information

    Supplementary Information
  • Hayano, K. (2004). Kaiwa ni okeru ninshikiteki ken’i no koushou: Shuujoshi yo, ne, odoroki hyouji no bunpu to kinou [Negotiation of Epistemic Authority in Conversation: on the use of final particles yo, ne and surprise markers]. Studies in Pragmatics, 6, 17-28.
  • Hayano, K. (2003). Self-presentation as a face-threatening act: A comparative study of self-oriented topic introduction in English and Japanese. Veritas, 24, 45-58.
  • Hersh, T., King, B., & Lutton, B. V. (2014). Novel bioinformatics tools for analysis of gene expression in the skate, Leucoraja erinacea. The Bulletin, MDI Biological Laboratory, 53, 16-18.
  • Hervais-Adelman, A., Pefkou, M., & Golestani, N. (2014). Bilingual speech-in-noise: Neural bases of semantic context use in the native language. Brain and Language, 132, 1-6. doi:10.1016/j.bandl.2014.01.009.

    Abstract

    Bilingual listeners comprehend speech-in-noise better in their native than non-native language. This native-language benefit is thought to arise from greater use of top-down linguistic information to assist degraded speech comprehension. Using functional magnetic resonance imaging, we recently showed that left angular gyrus activation is modulated when semantic context is used to assist native language speech-in-noise comprehension (Golestani, Hervais-Adelman, Obleser, & Scott, 2013). Here, we extend the previous work, by reanalyzing the previous data alongside the results obtained in the non-native language of the same late bilingual participants. We found a behavioral benefit of semantic context in processing speech-in-noise in the native language only, and the imaging results also revealed a native language context effect in the left angular gyrus. We also find a complementary role of lower-level auditory regions during stimulus-driven processing. Our findings help to elucidate the neural basis of the established native language behavioral benefit of speech-in-noise processing. (C) 2014 Elsevier Inc. All rights reserved.
  • Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Science Advances, 5(9): eaax0262. doi:10.1126/sciadv.aax0262.

    Abstract

    Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition.

    Additional information

    aax0262_SM.pdf
  • Hessels, R. S., Hooge, I., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44, 443-451. doi:10.1007/s10803-013-1886-8.

    Abstract

    Superiority in visual search for individuals diagnosed with autism spectrum disorder (ASD) is a well-reported finding. We administered two visual search tasks to individuals with ASD and matched controls. One showed no difference between the groups, and one did show the expected superior performance for individuals with ASD. These results offer an explanation, formulated in terms of load theory. We suggest that there is a limit to the superiority in visual search for individuals with ASD, related to the perceptual load of the stimuli. When perceptual load becomes so high that no additional task-(ir)relevant information can be processed, performance will be based on single stimulus identification, in which no differences between individuals with ASD and controls have been demonstrated
  • Heyselaar, E., & Segaert, K. (2019). Memory encoding of syntactic information involves domain-general attentional resources. Evidence from dual-task studies. Quarterly Journal of Experimental Psychology, 72(6), 1285-1296. doi:10.1177/1747021818801249.

    Abstract

    We investigate the type of attention (domain-general or language-specific) used during
    syntactic processing. We focus on syntactic priming: In this task, participants listen to a
    sentence that describes a picture (prime sentence), followed by a picture the participants need
    to describe (target sentence). We measure the proportion of times participants use the
    syntactic structure they heard in the prime sentence to describe the current target sentence as a
    measure of syntactic processing. Participants simultaneously conducted a motion-object
    tracking (MOT) task, a task commonly used to tax domain-general attentional resources. We
    manipulated the number of objects the participant had to track; we thus measured
    participants’ ability to process syntax while their attention is not-, slightly-, or overly-taxed.
    Performance in the MOT task was significantly worse when conducted as a dual-task
    compared to as a single task. We observed an inverted U-shaped curve on priming magnitude
    when conducting the MOT task concurrently with prime sentences (i.e., memory encoding),
    but no effect when conducted with target sentences (i.e., memory retrieval). Our results
    illustrate how, during the encoding of syntactic information, domain-general attention
    differentially affects syntactic processing, whereas during the retrieval of syntactic
    information domain-general attention does not influence syntactic processing
  • Hoedemaker, R. S., & Gordon, P. C. (2014). Embodied language comprehension: Encoding-based and goal-driven processes. Journal of Experimental Psychology: General, 143(2), 914-929. doi:10.1037/a0032348.

