Publications

Displaying 201 - 300 of 1162
  • Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.

    Abstract

    Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.

    Additional information

    13428_2017_929_MOESM1_ESM.docx
  • Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 1065-1078. doi:10.1038/s41380-018-0020-x.

    Abstract

    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.

    Additional information

    Eising_etal_2018sup.pdf
  • Eising, E., Shyti, R., 'T hoen, P. A. C., Vijfhuizen, L. S., Huisman, S. M. H., Broos, L. A. M., Mahfourz, A., Reinders, M. J. T., Ferrrari, M. D., Tolner, E. A., De Vries, B., & Van den Maagdenberg, A. M. J. M. (2017). Cortical spreading depression causes unique dysregulation of inflammatory pathways in a transgenic mouse model of migraine. Molecular Biology, 54(4), 2986-2996. doi:10.1007/s12035-015-9681-5.

    Abstract

    Familial hemiplegic migraine type 1 (FHM1) is a
    rare monogenic subtype of migraine with aura caused by mutations
    in CACNA1A that encodes the α1A subunit of voltagegated
    CaV2.1 calcium channels. Transgenic knock-in mice
    that carry the human FHM1 R192Q missense mutation
    (‘FHM1 R192Q mice’) exhibit an increased susceptibility to
    cortical spreading depression (CSD), the mechanism underlying
    migraine aura. Here, we analysed gene expression profiles
    from isolated cortical tissue of FHM1 R192Q mice 24 h after
    experimentally induced CSD in order to identify molecular
    pathways affected by CSD. Gene expression profiles were
    generated using deep serial analysis of gene expression sequencing.
    Our data reveal a signature of inflammatory signalling
    upon CSD in the cortex of both mutant and wild-type
    mice. However, only in the brains of FHM1 R192Q mice
    specific genes are up-regulated in response to CSD that are
    implicated in interferon-related inflammatory signalling. Our
    findings show that CSD modulates inflammatory processes in
    both wild-type and mutant brains, but that an additional
    unique inflammatory signature becomes expressed after
    CSD in a relevant mouse model of migraine.
  • Eising, E., Pelzer, N., Vijfhuizen, L. S., De Vries, B., Ferrari, M. D., 'T Hoen, P. A. C., Terwindt, G. M., & Van den Maagdenberg, A. M. J. M. (2017). Identifying a gene expression signature of cluster headache in blood. Scientific Reports, 7: 40218. doi:10.1038/srep40218.

    Abstract

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache

    Additional information

    Eising_etal_2017sup.pdf
  • Enfield, N. J. (1999). On the indispensability of semantics: Defining the ‘vacuous’. Rask: internationalt tidsskrift for sprog og kommunikation, 9/10, 285-304.
  • Enfield, N. J., Stivers, T., Brown, P., Englert, C., Harjunpää, K., Hayashi, M., Heinemann, T., Hoymann, G., Keisanen, T., Rauniomaa, M., Raymond, C. W., Rossano, F., Yoon, K.-E., Zwitserlood, I., & Levinson, S. C. (2019). Polar answers. Journal of Linguistics, 55(2), 277-304. doi:10.1017/S0022226718000336.

    Abstract

    How do people answer polar questions? In this fourteen-language study of answers to questions in conversation, we compare the two main strategies; first, interjection-type answers such as uh-huh (or equivalents yes, mm, head nods, etc.), and second, repetition-type answers that repeat some or all of the question. We find that all languages offer both options, but that there is a strong asymmetry in their frequency of use, with a global preference for interjection-type answers. We propose that this preference is motivated by the fact that the two options are not equivalent in meaning. We argue that interjection-type answers are intrinsically suited to be the pragmatically unmarked, and thus more frequent, strategy for confirming polar questions, regardless of the language spoken. Our analysis is based on the semantic-pragmatic profile of the interjection-type and repetition-type answer strategies, in the context of certain asymmetries inherent to the dialogic speech act structure of question–answer sequences, including sequential agency and thematic agency. This allows us to see possible explanations for the outlier distributions found in ǂĀkhoe Haiǁom and Tzeltal.
  • Erard, M. (2017). Write yourself invisible. New Scientist, 236(3153), 36-39.
  • Ergin, R., Meir, I., Ilkbasaran, D., Padden, C., & Jackendoff, R. (2018). The Development of Argument Structure in Central Taurus Sign Language. Sign Language & Linguistics, 18(4), 612-639. doi:10.1353/sls.2018.0018.

    Abstract

    One of the fundamental issues for a language is its capacity to express
    argument structure unambiguously. This study presents evidence
    for the emergence and the incremental development of these
    basic mechanisms in a newly developing language, Central Taurus
    Sign Language. Our analyses identify universal patterns in both the
    emergence and development of these mechanisms and in languagespecific
    trajectories.
  • Ernestus, M. (2014). Acoustic reduction and the roles of abstractions and exemplars in speech processing. Lingua, 142, 27-41. doi:10.1016/j.lingua.2012.12.006.

