Publications

Displaying 301 - 400 of 515
  • Moscoso del Prado Martín, F., Kostic, A., & Baayen, R. H. (2004). Putting the bits together: An information theoretical perspective on morphological processing. Cognition, 94(1), 1-18. doi:10.1016/j.cognition.2003.10.015.

    Abstract

    In this study we introduce an information-theoretical formulation of the emergence of type- and token-based effects in morphological processing. We describe a probabilistic measure of the informational complexity of a word, its information residual, which encompasses the combined influences of the amount of information contained by the target word and the amount of information carried by its nested morphological paradigms. By means of re-analyses of previously published data on Dutch words we show that the information residual outperforms the combination of traditional token- and type-based counts in predicting response latencies in visual lexical decision, and at the same time provides a parsimonious account of inflectional, derivational, and compounding processes.
  • Moscoso del Prado Martín, F., Ernestus, M., & Baayen, R. H. (2004). Do type and token effects reflect different mechanisms? Connectionist modeling of Dutch past-tense formation and final devoicing. Brain and Language, 90(1-3), 287-298. doi:10.1016/j.bandl.2003.12.002.

    Abstract

    In this paper, we show that both token and type-based effects in lexical processing can result from a single, token-based, system, and therefore, do not necessarily reflect different levels of processing. We report three Simple Recurrent Networks modeling Dutch past-tense formation. These networks show token-based frequency effects and type-based analogical effects closely matching the behavior of human participants when producing past-tense forms for both existing verbs and pseudo-verbs. The third network covers the full vocabulary of Dutch, without imposing predefined linguistic structure on the input or output words.
  • Moscoso del Prado Martín, F., Bertram, R., Haikio, T., Schreuder, R., & Baayen, R. H. (2004). Morphological family size in a morphologically rich language: The case of Finnish compared to Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory and Cognition, 30(6), 1271-1278. doi:10.1037/0278-7393.30.6.1271.

    Abstract

    Finnish has a very productive morphology in which a stem can give rise to several thousand words. This study presents a visual lexical decision experiment addressing the processing consequences of the huge productivity of Finnish morphology. The authors observed that in Finnish words with larger morphological families elicited shorter response latencies. However, in contrast to Dutch and Hebrew, it is not the complete morphological family of a complex Finnish word that codetermines response latencies but only the subset of words directly derived from the complex word itself. Comparisons with parallel experiments using translation equivalents in Dutch and Hebrew showed substantial cross-language predictivity of family size between Finnish and Dutch but not between Finnish and Hebrew, reflecting the different ways in which the Hebrew and Finnish morphological systems contribute to the semantic organization of concepts in the mental lexicon.
  • Mostert, P., Albers, A. M., Brinkman, L., Todorova, L., Kok, P., & De Lange, F. P. (2018). Eye movement-related confounds in neural decoding of visual working memory representations. eNeuro, 5(4): ENEURO.0401-17.2018. doi:10.1523/ENEURO.0401-17.2018.

    Abstract

    A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds.
  • Mulder, K., Van Heuven, W. J., & Dijkstra, T. (2018). Revisiting the neighborhood: How L2 proficiency and neighborhood manipulation affect bilingual processing. Frontiers in Psychology, 9: 1860. doi:10.3389/fpsyg.2018.01860.

    Abstract

    We conducted three neighborhood experiments with Dutch-English bilinguals to test effects of L2 proficiency and neighborhood characteristics within and between languages. In the past 20 years, the English (L2) proficiency of this population has considerably increased. To consider the impact of this development on neighborhood effects, we conducted a strict replication of the English lexical decision task by van Heuven, Dijkstra, & Grainger (1998, Exp. 4). In line with our prediction, English characteristics (neighborhood size, word and bigram frequency) dominated the word and nonword responses, while the nonwords also revealed an interaction of English and Dutch neighborhood size.
    The prominence of English was tested again in two experiments introducing a stronger neighborhood manipulation. In English lexical decision and progressive demasking, English items with no orthographic neighbors at all were contrasted with items having neighbors in English or Dutch (‘hermits’) only, or in both languages. In both tasks, target processing was affected strongly by the presence of English neighbors, but only weakly by Dutch neighbors. Effects are interpreted in terms of two underlying processing mechanisms: language-specific global lexical activation and lexical competition.
  • Mulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S. and 31 moreMulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S., Roovers, J., Djemie, T., Barca, D., Ceulemans, B., Craiu, D., Lemke, J. R., Korff, C., Mefford, H. C., Meyers, C. T., Siegler, Z., Hiatt, S. M., Cooper, G. M., Bebin, E. M., Snijders Blok, L., Veenstra-Knol, H. E., Baugh, E. H., Brilstra, E. H., Volker-Touw, C. M. L., Van Binsbergen, E., Revah-Politi, A., Pereira, E., McBrian, D., Pacault, M., Isidor, B., Le Caignec, C., Gilbert-Dussardier, B., Bilan, F., Heinzen, E. L., Goldstein, D. B., Stevens, S. J. C., & Sands, T. T. (2018). NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Annals of Neurology, 84(5), 788-795. doi:10.1002/ana.25350.

    Abstract

    NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy–like phenotype in a subset of patients.

    Files private

    Request files
  • Narasimhan, B., Sproat, R., & Kiraz, G. (2004). Schwa-deletion in Hindi text-to-speech synthesis. International Journal of Speech Technology, 7(4), 319-333. doi:10.1023/B:IJST.0000037075.71599.62.

    Abstract

    We describe the phenomenon of schwa-deletion in Hindi and how it is handled in the pronunciation component of a multilingual concatenative text-to-speech system. Each of the consonants in written Hindi is associated with an “inherent” schwa vowel which is not represented in the orthography. For instance, the Hindi word pronounced as [namak] (’salt’) is represented in the orthography using the consonantal characters for [n], [m], and [k]. Two main factors complicate the issue of schwa pronunciation in Hindi. First, not every schwa following a consonant is pronounced within the word. Second, in multimorphemic words, the presence of a morpheme boundary can block schwa deletion where it might otherwise occur. We propose a model for schwa-deletion which combines a general purpose schwa-deletion rule proposed in the linguistics literature (Ohala, 1983), with additional morphological analysis necessitated by the high frequency of compounds in our database. The system is implemented in the framework of finite-state transducer technology.
  • Newbury, D. F., Cleak, J. D., Banfield, E., Marlow, A. J., Fisher, S. E., Monaco, A. P., Stott, C. M., Merricks, M. J., Goodyer, I. M., Slonims, V., Baird, G., Bolton, P., Everitt, A., Hennessy, E., Main, M., Helms, P., Kindley, A. D., Hodson, A., Watson, J., O’Hare, A. and 9 moreNewbury, D. F., Cleak, J. D., Banfield, E., Marlow, A. J., Fisher, S. E., Monaco, A. P., Stott, C. M., Merricks, M. J., Goodyer, I. M., Slonims, V., Baird, G., Bolton, P., Everitt, A., Hennessy, E., Main, M., Helms, P., Kindley, A. D., Hodson, A., Watson, J., O’Hare, A., Cohen, W., Cowie, H., Steel, J., MacLean, A., Seckl, J., Bishop, D. V. M., Simkin, Z., Conti-Ramsden, G., & Pickles, A. (2004). Highly significant linkage to the SLI1 Locus in an expanded sample of Individuals affected by specific language impairment. American Journal of Human Genetics, 74(6), 1225-1238. doi:10.1086/421529.

    Abstract

    Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are ⩾1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions).
  • Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I. and 3 moreNieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet, G., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., Donaldson, D. I., Kohút, Z., Rueschemeyer, S.-A., & Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. eLife, 7: e33468. doi:10.7554/eLife.33468.

    Abstract

    Do people routinely pre-activate the meaning and even the phonological form of upcoming words? The most acclaimed evidence for phonological prediction comes from a 2005 Nature Neuroscience publication by DeLong, Urbach and Kutas, who observed a graded modulation of electrical brain potentials (N400) to nouns and preceding articles by the probability that people use a word to continue the sentence fragment (‘cloze’). In our direct replication study spanning 9 laboratories (N=334), pre-registered replication-analyses and exploratory Bayes factor analyses successfully replicated the noun-results but, crucially, not the article-results. Pre-registered single-trial analyses also yielded a statistically significant effect for the nouns but not the articles. Exploratory Bayesian single-trial analyses showed that the article-effect may be non-zero but is likely far smaller than originally reported and too small to observe without very large sample sizes. Our results do not support the view that readers routinely pre-activate the phonological form of predictable words.

    Additional information

    Data sets
  • Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N., Jas, M., Litvak, V., Moreau, J. T., Oostenveld, R., Schoffelen, J.-M., Tadel, F., Wexler, J., & Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5: 180110. doi:10.1038/sdata.2018.110.

    Abstract

    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific
    aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond
    temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise
    magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data
    are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a
    principled solution to store, organise, process and share the multidimensional data volumes produced
    by the modality. The standard also includes well-defined metadata, to facilitate future data
    harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging
    community and paves the way to further integration of other techniques in electrophysiology. MEGBIDS
    builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several dataanalytics
    software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data
    resources available to everyone.
  • Noppeney, U., Jones, S. A., Rohe, T., & Ferrari, A. (2018). See what you hear – How the brain forms representations across the senses. Neuroforum, 24(4), 257-271. doi:10.1515/nf-2017-A066.

    Abstract

    Our senses are constantly bombarded with a myriad of signals. To make sense of this cacophony, the brain needs to integrate signals emanating from a common source, but segregate signals originating from the different sources. Thus, multisensory perception relies critically on inferring the world’s causal structure (i. e. one common vs. multiple independent sources). Behavioural research has shown that the brain arbitrates between sensory integration and segregation consistent with the principles of Bayesian Causal Inference. At the neural level, recent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) studies have shown that the brain accomplishes Bayesian Causal Inference by dynamically encoding multiple perceptual estimates across the sensory processing hierarchies. Only at the top of the hierarchy in anterior parietal cortices did the brain form perceptual estimates that take into account the observer’s uncertainty about the world’s causal structure consistent with Bayesian Causal Inference.
  • Norris, D., McQueen, J. M., & Cutler, A. (2018). Commentary on “Interaction in spoken word recognition models". Frontiers in Psychology, 9: 1568. doi:10.3389/fpsyg.2018.01568.
  • Norris, D., & Cutler, A. (1988). Speech recognition in French and English. MRC News, 39, 30-31.
  • Norris, D., & Cutler, A. (1988). The relative accessibility of phonemes and syllables. Perception and Psychophysics, 43, 541-550. Retrieved from http://www.psychonomic.org/search/view.cgi?id=8530.