    Abstract

    Theories of embodied language comprehension have proposed that language is understood through perceptual simulation of the sensorimotor characteristics of its meaning. Strong support for this claim requires demonstration of encoding-based activation of sensorimotor representations that is distinct from task-related or goal-driven processes. Participants in 3 eye-tracking experiments were presented with triplets of either numbers or object and animal names. In Experiment 1, participants indicated whether the size of the referent of the middle object or animal name was in between the size of the 2 outer items. In Experiment 2, the object and animal names were encoded for an immediate recognition memory task. In Experiment 3, participants completed the same comparison task of Experiment 1 for both words and numbers. During the comparison tasks, word and number decision times showed a symbolic distance effect, such that response time was inversely related to the size difference between the items. A symbolic distance effect was also observed for animal and object encoding times in cases where encoding time likely reflected some goal-driven processes as well. When semantic size was irrelevant to the task (Experiment 2), it had no effect on word encoding times. Number encoding times showed a numerical distance priming effect: Encoding time increased with numerical difference between items. Together these results suggest that while activation of numerical magnitude representations is encoding-based as well as goal-driven, activation of size information associated with words is goal-driven and does not occur automatically during encoding. This conclusion challenges strong theories of embodied cognition which claim that language comprehension consists of activation of analog sensorimotor representations irrespective of higher level processes related to context or task-specific goals
  • Hoedemaker, R. S., & Gordon, P. C. (2014). It takes time to prime: Semantic priming in the ocular lexical decision task. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2179-2197. doi:10.1037/a0037677.

    Abstract

    Two eye-tracking experiments were conducted in which the manual response mode typically used in lexical decision tasks (LDTs) was replaced with an eye-movement response through a sequence of 3 words. This ocular LDT combines the explicit control of task goals found in LDTs with the highly practiced ocular response used in reading text. In Experiment 1, forward saccades indicated an affirmative lexical decision (LD) on each word in the triplet. In Experiment 2, LD responses were delayed until all 3 letter strings had been read. The goal of the study was to evaluate the contribution of task goals and response mode to semantic priming. Semantic priming is very robust in tasks that involve recognition of words in isolation, such as LDT, but limited during text reading, as measured using eye movements. Gaze durations in both experiments showed robust semantic priming even though ocular response times were much shorter than manual LDs for the same words in the English Lexicon Project. Ex-Gaussian distribution fits revealed that the priming effect was concentrated in estimates of tau (τ), meaning that priming was most pronounced in the slow tail of the distribution. This pattern shows differential use of the prime information, which may be more heavily recruited in cases in which the LD is difficult, as indicated by longer response times. Compared with the manual LD responses, ocular LDs provide a more sensitive measure of this task-related influence on word recognition as measured by the LDT.
  • Hoedemaker, R. S., & Meyer, A. S. (2019). Planning and coordination of utterances in a joint naming task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(4), 732-752. doi:10.1037/xlm0000603.