    Abstract

    Acoustic reduction refers to the frequent phenomenon in conversational speech that words are produced with fewer or lenited segments compared to their citation forms. The few published studies on the production and comprehension of acoustic reduction have important implications for the debate on the relevance of abstractions and exemplars in speech processing. This article discusses these implications. It first briefly introduces the key assumptions of simple abstractionist and simple exemplar-based models. It then discusses the literature on acoustic reduction and draws the conclusion that both types of models need to be extended to explain all findings. The ultimate model should allow for the storage of different pronunciation variants, but also reserve an important role for phonetic implementation. Furthermore, the recognition of a highly reduced pronunciation variant requires top down information and leads to activation of the corresponding unreduced variant, the variant that reaches listeners’ consciousness. These findings are best accounted for in hybrids models, assuming both abstract representations and exemplars. None of the hybrid models formulated so far can account for all data on reduced speech and we need further research for obtaining detailed insight into how speakers produce and listeners comprehend reduced speech.
  • Ernestus, M., Dikmans, M., & Giezenaar, G. (2017). Advanced second language learners experience difficulties processing reduced word pronunciation variants. Dutch Journal of Applied Linguistics, 6(1), 1-20. doi:10.1075/dujal.6.1.01ern.

    Abstract

    Words are often pronounced with fewer segments in casual conversations than in formal speech. Previous research has shown that foreign language learners and beginning second language learners experience problems processing reduced speech. We examined whether this also holds for advanced second language learners. We designed a dictation task in Dutch consisting of sentences spliced from casual conversations and an unreduced counterpart of this task, with the same sentences carefully articulated by the same speaker. Advanced second language learners of Dutch produced substantially more transcription errors for the reduced than for the unreduced sentences. These errors made the sentences incomprehensible or led to non-intended meanings. The learners often did not rely on the semantic and syntactic information in the sentence or on the subsegmental cues to overcome the reductions. Hence, advanced second language learners also appear to suffer from the reduced pronunciation variants of words that are abundant in everyday conversations
  • Ernestus, M., Kouwenhoven, H., & Van Mulken, M. (2017). The direct and indirect effects of the phonotactic constraints in the listener's native language on the comprehension of reduced and unreduced word pronunciation variants in a foreign language. Journal of Phonetics, 62, 50-64. doi:10.1016/j.wocn.2017.02.003.

    Abstract

    This study investigates how the comprehension of casual speech in foreign languages is affected by the phonotactic constraints in the listener’s native language. Non-native listeners of English with different native languages heard short English phrases produced by native speakers of English or Spanish and they indicated whether these phrases included can or can’t. Native Mandarin listeners especially tended to interpret can’t as can. We interpret this result as a direct effect of the ban on word-final /nt/ in Mandarin. Both the native Mandarin and the native Spanish listeners did not take full advantage of the subsegmental information in the speech signal cueing reduced can’t. This finding is probably an indirect effect of the phonotactic constraints in their native languages: these listeners have difficulties interpreting the subsegmental cues because these cues do not occur or have different functions in their native languages. Dutch resembles English in the phonotactic constraints relevant to the comprehension of can’t, and native Dutch listeners showed similar patterns in their comprehension of native and non-native English to native English listeners. This result supports our conclusion that the major patterns in the comprehension results are driven by the phonotactic constraints in the listeners’ native languages.
  • Eryilmaz, K., & Little, H. (2017). Using Leap Motion to investigate the emergence of structure in speech and language. Behavior Research Methods, 49(5), 1748-1768. doi:10.3758/s13428-016-0818-x.

    Abstract

    In evolutionary linguistics, experiments using artificial signal spaces are being used to investigate the emergence of speech structure. These signal spaces need to be continuous, non-discretised spaces from which discrete units and patterns can emerge. They need to be dissimilar from - but comparable with - the vocal-tract, in order to minimise interference from pre-existing linguistic knowledge, while informing us about language. This is a hard balance to strike. This article outlines a new approach which uses the Leap Motion, an infra-red controller which can convert manual movement in 3d space into sound. The signal space using this approach is more flexible than signal spaces in previous attempts. Further, output data using this approach is simpler to arrange and analyse. The experimental interface was built using free, and mostly open source libraries in Python. We provide our source code for other researchers as open source.
  • Esteve-Gibert, N., Prieto, P., & Liszkowski, U. (2017). Twelve-month-olds understand social intentions based on prosody and gesture shape. Infancy, 22, 108-129. doi:10.1111/infa.12146.