    Abstract

    Previous research comparing detection times for syllables and for phonemes has consistently found that syllables are responded to faster than phonemes. This finding poses theoretical problems for strictly hierarchical models of speech recognition, in which smaller units should be able to be identified faster than larger units. However, inspection of the characteristics of previous experiments’stimuli reveals that subjects have been able to respond to syllables on the basis of only a partial analysis of the stimulus. In the present experiment, five groups of subjects listened to identical stimulus material. Phoneme and syllable monitoring under standard conditions was compared with monitoring under conditions in which near matches of target and stimulus occurred on no-response trials. In the latter case, when subjects were forced to analyze each stimulus fully, phonemes were detected faster than syllables.
  • Ogdie, M. N., Fisher, S. E., Yang, M., Ishii, J., Francks, C., Loo, S. K., Cantor, R. M., McCracken, J. T., McGough, J. J., Smalley, S. L., & Nelson, S. F. (2004). Attention Deficit Hyperactivity Disorder: Fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics, 75(4), 661-668. doi:10.1086/424387.

    Abstract

    We completed fine mapping of nine positional candidate regions for attention-deficit/hyperactivity disorder (ADHD) in an extended population sample of 308 affected sibling pairs (ASPs), constituting the largest linkage sample of families with ADHD published to date. The candidate chromosomal regions were selected from all three published genomewide scans for ADHD, and fine mapping was done to comprehensively validate these positional candidate regions in our sample. Multipoint maximum LOD score (MLS) analysis yielded significant evidence of linkage on 6q12 (MLS 3.30; empiric P=.024) and 17p11 (MLS 3.63; empiric P=.015), as well as suggestive evidence on 5p13 (MLS 2.55; empiric P=.091). In conjunction with the previously reported significant linkage on the basis of fine mapping 16p13 in the same sample as this report, the analyses presented here indicate that four chromosomal regions—5p13, 6q12, 16p13, and 17p11—are likely to harbor susceptibility genes for ADHD. The refinement of linkage within each of these regions lays the foundation for subsequent investigations using association methods to detect risk genes of moderate effect size.
  • Ostarek, M., Ishag, I., Joosen, D., & Huettig, F. (2018). Saccade trajectories reveal dynamic interactions of semantic and spatial information during the processing of implicitly spatial words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(10), 1658-1670. doi:10.1037/xlm0000536.

    Abstract

    Implicit up/down words, such as bird and foot, systematically influence performance on visual tasks involving immediately following targets in compatible vs. incompatible locations. Recent studies have observed that the semantic relation between prime words and target pictures can strongly influence the size and even the direction of the effect: Semantically related targets are processed faster in congruent vs. incongruent locations (location-specific priming), whereas unrelated targets are processed slower in congruent locations. Here, we used eye-tracking to investigate the moment-to-moment processes underlying this pattern. Our reaction time results for related targets replicated the location-specific priming effect and showed a trend towards interference for unrelated targets. We then used growth curve analysis to test how up/down words and their match vs. mismatch with immediately following targets in terms of semantics and vertical location influences concurrent saccadic eye movements. There was a strong main effect of spatial association on linear growth with up words biasing changes in y-coordinates over time upwards relative to down words (and vice versa). Similar to the RT data, this effect was strongest for semantically related targets and reversed for unrelated targets. Intriguingly, all conditions showed a bias in the congruent direction in the initial stage of the saccade. Then, at around halfway into the saccade the effect kept increasing in the semantically related condition, and reversed in the unrelated condition. These results suggest that online processing of up/down words triggers direction-specific oculomotor processes that are dynamically modulated by the semantic relation between prime words and targets.
  • Osterhout, L., & Hagoort, P. (1999). A superficial resemblance does not necessarily mean you are part of the family: Counterarguments to Coulson, King and Kutas (1998) in the P600/SPS-P300 debate. Language and Cognitive Processes, 14, 1-14. doi:10.1080/016909699386356.

    Abstract

    Two recent studies (Coulson et al., 1998;Osterhout et al., 1996)examined the
    relationship between the event-related brain potential (ERP) responses to linguistic syntactic anomalies (P600/SPS) and domain-general unexpected events (P300). Coulson et al. concluded that these responses are highly similar, whereas Osterhout et al. concluded that they are distinct. In this comment, we evaluate the relativemerits of these claims. We conclude that the available evidence indicates that the ERP response to syntactic anomalies is at least partially distinct from the ERP response to unexpected anomalies that do not involve a grammatical violation
  • Otake, T., & Cutler, A. (1999). Perception of suprasegmental structure in a nonnative dialect. Journal of Phonetics, 27, 229-253. doi:10.1006/jpho.1999.0095.

    Abstract

    Two experiments examined the processing of Tokyo Japanese pitchaccent distinctions by native speakers of Japanese from two accentlessvariety areas. In both experiments, listeners were presented with Tokyo Japanese speech materials used in an earlier study with Tokyo Japanese listeners, who clearly exploited the pitch-accent information in spokenword recognition. In the "rst experiment, listeners judged from which of two words, di!ering in accentual structure, isolated syllables had been extracted. Both new groups were, overall, as successful at this task as Tokyo Japanese speakers had been, but their response patterns differed from those of the Tokyo Japanese, for instance in that a bias towards H judgments in the Tokyo Japanese responses was weakened in the present groups' responses. In a second experiment, listeners heard word fragments and guessed what the words were; in this task, the speakers from accentless areas again performed significantly above chance, but their responses showed less sensitivity to the information in the input, and greater bias towards vocabulary distribution frequencies, than had been observed with the Tokyo Japanese listeners. The results suggest that experience with a local accentless dialect affects the processing of accent for word recognition in Tokyo Japanese, even for listeners with extensive exposure to Tokyo Japanese.
  • Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Converging evidence from electrocorticography and BOLD fMRI for a sharp functional boundary in superior temporal gyrus related to multisensory speech processing. Frontiers in Human Neuroscience, 12: 141. doi:10.3389/fnhum.2018.00141.

    Abstract

    Although humans can understand speech using the auditory modality alone, in noisy environments visual speech information from the talker’s mouth can rescue otherwise unintelligible auditory speech. To investigate the neural substrates of multisensory speech perception, we compared neural activity from the human superior temporal gyrus (STG) in two datasets. One dataset consisted of direct neural recordings (electrocorticography, ECoG) from surface electrodes implanted in epilepsy patients (this dataset has been previously published). The second dataset consisted of indirect measures of neural activity using blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). Both ECoG and fMRI participants viewed the same clear and noisy audiovisual speech stimuli and performed the same speech recognition task. Both techniques demonstrated a sharp functional boundary in the STG, spatially coincident with an anatomical boundary defined by the posterior edge of Heschl’s gyrus. Cortex on the anterior side of the boundary responded more strongly to clear audiovisual speech than to noisy audiovisual speech while cortex on the posterior side of the boundary did not. For both ECoG and fMRI measurements, the transition between the functionally distinct regions happened within 10 mm of anterior-to-posterior distance along the STG. We relate this boundary to the multisensory neural code underlying speech perception and propose that it represents an important functional division within the human speech perception network.
  • Ozker, M., Yoshor, D., & Beauchamp, M. (2018). Frontal cortex selects representations of the talker’s mouth to aid in speech perception. eLife, 7: e30387. doi:10.7554/eLife.30387.
  • Palva, J. M., Wang, S. H., Palva, S., Zhigalov, A., Monto, S., Brookes, M. J., & Schoffelen, J.-M. (2018). Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. NeuroImage, 173, 632-643. doi:10.1016/j.neuroimage.2018.02.032.

    Abstract

    When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study
    long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is
    nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear
    correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear
    source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based
    connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed.
    Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular
    in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here,
    however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large
    numbers of spurious false positive connections through field spread in the vicinity of true interactions. This
    fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most
    importantly, beyond defining and illustrating the problem of spurious, or “ghost” interactions, we provide a
    rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal
    mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that
    spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when
    using measures that are immune to zero-lag correlations.
  • Pascucci, D., Hervais-Adelman, A., & Plomp, G. (2018). Gating by induced A-Gamma asynchrony in selective attention. Human Brain Mapping, 39(10), 3854-3870. doi:10.1002/hbm.24216.

    Abstract

    Visual selective attention operates through top–down mechanisms of signal enhancement and suppression, mediated by a-band oscillations. The effects of such top–down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large-s cale interactions and local activity changes in V1 that orchestrat es selective attention, using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time-varying, directed connectivity analysis revealed frequency-specific effects of attentional selection: bottom–up g-band influences from visual areas increased rapidly in response to attended stimuli while distributed top–down a-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top–down parietal signals and a–g PAC in visual areas.
    Parietal a-band influences disrupted the a–g coupling in visual cortex, which in turn reduced the amount of g-band outflow from visual area s. Our results are a first demon stration of how directed interactions affect cross-frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling at target regions, which prevents them from propagating task-irrelevant information.
  • Peeters, D. (2018). A standardized set of 3D-objects for virtual reality research and applications. Behavior Research Methods, 50(3), 1047-1054. doi:10.3758/s13428-017-0925-3.

    Abstract

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theory in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3D-objects for virtual reality research is important, as reaching valid theoretical conclusions critically hinges on the use of well controlled experimental stimuli. Sharing standardized 3D-objects across different virtual reality labs will allow for science to move forward more quickly.
  • Peeters, D., & Dijkstra, T. (2018). Sustained inhibition of the native language in bilingual language production: A virtual reality approach. Bilingualism: Language and Cognition, 21(5), 1035-1061. doi:10.1017/S1366728917000396.

    Abstract

    Bilinguals often switch languages as a function of the language background of their addressee. The control mechanisms supporting bilinguals' ability to select the contextually appropriate language are heavily debated. Here we present four experiments in which unbalanced bilinguals named pictures in their first language Dutch and their second language English in mixed and blocked contexts. Immersive virtual reality technology was used to increase the ecological validity of the cued language-switching paradigm. Behaviorally, we consistently observed symmetrical switch costs, reversed language dominance, and asymmetrical mixing costs. These findings indicate that unbalanced bilinguals apply sustained inhibition to their dominant L1 in mixed language settings. Consequent enhanced processing costs for the L1 in a mixed versus a blocked context were reflected by a sustained positive component in event-related potentials. Methodologically, the use of virtual reality opens up a wide range of possibilities to study language and communication in bilingual and other communicative settings.
  • Perlman, M., Little, H., Thompson, B., & Thompson, R. L. (2018). Iconicity in signed and spoken vocabulary: A comparison between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9: 1433. doi:10.3389/fpsyg.2018.01433.