    Abstract

    Dialogue requires speakers to coordinate. According to the model of dialogue as joint action, interlocutors achieve this coordination by corepresenting their own and each other’s task share in a functionally equivalent manner. In two experiments, we investigated this corepresentation account using an interactive joint naming task in which pairs of participants took turns naming sets of objects on a shared display. Speaker A named the first, or the first and third object, and Speaker B named the second object. In control conditions, Speaker A named one, two, or all three objects and Speaker B remained silent. We recorded the timing of the speakers’ utterances and Speaker A’s eye movements. Interturn pause durations indicated that the speakers effectively coordinated their utterances in time. Speaker A’s speech onset latencies depended on the number of objects they named, but were unaffected by Speaker B’s naming task. This suggests speakers were not fully incorporating their partner’s task into their own speech planning. Moreover, Speaker A’s eye movements indicated that they were much less likely to attend to objects their partner named than to objects they named themselves. When speakers did inspect their partner’s objects, viewing times were too short to suggest that speakers were retrieving these object names as if they were planning to name the objects themselves. These results indicate that speakers prioritized planning their own responses over attending to their interlocutor’s task and suggest that effective coordination can be achieved without full corepresentation of the partner’s task.
  • Hoey, E. (2014). Sighing in interaction: Somatic, semiotic, and social. Research on Language and Social Interaction, 47(2), 175-200. doi:10.1080/08351813.2014.900229.

    Abstract

    Participants in interaction routinely orient to gaze, bodily comportment, and nonlexical vocalizations as salient for developing an analysis of the unfolding course of action. In this article, I address the respiratory phenomenon of sighing, the aim being to describe sighing as a situated practice that contributes to the achievement of particular actions in interaction. I report on the various actions sighs implement or construct and how their positioning and delivery informs participants’ understandings of their significance for interaction. Data are in American English
  • Hogan-Brown, A. L., Hoedemaker, R. S., Gordon, P. C., & Losh, M. (2014). Eye-voice span during rapid automatized naming: Evidence of reduced automaticity in individuals with autism spectrum disorder and their siblings. Journal of Neurodevelopmental Disorders, 6(1): 33. doi:10.1186/1866-1955-6-33.

    Abstract

    Background: Individuals with autism spectrum disorder (ASD) and their parents demonstrate impaired performance in rapid automatized naming (RAN), a task that recruits a variety of linguistic and executive processes. Though the basic processes that contribute to RAN differences remain unclear, eye-voice relationships, as measured through eye tracking, can provide insight into cognitive and perceptual processes contributing to RAN performance. For example, in RAN, eye-voice span (EVS), the distance ahead the eyes are when articulation of a target item's label begins, is an indirect measure of automaticity of the processes underlying RAN. The primary objective of this study was to investigate automaticity in naming processes, as indexed by EVS during RAN. The secondary objective was to characterize RAN difficulties in individuals with ASD and their siblings. Methods: Participants (aged 15 – 33 years) included 21 individuals with ASD, 23 siblings of individuals with ASD, and 24 control subjects, group-matched on chronological age. Naming time, frequency of errors, and EVS were measured during a RAN task and compared across groups. Results: A stepwise pattern of RAN performance was observed, with individuals with ASD demonstrating the slowest naming across all RAN conditions, controls demonstrating the fastest naming, and siblings demonstrating intermediate performance. Individuals with ASD exhibited smaller EVSs than controls on all RAN conditions, and siblings exhibited smaller EVSs during number naming (the most highly automatized type of naming). EVSs were correlated with naming times in controls only, and only in the more automatized conditions. Conclusions: These results suggest that reduced automaticity in the component processes of RAN may underpin differences in individuals with ASD and their siblings. These findings also provide further support that RAN abilities are impacted by genetic liability to ASD. This study has important implications for understanding the underlying skills contributing to language-related deficits in ASD.
  • Holler, J., & Beattie, G. (2003). How iconic gestures and speech interact in the representation of meaning: are both aspects really integral to the process? Semiotica, 146, 81-116.
  • Holler, J., & Levinson, S. C. (2019). Multimodal language processing in human communication. Trends in Cognitive Sciences, 23(8), 639-652. doi:10.1016/j.tics.2019.05.006.

    Abstract

    Multiple layers of visual (and vocal) signals, plus their different onsets and offsets, represent a significant semantic and temporal binding problem during face-to-face conversation.
    Despite this complex unification process, multimodal messages appear to be processed faster than unimodal messages.

    Multimodal gestalt recognition and multilevel prediction are proposed to play a crucial role in facilitating multimodal language processing.