    Abstract

    Considerable evidence now shows that all languages, signed and spoken, exhibit a significant amount of iconicity. We examined how the visual-gestural modality of signed languages facilitates iconicity for different kinds of lexical meanings compared to the auditory-vocal modality of spoken languages. We used iconicity ratings of hundreds of signs and words to compare iconicity across the vocabularies of two signed languages – American Sign Language and British Sign Language, and two spoken languages – English and Spanish. We examined (1) the correlation in iconicity ratings between the languages; (2) the relationship between iconicity and an array of semantic variables (ratings of concreteness, sensory experience, imageability, perceptual strength of vision, audition, touch, smell and taste); (3) how iconicity varies between broad lexical classes (nouns, verbs, adjectives, grammatical words and adverbs); and (4) between more specific semantic categories (e.g., manual actions, clothes, colors). The results show several notable patterns that characterize how iconicity is spread across the four vocabularies. There were significant correlations in the iconicity ratings between the four languages, including English with ASL, BSL, and Spanish. The highest correlation was between ASL and BSL, suggesting iconicity may be more transparent in signs than words. In each language, iconicity was distributed according to the semantic variables in ways that reflect the semiotic affordances of the modality (e.g., more concrete meanings more iconic in signs, not words; more auditory meanings more iconic in words, not signs; more tactile meanings more iconic in both signs and words). Analysis of the 220 meanings with ratings in all four languages further showed characteristic patterns of iconicity across broad and specific semantic domains, including those that distinguished between signed and spoken languages (e.g., verbs more iconic in ASL, BSL, and English, but not Spanish; manual actions especially iconic in ASL and BSL; adjectives more iconic in English and Spanish; color words especially low in iconicity in ASL and BSL). These findings provide the first quantitative account of how iconicity is spread across the lexicons of signed languages in comparison to spoken languages
  • Perry, L. K., Perlman, M., Winter, B., Massaro, D. W., & Lupyan, G. (2018). Iconicity in the speech of children and adults. Developmental Science, 21: e12572. doi:10.1111/desc.12572.

    Abstract

    Iconicity – the correspondence between form and meaning – may help young children learn to use new words. Early-learned words are higher in iconicity than later learned words. However, it remains unclear what role iconicity may play in actual language use. Here, we ask whether iconicity relates not just to the age at which words are acquired, but also to how frequently children and adults use the words in their speech. If iconicity serves to bootstrap word learning, then we would expect that children should say highly iconic words more frequently than less iconic words, especially early in development. We would also expect adults to use iconic words more often when speaking to children than to other adults. We examined the relationship between frequency and iconicity for approximately 2000 English words. Replicating previous findings, we found that more iconic words are learned earlier. Moreover, we found that more iconic words tend to be used more by younger children, and adults use more iconic words when speaking to children than to other adults. Together, our results show that young children not only learn words rated high in iconicity earlier than words low in iconicity, but they also produce these words more frequently in conversation – a pattern that is reciprocated by adults when speaking with children. Thus, the earliest conversations of children are relatively higher in iconicity, suggesting that this iconicity scaffolds the production and comprehension of spoken language during early development.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Dynamic changes in the functional anatomy of the human brain during recall of abstract designs related to practice. Neuropsychologia, 37, 567-587.

    Abstract

    In the present PET study we explore some functional aspects of the interaction between attentional/control processes and learning/memory processes. The network of brain regions supporting recall of abstract designs were studied in a less practiced and in a well practiced state. The results indicate that automaticity, i.e., a decreased dependence on attentional and working memory resources, develops as a consequence of practice. This corresponds to the practice related decreases of activity in the prefrontal, anterior cingulate, and posterior parietal regions. In addition, the activity of the medial temporal regions decreased as a function of practice. This indicates an inverse relation between the strength of encoding and the activation of the MTL during retrieval. Furthermore, the pattern of practice related increases in the auditory, posterior insular-opercular extending into perisylvian supra marginal region, and the right mid occipito-temporal region, may reflect a lower degree of inhibitory attentional modulation of task irrelevant processing and more fully developed representations of the abstract designs, respectively. We also suggest that free recall is dependent on bilateral prefrontal processing, in particular non-automatic free recall. The present results cofirm previous functional neuroimaging studies of memory retrieval indicating that recall is subserved by a network of interacting brain regions. Furthermore, the results indicate that some components of the neural network subserving free recall may have a dynamic role and that there is a functional restructuring of the information processing networks during the learning process.
  • Petersson, K. M., Reis, A., Castro-Caldas, A., & Ingvar, M. (1999). Effective auditory-verbal encoding activates the left prefrontal and the medial temporal lobes: A generalization to illiterate subjects. NeuroImage, 10, 45-54. doi:10.1006/nimg.1999.0446.

    Abstract

    Recent event-related FMRI studies indicate that the prefrontal (PFC) and the medial temporal lobe (MTL) regions are more active during effective encoding than during ineffective encoding. The within-subject design and the use of well-educated young college students in these studies makes it important to replicate these results in other study populations. In this PET study, we used an auditory word-pair association cued-recall paradigm and investigated a group of healthy upper middle-aged/older illiterate women. We observed a positive correlation between cued-recall success and the regional cerebral blood flow of the left inferior PFC (BA 47) and the MTLs. Specifically, we used the cuedrecall success as a covariate in a general linear model and the results confirmed that the left inferior PFC and the MTLare more active during effective encoding than during ineffective encoding. These effects were observed during encoding of both semantically and phonologically related word pairs, indicating that these effects are robust in the studied population, that is, reproducible within group. These results generalize the results of Brewer et al. (1998, Science 281, 1185– 1187) and Wagner et al. (1998, Science 281, 1188–1191) to an upper middle aged/older illiterate population. In addition, the present study indicates that effective relational encoding correlates positively with the activity of the anterior medial temporal lobe regions.
  • Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28(3), 383-407. doi:10.1207/s15516709cog2803_4.

    Abstract

    In the present study, using event-related functional magnetic resonance imaging, we investigated a group of participants on a grammaticality classification task after they had been exposed to well-formed consonant strings generated from an artificial regular grammar.We used an implicit acquisition paradigm in which the participants were exposed to positive examples. The objective of this studywas to investigate whether brain regions related to language processing overlap with the brain regions activated by the grammaticality classification task used in the present study. Recent meta-analyses of functional neuroimaging studies indicate that syntactic processing is related to the left inferior frontal gyrus (Brodmann's areas 44 and 45) or Broca's region. In the present study, we observed that artificial grammaticality violations activated Broca's region in all participants. This observation lends some support to the suggestions that artificial grammar learning represents a model for investigating aspects of language learning in infants.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Learning-related effects and functional neuroimaging. Human Brain Mapping, 7, 234-243. doi:10.1002/(SICI)1097-0193(1999)7:4<234:AID-HBM2>3.0.CO;2-O.

    Abstract

    A fundamental problem in the study of learning is that learning-related changes may be confounded by nonspecific time effects. There are several strategies for handling this problem. This problem may be of greater significance in functional magnetic resonance imaging (fMRI) compared to positron emission tomography (PET). Using the general linear model, we describe, compare, and discuss two approaches for separating learning-related from nonspecific time effects. The first approach makes assumptions on the general behavior of nonspecific effects and explicitly models these effects, i.e., nonspecific time effects are incorporated as a linear or nonlinear confounding covariate in the statistical model. The second strategy makes no a priori assumption concerning the form of nonspecific time effects, but implicitly controls for nonspecific effects using an interaction approach, i.e., learning effects are assessed with an interaction contrast. The two approaches depend on specific assumptions and have specific limitations. With certain experimental designs, both approaches may be used and the results compared, lending particular support to effects that are independent of the method used. A third and perhaps better approach that sometimes may be practically unfeasible is to use a completely temporally balanced experimental design. The choice of approach may be of particular importance when learning related effects are studied with fMRI.
  • Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging I: Non-inferential methods and statistical models. Philosofical Transactions of the Royal Soeciety B, 354, 1239-1260.
  • Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging II: Signal detection and statistical inference. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354, 1261-1282.
  • Petersson, K. M. (2004). The human brain, language, and implicit learning. Impuls, Tidsskrift for psykologi (Norwegian Journal of Psychology), 58(3), 62-72.
  • Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Brainstem involvement in the initial response to pain. NeuroImage, 22, 995-1005. doi:10.1016/j.neuroimage.2004.01.046.

    Abstract

    The autonomic responses to acute pain exposure usually habituate rapidly while the subjective ratings of pain remain high for more extended periods of time. Thus, systems involved in the autonomic response to painful stimulation, for example the hypothalamus and the brainstem, would be expected to attenuate the response to pain during prolonged stimulation. This suggestion is in line with the hypothesis that the brainstem is specifically involved in the initial response to pain. To probe this hypothesis, we performed a positron emission tomography (PET) study where we scanned subjects during the first and second minute of a prolonged tonic painful cold stimulation (cold pressor test) and nonpainful cold stimulation. Galvanic skin response (GSR) was recorded during the PET scanning as an index of autonomic sympathetic response. In the main effect of pain, we observed increased activity in the thalamus bilaterally, in the contralateral insula and in the contralateral anterior cingulate cortex but no significant increases in activity in the primary or secondary somatosensory cortex. The autonomic response (GSR) decreased with stimulus duration. Concomitant with the autonomic response, increased activity was observed in brainstem and hypothalamus areas during the initial vs. the late stimulation. This effect was significantly stronger for the painful than for the cold stimulation. Activity in the brainstem showed pain-specific covariation with areas involved in pain processing, indicating an interaction between the brainstem and cortical pain networks. The findings indicate that areas in the brainstem are involved in the initial response to noxious stimulation, which is also characterized by an increased sympathetic response.
  • Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., & Hansson, P. (1999). A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain, 83, 459-470.

    Abstract

    The objective of this study was to investigate the central processing of dynamic mechanical allodynia in patients with mononeuropathy. Regional cerebral bloodflow, as an indicator of neuronal activity, was measured with positron emission tomography. Paired comparisons were made between three different states; rest, allodynia during brushing the painful skin area, and brushing of the homologous contralateral area. Bilateral activations were observed in the primary somatosensory cortex (S1) and the secondary somatosensory cortex (S2) during allodynia compared to rest. The S1 activation contralateral to the site of the stimulus was more expressed during allodynia than during innocuous touch. Significant activations of the contralateral posterior parietal cortex, the periaqueductal gray (PAG), the thalamus bilaterally and motor areas were also observed in the allodynic state compared to both non-allodynic states. In the anterior cingulate cortex (ACC) there was only a suggested activation when the allodynic state was compared with the non-allodynic states. In order to account for the individual variability in the intensity of allodynia and ongoing spontaneous pain, rCBF was regressed on the individually reported pain intensity, and significant covariations were observed in the ACC and the right anterior insula. Significantly decreased regional blood flow was observed bilaterally in the medial and lateral temporal lobe as well as in the occipital and posterior cingulate cortices when the allodynic state was compared to the non-painful conditions. This finding is consistent with previous studies suggesting attentional modulation and a central coping strategy for known and expected painful stimuli. Involvement of the medial pain system has previously been reported in patients with mononeuropathy during ongoing spontaneous pain. This study reveals a bilateral activation of the lateral pain system as well as involvement of the medial pain system during dynamic mechanical allodynia in patients with mononeuropathy.
  • Petrovic, P., Carlsson, K., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Context-dependent deactivation of the amygdala during pain. Journal of Cognitive Neuroscience, 16, 1289-1301.

    Abstract

    The amygdala has been implicated in fundamental functions for the survival of the organism, such as fear and pain. In accord with this, several studies have shown increased amygdala activity during fear conditioning and the processing of fear-relevant material in human subjects. In contrast, functional neuroimaging studies of pain have shown a decreased amygdala activity. It has previously been proposed that the observed deactivations of the amygdala in these studies indicate a cognitive strategy to adapt to a distressful but in the experimental setting unavoidable painful event. In this positron emission tomography study, we show that a simple contextual manipulation, immediately preceding a painful stimulation, that increases the anticipated duration of the painful event leads to a decrease in amygdala activity and modulates the autonomic response during the noxious stimulation. On a behavioral level, 7 of the 10 subjects reported that they used coping strategies more intensely in this context. We suggest that the altered activity in the amygdala may be part of a mechanism to attenuate pain-related stress responses in a context that is perceived as being more aversive. The study also showed an increased activity in the rostral part of anterior cingulate cortex in the same context in which the amygdala activity decreased, further supporting the idea that this part of the cingulate cortex is involved in the modulation of emotional and pain networks
  • Piai, V., Rommers, J., & Knight, R. T. (2018). Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production. European Journal of Neuroscience, 48(7), 2622-2629. doi:10.1111/ejn.13695.

    Abstract

    Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested
    that alpha–beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear
    lead-in sentences that either constrain the final word (‘He locked the door with the’) or not (‘She walked in here with the’). The last
    word is shown as a picture to be named. Previous studies have consistently found alpha–beta power decreases prior to picture
    onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However,
    the relative contribution of temporal versus frontal areas to alpha–beta power decreases is unknown. We recorded the electroencephalogram
    from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral
    frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect
    in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the
    alpha–beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior
    lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical
    clustering analyses of all patients’ lesion profiles, and behavioural and electrophysiological effects identified those two
    patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left
    lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha–beta power decreases underlying context-
    driven word production.
  • Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communication. Proceedings of the Royal Society B: Biological Sciences, 285(1880): 20180598. doi:10.1098/rspb.2018.0598.

    Abstract

    Language, humans’ most distinctive trait, still remains a ‘mystery’ for evolutionary theory. It is underpinned by a universal infrastructure—cooperative turn-taking—which has been suggested as an ancient mechanism bridging the existing gap between the articulate human species and their inarticulate primate cousins. However, we know remarkably little about turn-taking systems of non-human animals, and methodological confounds have often prevented meaningful cross-species comparisons. Thus, the extent to which cooperative turn-taking is uniquely human or represents a homologous and/or analogous trait is currently unknown. The present paper draws attention to this promising research avenue by providing an overview of the state of the art of turn-taking in four animal taxa—birds, mammals, insects and anurans. It concludes with a new comparative framework to spur more research into this research domain and to test which elements of the human turn-taking system are shared across species and taxa.
  • Poletiek, F. H., Conway, C. M., Ellefson, M. R., Lai, J., Bocanegra, B. R., & Christiansen, M. H. (2018). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Cognitive Science, 42(8), 2855-2889. doi:10.1111/cogs.12685.

    Abstract

    It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right‐branching and center‐embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center‐embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input “grew” according to structural complexity, compared to when it “grew” according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center‐embedded structures when the input is organized according to structural complexity.
  • Popov, T., Jensen, O., & Schoffelen, J.-M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 178, 277-286. doi:10.1016/j.neuroimage.2018.05.054.

    Abstract

    Oscillatory activity in the alpha and gamma bands is considered key in shaping functional brain architecture. Power
    increases in the high-frequency gamma band are typically reported in parallel to decreases in the low-frequency alpha
    band. However, their functional significance and in particular their interactions are not well understood. The present
    study shows that, in the context of an N-backworking memory task, alpha power decreases in the dorsal visual stream
    are related to gamma power increases in early visual areas. Granger causality analysis revealed directed interregional
    interactions from dorsal to ventral stream areas, in accordance with task demands. Present results reveal a robust,
    behaviorally relevant, and architectonically decisive power-to-power relationship between alpha and gamma activity.
    This relationship suggests that anatomically distant power fluctuations in oscillatory activity can link cerebral network
    dynamics on trial-by-trial basis during cognitive operations such as working memory
  • Popov, T., Oostenveld, R., & Schoffelen, J.-M. (2018). FieldTrip made easy: An analysis protocol for group analysis of the auditory steady state brain response in time, frequency, and space. Frontiers in Neuroscience, 12: 711. doi:10.3389/fnins.2018.00711.

    Abstract

    The auditory steady state evoked response (ASSR) is a robust and frequently utilized
    phenomenon in psychophysiological research. It reflects the auditory cortical response
    to an amplitude-modulated constant carrier frequency signal. The present report
    provides a concrete example of a group analysis of the EEG data from 29 healthy human
    participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we
    demonstrate sensor-level analysis in the time domain, allowing for a description of the
    event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency
    analysis is applied to describe the spectral characteristics of the ASSR, followed by
    group level statistical analysis in the frequency domain. Third, we show how timeand
    frequency-domain analysis approaches can be combined in order to describe
    the temporal and spectral development of the ASSR. Finally, we demonstrate source
    reconstruction techniques to characterize the primary neural generators of the ASSR.
    Throughout, we pay special attention to explaining the design of the analysis pipeline
    for single subjects and for the group level analysis. The pipeline presented here can be
    adjusted to accommodate other experimental paradigms and may serve as a template
    for similar analyses.
  • Popov, V., Ostarek, M., & Tenison, C. (2018). Practices and pitfalls in inferring neural representations. NeuroImage, 174, 340-351. doi:10.1016/j.neuroimage.2018.03.041.

    Abstract

    A key challenge for cognitive neuroscience is deciphering the representational schemes of the brain. Stimulus-feature-based encoding models are becoming increasingly popular for inferring the dimensions of neural representational spaces from stimulus-feature spaces. We argue that such inferences are not always valid because successful prediction can occur even if the two representational spaces use different, but correlated, representational schemes. We support this claim with three simulations in which we achieved high prediction accuracy despite systematic differences in the geometries and dimensions of the underlying representations. Detailed analysis of the encoding models' predictions showed systematic deviations from ground-truth, indicating that high prediction accuracy is insufficient for making representational inferences. This fallacy applies to the prediction of actual neural patterns from stimulus-feature spaces and we urge caution in inferring the nature of the neural code from such methods. We discuss ways to overcome these inferential limitations, including model comparison, absolute model performance, visualization techniques and attentional modulation.
  • St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Smith, G. D. (2018). Developmental changes within the genetic architecture of social communication behaviour: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598-606. doi:10.1016/j.biopsych.2017.09.020.

    Abstract

    Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct sets of genes that exert their maximum influence during different periods of development. This includes analyses of social-communciation difficulties that share, depending on their developmental stage, stronger genetic links with either Autism Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in unrelated individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as social-communication difficulties, during a ~10-year period spanning childhood and adolescence. Methods: Longitudinally assessed quantitative social-communication problems (N ≤ 5,551) were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using standardised measures, genetic architectures were investigated with novel multivariate genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome genotyping information. Analogous to twin research, GSEM included Cholesky decomposition, common pathway and independent pathway models. Results: A 2-factor Cholesky decomposition model described the data best. One genetic factor was common to SCDC measures across development, the other accounted for independent variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% of the genetic variation at 17 years. Conclusion: Using latent factor models, we identified developmental changes in the genetic architecture of social-communication difficulties that enhance the understanding of ASD and schizophrenia-related dimensions. More generally, GSEM present a framework for modelling shared genetic aetiologies between phenotypes and can provide prior information with respect to patterns and continuity of trait-disorder overlap
  • St Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D. and 3 moreSt Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D., Mortensen, P. B., Daly, M., & Davey Smith, G. (2018). ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, 23, 263-270. doi:10.1038/mp.2016.198.

    Abstract

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and
    schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on
    the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth
    (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social
    Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases,
    11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the
    Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social
    communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of
    genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms

    Additional information

    mp2016198x1.docx
  • Pouw, W., Van Gog, T., Zwaan, R. A., Agostinho, S., & Paas, F. (2018). Co-thought gestures in children's mental problem solving: Prevalence and effects on subsequent performance. Applied Cognitive Psychology, 32(1), 66-80. doi:10.1002/acp.3380.

    Abstract

    Co-thought gestures are understudied as compared to co-speech gestures yet, may provide insight into cognitive functions of gestures that are independent of speech processes. A recent study with adults showed that co-thought gesticulation occurred spontaneously during mental preparation of problem solving. Moreover, co-thought gesturing (either spontaneous or instructed) during mental preparation was effective for subsequent solving of the Tower of Hanoi under conditions of high cognitive load (i.e., when visual working memory capacity was limited and when the task was more difficult). In this preregistered study (), we investigated whether co-thought gestures would also spontaneously occur and would aid problem-solving processes in children (N=74; 8-12years old) under high load conditions. Although children also spontaneously used co-thought gestures during mental problem solving, this did not aid their subsequent performance when physically solving the problem. If these null results are on track, co-thought gesture effects may be different in adults and children.

    Files private

    Request files
  • Praamstra, P., Plat, E. M., Meyer, A. S., & Horstink, M. W. I. M. (1999). Motor cortex activation in Parkinson's disease: Dissociation of electrocortical and peripheral measures of response generation. Movement Disorders, 14, 790-799. doi:10.1002/1531-8257(199909)14:5<790:AID-MDS1011>3.0.CO;2-A.