    The basis of the processing mechanisms involved in multimodal language comprehension is hypothesized to be domain general, coopted for communication, and refined with domain-specific characteristics.
    A new, situated framework for understanding human language processing is called for that takes into consideration the multilayered, multimodal nature of language and its production and comprehension in conversational interaction requiring fast processing.
  • Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.

    Abstract

    In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension.
  • Holler, J., & Beattie, G. (2003). Pragmatic aspects of representational gestures: Do speakers use them to clarify verbal ambiguity for the listener? Gesture, 3, 127-154.
  • Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8: 473. doi:10.3389/fnhum.2014.00473.

    Abstract

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than ten times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques
  • Horemans, I., & Schiller, N. O. (2004). Form-priming effects in nonword naming. Brain and Language, 90(1-3), 465-469. doi:10.1016/S0093-934X(03)00457-7.

    Abstract

    Form-priming effects from sublexical (syllabic or segmental) primes in masked priming can be accounted for in two ways. One is the sublexical pre-activation view according to which segments are pre-activated by the prime, and at the time the form-related target is to be produced, retrieval/assembly of those pre-activated segments is faster compared to an unrelated situation. However, it has also been argued that form-priming effects from sublexical primes might be due to lexical pre-activation. When the sublexical prime is presented, it activates all form-related words (i.e., cohorts) in the lexicon, necessarily including the form-related target, which—as a consequence—is produced faster than in the unrelated case. Note, however, that this lexical pre-activation account makes previous pre-lexical activation of segments necessary. This study reports a nonword naming experiment to investigate whether or not sublexical pre-activation is involved in masked form priming with sublexical primes. The results demonstrated a priming effect suggesting a nonlexical effect. However, this does not exclude an additional lexical component in form priming.
  • Hörpel, S. G., & Firzlaff, U. (2019). Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features. Journal of Neurophysiology, 121(4), 1501-1512. doi:10.1152/jn.00748.2018.
  • Howe, L., Lawson, D. J., Davies, N. M., St Pourcain, B., Lewis, S. J., Smith, G. D., & Hemani, G. (2019). Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nature Communications, 10: 5039. doi:10.1038/s41467-019-12424-x.

    Abstract

    Alcohol use is correlated within spouse-pairs, but it is difficult to disentangle effects of alcohol consumption on mate-selection from social factors or the shared spousal environment. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection. Here, we find strong evidence that an individual’s self-reported alcohol consumption and their genotype at rs1229984, a missense variant in ADH1B, are associated with their partner’s self-reported alcohol use. Applying Mendelian randomization, we estimate that a unit increase in an individual’s weekly alcohol consumption increases partner’s alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P = 8.20 × 10−6). Furthermore, we find evidence of spousal genotypic concordance for rs1229984, suggesting that spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest some concordance independent of population stratification. Our findings suggest that alcohol behaviour directly influences mate selection.
  • Howe, L. J., Richardson, T. G., Arathimos, R., Alvizi, L., Passos-Bueno, M. R., Stanier, P., Nohr, E., Ludwig, K. U., Mangold, E., Knapp, M., Stergiakouli, E., St Pourcain, B., Smith, G. D., Sandy, J., Relton, C. L., Lewis, S. J., Hemani, G., & Sharp, G. C. (2019). Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate. Epigenomics, 11(2), 133-145. doi:10.2217/epi-2018-0091.

    Abstract

    Aim: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials & methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results & conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.

    Additional information

    Supplementary material
  • Hoymann, G. (2014). [Review of the book Bridging the language gap, Approaches to Herero verbal interaction as development practice in Namibia by Rose Marie Beck]. Journal of African languages and linguistics, 35(1), 130-133. doi:10.1515/jall-2014-0004.
  • Hoymann, G. (2004). [Review of the book Botswana: The future of the minority languages ed. by Herman M. Batibo and Birgit Smieja]. Journal of African Languages and Linguistics, 25(2), 171-173. doi:10.1515/jall.2004.25.2.171.

Share this page