    Abstract

    This study investigated characteristics of motor cortex activation and response generation in Parkinson's disease with measures of electrocortical activity (lateralized readiness potential [LRP]), electromyographic activity (EMG), and isometric force in a noise-compatibility task. When presented with stimuli consisting of incompatible target and distracter elements asking for responses of opposite hands, patients were less able than control subjects to suppress activation of the motor cortex controlling the wrong response hand. This was manifested in the pattern of reaction times and in an incorrect lateralization of the LRP. Onset latency and rise time of the LRP did not differ between patients and control subjects, but EMG and response force developed more slowly in patients. Moreover, in patients but not in control subjects, the rate of development of EMG and response force decreased as reaction time increased. We hypothesize that this dissociation between electrocortical activity and peripheral measures in Parkinson's disease is the result of changes in motor cortex function that alter the relation between signal-related and movement-related neural activity in the motor cortex. In the LRP, this altered balance may obscure an abnormal development of movement-related neural activity.
  • Quinn, S., Donnelly, S., & Kidd, E. (2018). The relationship between symbolic play and language acquisition: A meta-analytic review. Developmental Review, 49, 121-135. doi:10.1016/j.dr.2018.05.005.

    Abstract

    A developmental relationship between symbolic play and language has been long proposed, going as far back as the writings of Piaget and Vygotsky. In the current paper we build on recent qualitative reviews of the literature by reporting the first quantitative analysis of the relationship. We conducted a three-level meta-analysis of past studies that have investigated the relationship between symbolic play and language acquisition. Thirty-five studies (N = 6848) met the criteria for inclusion. Overall, we observed a significant small-to-medium association between the two domains (r = .35). Several moderating variables were included in the analyses, including: (i) study design (longitudinal, concurrent), (ii) the manner in which language was measured (comprehension, production), and (iii) the age at which this relationship is measured. The effect was weakly moderated by these three variables, but overall the association was robust, suggesting that symbolic play and language are closely related in development.

    Additional information

    Quinn_Donnelly_Kidd_2018sup.docx
  • Ravignani, A. (2018). Darwin, sexual selection, and the origins of music. Trends in Ecology and Evolution, 33(10), 716-719. doi:10.1016/j.tree.2018.07.006.

    Abstract

    Humans devote ample time to produce and perceive music. How and why this behavioral propensity originated in our species is unknown. For centuries, speculation dominated the study of the evolutionary origins of musicality. Following Darwin’s early intuitions, recent empirical research is opening a new chapter to tackle this mystery.
  • Ravignani, A. (2018). Comment on “Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia” [J. Acoust. Soc. Am. 141, 1824-1834 (2017)]. The Journal of the Acoustical Society of America, 143, 504-508. doi:10.1121/1.5021770.

    Abstract

    In their recent article, Sabinsky and colleagues investigated heterogeneity in harbor seals' vocalizations. The authors found seasonal and geographical variation in acoustic parameters, warning readers that recording conditions might account for some of their results. This paper expands on the temporal aspect of the encountered heterogeneity in harbor seals' vocalizations. Temporal information is the least susceptible to variable recording conditions. Hence geographical and seasonal variability in roar timing constitutes the most robust finding in the target article. In pinnipeds, evidence of timing and rhythm in the millisecond range—as opposed to circadian and seasonal rhythms—has theoretical and interdisciplinary relevance. In fact, the study of rhythm and timing in harbor seals is particularly decisive to support or confute a cross-species hypothesis, causally linking the evolution of vocal production learning and rhythm. The results by Sabinsky and colleagues can shed light on current scientific questions beyond pinniped bioacoustics, and help formulate empirically testable predictions.
  • Ravignani, A., Chiandetti, C., & Gamba, M. (2018). L'evoluzione del ritmo. Le Scienze, (04 maggio 2018).
  • Ravignani, A., Thompson, B., Grossi, T., Delgado, T., & Kirby, S. (2018). Evolving building blocks of rhythm: How human cognition creates music via cultural transmission. Annals of the New York Academy of Sciences, 1423(1), 176-187. doi:10.1111/nyas.13610.

    Abstract

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits
    commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists
    focused onmusicality, namely the human biocognitive predispositions formusic, with an emphasis on cross-cultural
    similarities. Other scholars investigatedmusic, seen as a cultural product, focusing on the variation in worldmusical
    cultures.Recent experiments founddeep connections betweenmusicandmusicality, reconciling theseopposing views.
    Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music.
    Data from two experiments are analyzed using two complementary techniques. In the experiments, participants
    hear drumming patterns and imitate them. These patterns are then given to the same or another participant to
    imitate. The structure of these initially random patterns is tracked along experimental “generations.” Frequentist
    statistics show how participants’ biases are amplified by cultural transmission, making drumming patterns more
    structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model
    approximates the motif structures participants learned and created. Our data and models suggest that individual
    biases for musicality may shape the cultural transmission of musical rhythm.

    Additional information

    nyas13610-sup-0001-suppmat.pdf
  • Ravignani, A., Thompson, B., & Filippi, P. (2018). The evolution of musicality: What can be learned from language evolution research? Frontiers in Neuroscience, 12: 20. doi:10.3389/fnins.2018.00020.

    Abstract

    Language and music share many commonalities, both as natural phenomena and as subjects of intellectual inquiry. Rather than exhaustively reviewing these connections, we focus on potential cross-pollination of methodological inquiries and attitudes. We highlight areas in which scholarship on the evolution of language may inform the evolution of music. We focus on the value of coupled empirical and formal methodologies, and on the futility of mysterianism, the declining view that the nature, origins and evolution of language cannot be addressed empirically. We identify key areas in which the evolution of language as a discipline has flourished historically, and suggest ways in which these advances can be integrated into the study of the evolution of music.
  • Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC Research Notes, 11: 3. doi:10.1186/s13104-017-3107-6.

    Abstract

    Objectives: Timing and rhythm (i.e. temporal structure) are crucial, though historically neglected, dimensions of animal communication. When investigating these in non-human animals, it is often difficult to balance experimental control and ecological validity. Here I present the first step of an attempt to balance the two, focusing on the timing of vocal rhythms in a harbor seal pup (Phoca vitulina). Collection of this data had a clear aim: To find spontaneous vocal rhythms in this individual in order to design individually-adapted and ecologically-relevant stimuli for a later playback experiment. Data description: The calls of one seal pup were recorded. The audio recordings were annotated using Praat, a free software to analyze vocalizations in humans and other animals. The annotated onsets and offsets of vocalizations were then imported in a Python script. The script extracted three types of timing information: the duration of calls, the intervals between calls’ onsets, and the intervals between calls’ maximum-intensity peaks. Based on the annotated data, available to download, I provide simple descriptive statistics for these temporal measures, and compare their distributions.
  • Ravignani, A., & Verhoef, T. (2018). Which melodic universals emerge from repeated signaling games?: A Note on Lumaca and Baggio (2017). Artificial Life, 24(2), 149-153. doi:10.1162/ARTL_a_00259.

    Abstract

    Music is a peculiar human behavior, yet we still know little as to why and how music emerged. For centuries, the study of music has been the sole prerogative of the humanities. Lately, however, music is being increasingly investigated by psychologists, neuroscientists, biologists, and computer scientists. One approach to studying the origins of music is to empirically test hypotheses about the mechanisms behind this structured behavior. Recent lab experiments show how musical rhythm and melody can emerge via the process of cultural transmission. In particular, Lumaca and Baggio (2017) tested the emergence of a sound system at the boundary between music and language. In this study, participants were given random pairs of signal-meanings; when participants negotiated their meaning and played a “ game of telephone ” with them, these pairs became more structured and systematic. Over time, the small biases introduced in each artificial transmission step accumulated, displaying quantitative trends, including the emergence, over the course of artificial human generations, of features resembling properties of language and music. In this Note, we highlight the importance of Lumaca and Baggio ʼ s experiment, place it in the broader literature on the evolution of language and music, and suggest refinements for future experiments. We conclude that, while psychological evidence for the emergence of proto-musical features is accumulating, complementary work is needed: Mathematical modeling and computer simulations should be used to test the internal consistency of experimentally generated hypotheses and to make new predictions.
  • Ravignani, A., Thompson, B., Lumaca, M., & Grube, M. (2018). Why do durations in musical rhythms conform to small integer ratios? Frontiers in Computational Neuroscience, 12: 86. doi:10.3389/fncom.2018.00086.

    Abstract

    One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given a randomly timed drum pattern to reproduce, participants subconsciously transform it toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon are little understood, but might be explained by combining two theoretical frameworks from psychophysics. The scalar expectancy theory describes time interval perception and reproduction in terms of Weber's law: just detectable durational differences equal a constant fraction of the reference duration. The notion of categorical perception emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception and production might arise from the interaction of the scalar property of timing with the categorical perception of time intervals, and that neurally it can plausibly be related to oscillatory activity. We support our integrative approach with mathematical derivations to formalize assumptions and provide testable predictions. We present equations to calculate durational ratios by: (i) parameterizing the relationship between durational categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category of ratios. Our derivations provide the basis for future computational, behavioral, and neurophysiological work to test our model.
  • Raviv, L., & Arnon, I. (2018). Systematicity, but not compositionality: Examining the emergence of linguistic structure in children and adults using iterated learning. Cognition, 181, 160-173. doi:10.1016/j.cognition.2018.08.011.

    Abstract

    Recent work suggests that cultural transmission can lead to the emergence of linguistic structure as speakers’ weak individual biases become amplified through iterated learning. However, to date no published study has demonstrated a similar emergence of linguistic structure in children. The lack of evidence from child learners constitutes a problematic
    2
    gap in the literature: if such learning biases impact the emergence of linguistic structure, they should also be found in children, who are the primary learners in real-life language transmission. However, children may differ from adults in their biases given age-related differences in general cognitive skills. Moreover, adults’ performance on iterated learning tasks may reflect existing (and explicit) linguistic biases, partially undermining the generality of the results. Examining children’s performance can also help evaluate contrasting predictions about their role in emerging languages: do children play a larger or smaller role than adults in the creation of structure? Here, we report a series of four iterated artificial language learning studies (based on Kirby, Cornish & Smith, 2008) with both children and adults, using a novel child-friendly paradigm. Our results show that linguistic structure does not emerge more readily in children compared to adults, and that adults are overall better in both language learning and in creating linguistic structure. When languages could become underspecified (by allowing homonyms), children and adults were similar in developing consistent mappings between meanings and signals in the form of structured ambiguities. However, when homonimity was not allowed, only adults created compositional structure. This study is a first step in using iterated language learning paradigms to explore child-adult differences. It provides the first demonstration that cultural transmission has a different effect on the languages produced by children and adults: While children were able to develop systematicity, their languages did not show compositionality. We focus on the relation between learning and structure creation as a possible explanation for our findings and discuss implications for children’s role in the emergence of linguistic structure.

    Additional information

    results A results B results D stimuli
  • Raviv, L., & Arnon, I. (2018). The developmental trajectory of children’s auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4): e12593. doi:10.1111/desc.12593.

    Abstract

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5–12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw.

    Additional information

    Video abstract of the article
  • Redl, T., Eerland, A., & Sanders, T. J. M. (2018). The processing of the Dutch masculine generic zijn ‘his’ across stereotype contexts: An eye-tracking study. PLoS One, 13(10): e0205903. doi:10.1371/journal.pone.0205903.

    Abstract

    Language users often infer a person’s gender when it is not explicitly mentioned. This information is included in the mental model of the described situation, giving rise to expectations regarding the continuation of the discourse. Such gender inferences can be based on two types of information: gender stereotypes (e.g., nurses are female) and masculine generics, which are grammatically masculine word forms that are used to refer to all genders in certain contexts (e.g., To each his own). In this eye-tracking experiment (N = 82), which is the first to systematically investigate the online processing of masculine generic pronouns, we tested whether the frequently used Dutch masculine generic zijn ‘his’ leads to a male bias. In addition, we tested the effect of context by introducing male, female, and neutral stereotypes. We found no evidence for the hypothesis that the generically-intended masculine pronoun zijn ‘his’ results in a male bias. However, we found an effect of stereotype context. After introducing a female stereotype, reading about a man led to an increase in processing time. However, the reverse did not hold, which parallels the finding in social psychology that men are penalized more for gender-nonconforming behavior. This suggests that language processing is not only affected by the strength of stereotype contexts; the associated disapproval of violating these gender stereotypes affects language processing, too.

    Additional information

    pone.0205903.s001.pdf data files
  • Rietbergen, M., Roelofs, A., Den Ouden, H., & Cools, R. (2018). Disentangling cognitive from motor control: Influence of response modality on updating, inhibiting, and shifting. Acta Psychologica, 191, 124-130. doi:10.1016/j.actpsy.2018.09.008.

    Abstract

    It is unclear whether cognitive and motor control are parallel and interactive or serial and independent processes. According to one view, cognitive control refers to a set of modality-nonspecific processes that act on supramodal representations and precede response modality-specific motor processes. An alternative view is that cognitive control represents a set of modality-specific operations that act directly on motor-related representations, implying dependence of cognitive control on motor control. Here, we examined the influence of response modality (vocal vs. manual) on three well-established subcomponent processes of cognitive control: shifting, inhibiting, and updating. We observed effects of all subcomponent processes in reaction times. The magnitude of these effects did not differ between response modalities for shifting and inhibiting, in line with a serial, supramodal view. However, the magnitude of the updating effect differed between modalities, in line with an interactive, modality-specific view. These results suggest that updating represents a modality-specific operation that depends on motor control, whereas shifting and inhibiting represent supramodal operations that act independently of motor control.
  • Rietveld, T., Van Hout, R., & Ernestus, M. (2004). Pitfalls in corpus research. Computers and the Humanities, 38(4), 343-362. doi:10.1007/s10579-004-1919-1.

    Abstract

    This paper discusses some pitfalls in corpus research and suggests solutions on the basis of examples and computer simulations. We first address reliability problems in language transcriptions, agreement between transcribers, and how disagreements can be dealt with. We then show that the frequencies of occurrence obtained from a corpus cannot always be analyzed with the traditional X2 test, as corpus data are often not sequentially independent and unit independent. Next, we stress the relevance of the power of statistical tests, and the sizes of statistically significant effects. Finally, we point out that a t-test based on log odds often provides a better alternative to a X2 analysis based on frequency counts.
  • Rodenas-Cuadrado, P., Mengede, J., Baas, L., Devanna, P., Schmid, T. A., Yartsev, M., Firzlaff, U., & Vernes, S. C. (2018). Mapping the distribution of language related genes FoxP1, FoxP2 and CntnaP2 in the brains of vocal learning bat species. Journal of Comparative Neurology, 526(8), 1235-1266. doi:10.1002/cne.24385.

    Abstract

    Genes including FOXP2, FOXP1 and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique human phenotypes, a comparative approach is possible by addressing language-relevant traits in animal model systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalisations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1 and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult Phyllostomus discolor bat, which showed low levels of FoxP2 expression in the cortex, contrasting with patterns found in rodents and non-human primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviours in a mammalian model system.
  • Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32(2), 212-222.

    Abstract

    There is a remarkable lack of research bringing together the literatures on oral reading and speaking.
    As concerns phonological encoding, both models of reading and speaking assume a process of segmental
    spellout for words, which is followed by serial prosodification in models of speaking (e.g., Levelt,
    Roelofs, & Meyer, 1999). Thus, a natural place to merge models of reading and speaking would be
    at the level of segmental spellout. This view predicts similar seriality effects in reading and object naming.
    Experiment 1 showed that the seriality of encoding inside a syllable revealed in previous studies
    of speaking is observed for both naming objects and reading their names. Experiment 2 showed that
    both object naming and reading exhibit the seriality of the encoding of successive syllables previously
    observed for speaking. Experiment 3 showed that the seriality is also observed when object naming and
    reading trials are mixed rather than tested separately, as in the first two experiments. These results suggest
    that a serial phonological encoding mechanism is shared between naming objects and reading
    their names.
  • Roelofs, A. (2004). Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: Comment on Rapp and Goldrick,2000. Psychological Review, 111(2), 561-572. doi:10.1037/0033-295X.111.2.561.

    Abstract

    B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
    aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
    between lexical items and their sounds in spoken word production. The author contests this claim by
    showing that a feedforward-only model like WEAVER ++ (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
    1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
    extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
    WEAVER ++ simulations with self-monitoring revealed that this model accounts for the chronometric
    data, the error biases, and the influence of the impairment locus in aphasic speakers.
  • Roelofs, A. (2004). Comprehension-based versus production-internal feedback in planning spoken words: A rejoinder to Rapp and Goldrick, 2004. Psychological Review, 111(2), 579-580. doi:10.1037/0033-295X.111.2.579.

    Abstract

    WEAVER++ has no backward links in its form-production network and yet is able to explain the lexical
    and mixed error biases and the mixed distractor latency effect. This refutes the claim of B. Rapp and M.
    Goldrick (2000) that these findings specifically support production-internal feedback. Whether their restricted interaction account model can also provide a unified account of the error biases and latency effect remains to be shown.
  • Rommers, J., & Federmeier, K. D. (2018). Lingering expectations: A pseudo-repetition effect for words previously expected but not presented. NeuroImage, 183, 263-272. doi:10.1016/j.neuroimage.2018.08.023.

    Abstract

    Prediction can help support rapid language processing. However, it is unclear whether prediction has downstream
    consequences, beyond processing in the moment. In particular, when a prediction is disconfirmed, does it linger,
    or is it suppressed? This study manipulated whether words were actually seen or were only expected, and probed
    their fate in memory by presenting the words (again) a few sentences later. If disconfirmed predictions linger,
    subsequent processing of the previously expected (but never presented) word should be similar to actual word
    repetition. At initial presentation, electrophysiological signatures of prediction disconfirmation demonstrated that
    participants had formed expectations. Further downstream, relative to unseen words, repeated words elicited a
    strong N400 decrease, an enhanced late positive complex (LPC), and late alpha band power decreases. Critically,
    like repeated words, words previously expected but not presented also attenuated the N400. This “pseudorepetition
    effect” suggests that disconfirmed predictions can linger at some stages of processing, and demonstrates
    that prediction has downstream consequences beyond rapid on-line processing
  • Rommers, J., & Federmeier, K. D. (2018). Predictability's aftermath: Downstream consequences of word predictability as revealed by repetition effects. Cortex, 101, 16-30. doi:10.1016/j.cortex.2017.12.018.

    Abstract

    Stimulus processing in language and beyond is shaped by context, with predictability having a
    particularly well-attested influence on the rapid processes that unfold during the presentation
    of a word. But does predictability also have downstream consequences for the quality of the
    constructed representations? On the one hand, the ease of processing predictablewordsmight
    free up time or cognitive resources, allowing for relatively thorough processing of the input. On
    the other hand, predictabilitymight allowthe systemto run in a top-down “verificationmode”,
    at the expense of thorough stimulus processing. This electroencephalogram (EEG) study
    manipulated word predictability, which reduced N400 amplitude and inter-trial phase clustering
    (ITPC), and then probed the fate of the (un)predictable words in memory by presenting
    them again. More thorough processing of predictable words should increase repetition effects,
    whereas less thorough processing should decrease them. Repetition was reflected in N400 decreases,
    late positive complex (LPC) enhancements, and late alpha/beta band power decreases.
    Critically, prior predictability tended to reduce the repetition effect on the N400, suggesting less
    priming, and eliminated the repetition effect on the LPC, suggesting a lack of episodic recollection.
    These findings converge on a top-down verification account, on which the brain processes
    more predictable input less thoroughly. More generally, the results demonstrate that
    predictability hasmultifaceted downstreamconsequences beyond processing in the moment
  • Rösler, D., & Skiba, R. (1988). Möglichkeiten für den Einsatz einer Lehrmaterial-Datenbank in der Lehrerfortbildung. Deutsch lernen, 14(1), 24-31.
  • Rossi, G. (2018). Composite social actions: The case of factual declaratives in everyday interaction. Research on Language and Social Interaction, 51(4), 379-397. doi:10.1080/08351813.2018.1524562.

    Abstract

    When taking a turn at talk, a speaker normally accomplishes a sequential action such as a question, answer, complaint, or request. Sometimes, however, a turn at talk may accomplish not a single but a composite action, involving a combination of more than one action. I show that factual declaratives (e.g., “the feed drip has finished”) are recurrently used to implement composite actions consisting of both an informing and a request or, alternatively, a criticism and a request. A key determinant between these is the recipient’s epistemic access to what the speaker is describing. Factual declaratives afford a range of possible responses, which can tell us how the composite action has been understood and give us insights into its underlying structure. Evidence for the stacking of composite actions, however, is not always directly available in the response and may need to be pieced together with the help of other linguistic and contextual considerations. Data are in Italian with English translation.
  • Rowland, C. F. (2018). The principles of scientific inquiry. Linguistic Approaches to Bilingualism, 8(6), 770-775. doi:10.1075/lab.18056.row.
  • Rubio-Fernández, P. (2018). Trying to discredit the Duplo task with a partial replication: Reply to Paulus and Kammermeier (2018). Cognitive Development, 48, 286-288. doi:10.1016/j.cogdev.2018.07.006.

    Abstract

    Kammermeier and Paulus (2018) report a partial replication of the results of Rubio-Fernández and Geurts (2013) but present their study as a failed replication. Paulus and Kammermeier (2018) insist on a negative interpretation of their findings, discrediting the Duplo task against their own empirical evidence. Here I argue that Paulus and Kammermeier may try to make an impactful contribution to the field by adding to the growing skepticism towards early Theory of Mind studies, but fail to make any significant contribution to our understanding of young children’s Theory of Mind abilities.
  • Rubio-Fernández, P. (2018). What do failed (and successful) replications with the Duplo task show? Cognitive Development, 48, 316-320. doi:10.1016/j.cogdev.2018.07.004.
  • Russel, A., & Trilsbeek, P. (2004). ELAN Audio Playback. Language Archive Newsletter, 1(4), 12-13.
  • Russel, A., & Wittenburg, P. (2004). ELAN Native Media Handling. Language Archive Newsletter, 1(3), 12-12.
  • Sach, M., Seitz, R. J., & Indefrey, P. (2004). Unified inflectional processing of regular and irregular verbs: A PET study. NeuroReport, 15(3), 533-537. doi:10.1097/01.wnr.0000113529.32218.92.

    Abstract

    Psycholinguistic theories propose different models of inflectional processing of regular and irregular verbs: dual mechanism models assume separate modules with lexical frequency sensitivity for irregular verbs. In contradistinction, connectionist models propose a unified process in a single module.We conducted a PET study using a 2 x 2 design with verb regularity and frequency.We found significantly shorter voice onset times for regular verbs and high frequency verbs irrespective of regularity. The PET data showed activations in inferior frontal gyrus (BA 45), nucleus lentiformis, thalamus, and superior medial cerebellum for both regular and irregular verbs but no dissociation for verb regularity.Our results support common processing components for regular and irregular verb inflection.
  • San Roque, L., Kendrick, K. H., Norcliffe, E., & Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29, 371-406. doi:10.1515/cog-2017-0034.
  • Sankoff, G., & Brown, P. (1976). The origins of syntax in discourse: A case study of Tok Pisin relatives. Language, 52(3), 631-666.

    Abstract

    The structure of relative clauses has attracted considerable attention in recent years, and a number of authors have carried out analyses of the syntax of relativization. In our investigation of syntactic structure and change in New Guinea Tok Pisin, we find that the basic processes involved in relativization have much broader discourse functions, and that relativization is only a special instance of the application of general ‘bracketing’ devices used in the organization of information. Syntactic structure, in this case, can be understood as a component of, and derivative from, discourse structure.
  • Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK [Letter to JMG]. Journal of Medical Genetics, 41(11), 853-857. doi:10.1136/jmg.2004.018341.
  • Schaeffer, J., van Witteloostuijn, M., & Creemers, A. (2018). Article choice, theory of mind, and memory in children with high-functioning autism and children with specific language impairment. Applied Psycholinguistics, 39(1), 89-115. doi:10.1017/S0142716417000492.

    Abstract

    Previous studies show that young, typically developing (TD) children (age 5) make errors in the choice between a definite and an indefinite article. Suggested explanations for overgeneration of the definite article include failure to distinguish speaker from hearer assumptions, and for overgeneration of the indefinite article failure to draw scalar implicatures, and weak working memory. However, no direct empirical evidence for these accounts is available. In this study, 27 Dutch-speaking children with high-functioning autism, 27 children with SLI, and 27 TD children aged 5–14 were administered a pragmatic article choice test, a nonverbal theory of mind test, and three types of memory tests (phonological memory, verbal, and nonverbal working memory). The results show that the children with high-functioning autism and SLI (a) make similar errors, that is, they overgenerate the indefinite article; (b) are TD-like at theory of mind, but (c) perform significantly more poorly than the TD children on phonological memory and verbal working memory. We propose that weak memory skills prevent the integration of the definiteness scale with the preceding discourse, resulting in the failure to consistently draw the relevant scalar implicature. This in turn yields the occasional erroneous choice of the indefinite article a in definite contexts.
  • Schijven, D., Kofink, D., Tragante, V., Verkerke, M., Pulit, S. L., Kahn, R. S., Veldink, J. H., Vinkers, C. H., Boks, M. P., & Luykx, J. J. (2018). Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophrenia Research, 199, 195-202. doi:10.1016/j.schres.2018.03.032.

    Abstract

    Large-scale genome-wide association studies (GWAS) have implicated many low-penetrance loci in schizophrenia. However, its pathological mechanisms are poorly understood, which in turn hampers the development of novel pharmacological treatments. Pathway and gene set analyses carry the potential to generate hypotheses about disease mechanisms and have provided biological context to genome-wide data of schizophrenia. We aimed to examine which biological processes are likely candidates to underlie schizophrenia by integrating novel and powerful pathway analysis tools using data from the largest Psychiatric Genomics Consortium schizophrenia GWAS (N=79,845) and the most recent 2018 schizophrenia GWAS (N=105,318). By applying a primary unbiased analysis (Multi-marker Analysis of GenoMic Annotation; MAGMA) to weigh the role of biological processes from the Molecular Signatures Database (MSigDB), we identified enrichment of common variants in synaptic plasticity and neuron differentiation gene sets. We supported these findings using MAGMA, Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) and Interval Enrichment Analysis (INRICH) on detailed synaptic signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and found enrichment in mainly the dopaminergic and cholinergic synapses. Moreover, shared genes involved in these neurotransmitter systems had a large contribution to the observed enrichment, protein products of top genes in these pathways showed more direct and indirect interactions than expected by chance, and expression profiles of these genes were largely similar among brain tissues. In conclusion, we provide strong and consistent genetics and protein-interaction informed evidence for the role of postsynaptic signaling processes in schizophrenia, opening avenues for future translational and psychopharmacological studies.
  • Schilberg, L., Engelen, T., Ten Oever, S., Schuhmann, T., De Gelder, B., De Graaf, T. A., & Sack, A. T. (2018). Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex, 103, 142-152. doi:10.1016/j.cortex.2018.03.001.

    Abstract

    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved.
  • Schiller, N. O., Fikkert, P., & Levelt, C. C. (2004). Stress priming in picture naming: An SOA study. Brain and Language, 90(1-3), 231-240. doi:10.1016/S0093-934X(03)00436-X.

    Abstract

    This study investigates whether or not the representation of lexical stress information can be primed during speech production. In four experiments, we attempted to prime the stress position of bisyllabic target nouns (picture names) having initial and final stress with auditory prime words having either the same or different stress as the target (e.g., WORtel–MOtor vs. koSTUUM–MOtor; capital letters indicate stressed syllables in prime–target pairs). Furthermore, half of the prime words were semantically related, the other half unrelated. Overall, picture names were not produced faster when the prime word had the same stress as the target than when the prime had different stress, i.e., there was no stress-priming effect in any experiment. This result would not be expected if stress were stored in the lexicon. However, targets with initial stress were responded to faster than final-stress targets. The reason for this effect was neither the quality of the pictures nor frequency of occurrence or voice-key characteristics. We hypothesize here that this stress effect is a genuine encoding effect, i.e., words with stress on the second syllable take longer to be encoded because their stress pattern is irregular with respect to the lexical distribution of bisyllabic stress patterns, even though it can be regular with respect to metrical stress rules in Dutch. The results of the experiments are discussed in the framework of models of phonological encoding.
  • Schiller, N. O., & De Ruiter, J. P. (2004). Some notes on priming, alignment, and self-monitoring [Commentary]. Behavioral and Brain Sciences, 27(2), 208-209. doi:10.1017/S0140525X0441005X.

    Abstract

    Any complete theory of speaking must take the dialogical function of language use into account. Pickering & Garrod (P&G) make some progress on this point. However, we question whether their interactive alignment model is the optimal approach. In this commentary, we specifically criticize (1) their notion of alignment being implemented through priming, and (2) their claim that self-monitoring can occur at all levels of linguistic representation.
  • Schiller, N. O. (2004). The onset effect in word naming. Journal of Memory and Language, 50(4), 477-490. doi:10.1016/j.jml.2004.02.004.

    Abstract

    This study investigates whether or not masked form priming effects in the naming task depend on the number of shared segments between prime and target. Dutch participants named bisyllabic words, which were preceded by visual masked primes. When primes shared the initial segment(s) with the target, naming latencies were shorter than in a control condition (string of percent signs). Onset complexity (singleton vs. complex word onset) did not modulate this priming effect in Dutch. Furthermore, significant priming due to shared final segments was only found when the prime did not contain a mismatching onset, suggesting an interfering role of initial non-target segments. It is concluded that (a) degree of overlap (segmental match vs. mismatch), and (b) position of overlap (initial vs. final) influence the magnitude of the form priming effect in the naming task. A modification of the segmental overlap hypothesis (Schiller, 1998) is proposed to account for the data.
  • Schillingmann, L., Ernst, J., Keite, V., Wrede, B., Meyer, A. S., & Belke, E. (2018). AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes. Behavior Research Methods, 50(2), 466-489. doi:10.3758/s13428-017-1002-7.

    Abstract

    In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-word and four-word utterances as well as semi-spontaneous speech. AlignTool performs well with audio signals with an excellent signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language production research.
  • Schmitt, B. M., Meyer, A. S., & Levelt, W. J. M. (1999). Lexical access in the production of pronouns. Cognition, 69(3), 313-335. doi:doi:10.1016/S0010-0277(98)00073-0.

    Abstract

    Speakers can use pronouns when their conceptual referents are accessible from the preceding discourse, as in 'The flower is red. It turns blue'. Theories of language production agree that in order to produce a noun semantic, syntactic, and phonological information must be accessed. However, little is known about lexical access to pronouns. In this paper, we propose a model of pronoun access in German. Since the forms of German pronouns depend on the grammatical gender of the nouns they replace, the model claims that speakers must access the syntactic representation of the replaced noun (its lemma) to select a pronoun. In two experiments using the lexical decision during naming paradigm [Levelt, W.J.M., Schriefers, H., Vorberg, D., Meyer, A.S., Pechmann, T., Havinga, J., 1991a. The time course of lexical access in speech production: a study of picture naming. Psychological Review 98, 122-142], we investigated whether lemma access automatically entails the activation of the corresponding word form or whether a word form is only activated when the noun itself is produced, but not when it is replaced by a pronoun. Experiment 1 showed that during pronoun production the phonological form of the replaced noun is activated. Experiment 2 demonstrated that this phonological activation was not a residual of the use of the noun in the preceding sentence. Thus, when a pronoun is produced, the lemma and the phonological form of the replaced noun become reactivated.
  • Schoenmakers, G.-J., & Piepers, J. (2018). Echter kan het wel. Levende Talen Magazine, 105(4), 10-13.
  • Schweinfurth, M. K., De Troy, S. E., Van Leeuwen, E. J. C., Call, J., & Haun, D. B. M. (2018). Spontaneous social tool use in Chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 132(4), 455-463. doi:10.1037/com0000127.

    Abstract

    Although there is good evidence that social animals show elaborate cognitive skills to deal with others, there are few reports of animals physically using social agents and their respective responses as means to an end—social tool use. In this case study, we investigated spontaneous and repeated social tool use behavior in chimpanzees (Pan troglodytes). We presented a group of chimpanzees with an apparatus, in which pushing two buttons would release juice from a distantly located fountain. Consequently, any one individual could only either push the buttons or drink from the fountain but never push and drink simultaneously. In this scenario, an adult male attempted to retrieve three other individuals and push them toward the buttons that, if pressed, released juice from the fountain. With this strategy, the social tool user increased his juice intake 10-fold. Interestingly, the strategy was stable over time, which was possibly enabled by playing with the social tools. With over 100 instances, we provide the biggest data set on social tool use recorded among nonhuman animals so far. The repeated use of other individuals as social tools may represent a complex social skill linked to Machiavellian intelligence.
  • Schwichtenberg, B., & Schiller, N. O. (2004). Semantic gender assignment regularities in German. Brain and Language, 90(1-3), 326-337. doi:10.1016/S0093-934X(03)00445-0.

    Abstract

    Gender assignment relates to a native speaker's knowledge of the structure of the gender system of his/her language, allowing the speaker to select the appropriate gender for each noun. Whereas categorical assignment rules and exceptional gender assignment are well investigated, assignment regularities, i.e., tendencies in the gender distribution identified within the vocabulary of a language, are still controversial. The present study is an empirical contribution trying to shed light on the gender assignment system native German speakers have at their disposal. Participants presented with a category (e.g., predator) and a pair of gender-marked pseudowords (e.g., der Trelle vs. die Stisse) preferentially selected the pseudo-word preceded by the gender-marked determiner ‘‘associated’’ with the category (e.g., masculine). This finding suggests that semantic regularities might be part of the gender assignment system of native speakers.
  • Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S. E., & Van Gerven, M. A. J. (2018). Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage, 180, 253-266. doi:10.1016/j.neuroimage.2017.07.018.

    Abstract

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely
    investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance
    imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in
    the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain
    signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we
    addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG).
    Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled
    their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward
    sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade
    was captured by the network layer representations, where the increasingly abstract stimulus representation in the
    hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral
    stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out
    validation set of viewed objects, achieving state-of-the-art decoding accuracy.
  • Segaert, K., Mazaheri, A., & Hagoort, P. (2018). Binding language: Structuring sentences through precisely timed oscillatory mechanisms. European Journal of Neuroscience, 48(7), 2651-2662. doi:10.1111/ejn.13816.

    Abstract

    Syntactic binding refers to combining words into larger structures. Using EEG, we investigated the neural processes involved in syntactic binding. Participants were auditorily presented two-word sentences (i.e. pronoun and pseudoverb such as ‘I grush’, ‘she grushes’, for which syntactic binding can take place) and wordlists (i.e. two pseudoverbs such as ‘pob grush’, ‘pob grushes’, for which no binding occurs). Comparing these two conditions, we targeted syntactic binding while minimizing contributions of semantic binding and of other cognitive processes such as working memory. We found a converging pattern of results using two distinct analysis approaches: one approach using frequency bands as defined in previous literature, and one data-driven approach in which we looked at the entire range of frequencies between 3-30 Hz without the constraints of pre-defined frequency bands. In the syntactic binding (relative to the wordlist) condition, a power increase was observed in the alpha and beta frequency range shortly preceding the presentation of the target word that requires binding, which was maximal over frontal-central electrodes. Our interpretation is that these signatures reflect that language comprehenders expect the need for binding to occur. Following the presentation of the target word in a syntactic binding context (relative to the wordlist condition), an increase in alpha power maximal over a left lateralized cluster of frontal-temporal electrodes was observed. We suggest that this alpha increase relates to syntactic binding taking place. Taken together, our findings suggest that increases in alpha and beta power are reflections of distinct the neural processes underlying syntactic binding.
  • Seifart, F., Evans, N., Hammarström, H., & Levinson, S. C. (2018). Language documentation twenty-five years on. Language, 94(4), e324-e345. doi:10.1353/lan.2018.0070.

    Abstract

    This discussion note reviews responses of the linguistics profession to the grave issues of language
    endangerment identified a quarter of a century ago in the journal Language by Krauss,
    Hale, England, Craig, and others (Hale et al. 1992). Two and a half decades of worldwide research
    not only have given us a much more accurate picture of the number, phylogeny, and typological
    variety of the world’s languages, but they have also seen the development of a wide range of new
    approaches, conceptual and technological, to the problem of documenting them. We review these
    approaches and the manifold discoveries they have unearthed about the enormous variety of linguistic
    structures. The reach of our knowledge has increased by about 15% of the world’s languages,
    especially in terms of digitally archived material, with about 500 languages now
    reasonably documented thanks to such major programs as DoBeS, ELDP, and DEL. But linguists
    are still falling behind in the race to document the planet’s rapidly dwindling linguistic diversity,
    with around 35–42% of the world’s languages still substantially undocumented, and in certain
    countries (such as the US) the call by Krauss (1992) for a significant professional realignment toward
    language documentation has only been heeded in a few institutions. Apart from the need for
    an intensified documentarist push in the face of accelerating language loss, we argue that existing
    language documentation efforts need to do much more to focus on crosslinguistically comparable
    data sets, sociolinguistic context, semantics, and interpretation of text material, and on methods
    for bridging the ‘transcription bottleneck’, which is creating a huge gap between the amount we
    can record and the amount in our transcribed corpora.*
  • Sekine, K., Wood, C., & Kita, S. (2018). Gestural depiction of motion events in narrative increases symbolic distance with age. Language, Interaction and Acquisition, 9(1), 11-21. doi:10.1075/lia.15020.sek.

    Abstract

    We examined gesture representation of motion events in narratives produced by three- and nine-year-olds, and adults. Two aspects of gestural depiction were analysed: how protagonists were depicted, and how gesture space was used. We found that older groups were more likely to express protagonists as an object that a gesturing hand held and manipulated, and less likely to express protagonists with whole-body enactment gestures. Furthermore, for older groups, gesture space increasingly became less similar to narrated space. The older groups were less likely to use large gestures or gestures in the periphery of the gesture space to represent movements that were large relative to a protagonist’s body or that took place next to a protagonist. They were also less likely to produce gestures on a physical surface (e.g. table) to represent movement on a surface in narrated events. The development of gestural depiction indicates that older speakers become less immersed in the story world and start to control and manipulate story representation from an outside perspective in a bounded and stage-like gesture space. We discuss this developmental shift in terms of increasing symbolic distancing (Werner & Kaplan, 1963).
  • Senft, G. (1988). A grammar of Manam by Frantisek Lichtenberk [Book review]. Language and linguistics in Melanesia, 18, 169-173.
  • Senft, G. (1999). ENTER and EXIT in Kilivila. Studies in Language, 23, 1-23.
  • Senft, G. (1999). [Review of the book Describing morphosyntax: A guide for field linguists by Thomas E. Payne]. Linguistics, 37, 181-187. doi:10.1515/ling.1999.003, 01/01/1999.
  • Senft, G. (1988). [Review of the book Functional syntax: Anaphora, discourse and empathy by Susumu Kuno]. Journal of Pragmatics, 12, 396-399. doi:10.1016/0378-2166(88)90040-9.
  • Senft, G. (1999). [Review of the book Pacific languages - An introduction by John Lynch]. Linguistics, 37, 979-983. doi:10.1515/ling.37.5.961.
  • Senft, G. (1999). A case study from the Trobriand Islands: The presentation of Self in touristic encounters [abstract]. IIAS Newsletter, (19). Retrieved from http://www.iias.nl/iiasn/19/.

    Abstract

    Visiting the Trobriand Islands is advertised as being the highlight of a trip for tourists to Papua New Guinea who want, and can afford, to experience this 'ultimate adventure' with 'expeditionary cruises aboard the luxurious Melanesian Discoverer. The advertisements also promise that the tourists can 'meet the friendly people' and 'observe their unique culture, dances, and art'. During my research in Kaibola and Nuwebila, two neighbouring villages on the northern tip of Kiriwina Island, I studied and analysed the encounters of tourists with Trobriand Islanders, who sing and dance for the Europeans. The analyses of the islanders' tourist performances are based on Erving Goffman's now classic study The Presentation of Self in Everyday Life, which was first published in 1959. In this study Goffmann analyses the structures of social encounters from the perspective of the dramatic performance. The situational context within which the encounter between tourists and Trobriand Islanders takes place frames the tourists as the audience and the Trobriand Islanders as a team of performers. The inherent structure of the parts of the overall performance presented in the two villages can be summarized - within the framework of Goffman's approach - in analogy with the structure of drama. We find parts that constitute the 'exposition', the 'complication', and the 'resolution' of a drama; we even observe an equivalent to the importance of the 'Second Act Curtain' in modern drama theory. Deeper analyses of this encounter show that the motives of the performers and their 'art of impression management' are to control the impression their audience receives in this encounter situation. This analysis reveals that the Trobriand Islanders sell their customers the expected images of what Malinowski (1929) once termed the '...Life of Savages in North-Western Melanesia' in a staged 'illusion'. With the conscious realization of the part they as performers play in this encounter, the Trobriand Islanders are in a position that is superior to that of their audience. Their merchandise or commodity is 'not real', as it is sold 'out of its true cultural context'. It is staged - and thus cannot be taken by any customer whatsoever because it (re)presents just an 'illusion'. The Trobriand Islanders know that neither they nor the core aspects of their culture will suffer any damage within a tourist encounter that is defined by the structure and the kind of their performance. Their pride and self-confidence enable them to bring their superior position into play in their dealings with tourists. With their indigenous humour, they even use this encounter for ridiculing their visitors. It turns out that the encounter is another manifestation of the Trobriand Islanders' self-consciousness, self-confidence, and pride with which they manage to protect core aspects of their cultural identity, while at the same time using and 'selling' parts of their culture as a kind of commodity to tourists.
  • Senft, G. (2004). [Review of the book Serial verbs in Oceanic: A descriptive typology by Terry Crowley]. Linguistics, 42(4), 855-859. doi:10.1515/ling.2004.028, 08/06/2004.
  • Senft, G. (2004). [Review of the book The Oceanic Languages by John Lynch, Malcolm Ross and Terry Crowley]. Linguistics, 42(2), 515-520. doi:10.1515/ling.2004.016.

Share this page