    Abstract

    Infants infer social and pragmatic intentions underlying attention-directing gestures, but the basis on which infants make these inferences is not well understood. Previous studies suggest that infants rely on information from preceding shared action contexts and joint perceptual scenes. Here, we tested whether 12-month-olds use information from act-accompanying cues, in particular prosody and hand shape, to guide their pragmatic understanding. In Experiment 1, caregivers directed infants’ attention to an object to request it, share interest in it, or inform them about a hidden aspect. Caregivers used distinct prosodic and gestural patterns to express each pragmatic intention. Experiment 2 was identical except that experimenters provided identical lexical information across conditions and used three sets of trained prosodic and gestural patterns. In all conditions, the joint perceptual scenes and preceding shared action contexts were identical. In both experiments, infants reacted appropriately to the adults’ intentions by attending to the object mostly in the sharing interest condition, offering the object mostly in the imperative condition, and searching for the referent mostly in the informing condition. Infants’ ability to comprehend pragmatic intentions based on prosody and gesture shape expands infants’ communicative understanding from common activities to novel situations for which shared background knowledge is missing.
  • Estruch, S. B., Graham, S. A., Quevedo, M., Vino, A., Dekkers, D. H. W., Deriziotis, P., Sollis, E., Demmers, J., Poot, R. A., & Fisher, S. E. (2018). Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 27(7), 1212-1227. doi:10.1093/hmg/ddy035.

    Abstract

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-established roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.
  • Evans, N., Bergqvist, H., & San Roque, L. (2018). The grammar of engagement I: Framework and initial exemplification. Language and Cognition, 10, 110-140. doi:10.1017/langcog.2017.21.

    Abstract

    Human language offers rich ways to track, compare, and engage the attentional and epistemic states of interlocutors. While this task is central to everyday communication, our knowledge of the cross-linguistic grammatical means that target such intersubjective coordination has remained basic. In two serialised papers, we introduce the term ‘engagement’ to refer to grammaticalised means for encoding the relative mental directedness of speaker and addressee towards an entity or state of affairs, and describe examples of engagement systems from around the world. Engagement systems express the speaker’s assumptions about the degree to which their attention or knowledge is shared (or not shared) by the addressee. Engagement categories can operate at the level of entities in the here-and-now (deixis), in the unfolding discourse (definiteness vs indefiniteness), entire event-depicting propositions (through markers with clausal scope), and even metapropositions (potentially scoping over evidential values). In this first paper, we introduce engagement and situate it with respect to existing work on intersubjectivity in language. We then explore the key role of deixis in coordinating attention and expressing engagement, moving through increasingly intercognitive deictic systems from those that focus on the the location of the speaker, to those that encode the attentional state of the addressee.
  • Evans, N., Bergqvist, H., & San Roque, L. (2018). The grammar of engagement II: Typology and diachrony. Language and Cognition, 10(1), 141-170. doi:10.1017/langcog.2017.22.

    Abstract

    Engagement systems encode the relative accessibility of an entity or state of affairs to the speaker and addressee, and are thus underpinned by our social cognitive capacities. In our first foray into engagement (Part 1), we focused on specialised semantic contrasts as found in entity-level deictic systems, tailored to the primal scenario for establishing joint attention. This second paper broadens out to an exploration of engagement at the level of events and even metapropositions, and comments on how such systems may evolve. The languages Andoke and Kogi demonstrate what a canonical system of engagement with clausal scope looks like, symmetrically assigning ‘knowing’ and ‘unknowing’ values to speaker and addressee. Engagement is also found cross-cutting other epistemic categories such as evidentiality, for example where a complex assessment of relative speaker and addressee awareness concerns the source of information rather than the proposition itself. Data from the language Abui reveal that one way in which engagement systems can develop is by upscoping demonstratives, which normally denote entities, to apply at the level of events. We conclude by stressing the need for studies that focus on what difference it makes, in terms of communicative behaviour, for intersubjective coordination to be managed by engagement systems as opposed to other, non-grammaticalised means.
  • Evans, S., McGettigan, C., Agnew, Z., Rosen, S., Cesar, L., Boebinger, D., Ostarek, M., Chen, S. H., Richards, A., Meekins, S., & Scott, S. K. (2014). The neural basis of informational and energetic masking effects in the perception and production of speech [abstract]. The Journal of the Acoustical Society of America, 136(4), 2243. doi:10.1121/1.4900096.

    Abstract

    When we have spoken conversations, it is usually in the context of competing sounds within our environment. Speech can be masked by many different kinds of sounds, for example, machinery noise and the speech of others, and these different sounds place differing demands on cognitive resources. In this talk, I will present data from a series of functional magnetic resonance imaging (fMRI) studies in which the informational properties of background sounds have been manipulated to make them more or less similar to speech. I will demonstrate the neural effects associated with speaking over and listening to these sounds, and demonstrate how in perception these effects are modulated by the age of the listener. The results will be interpreted within a framework of auditory processing developed from primate neurophysiology and human functional imaging work (Rauschecker and Scott 2009).
  • Fairs, A., Bögels, S., & Meyer, A. S. (2018). Dual-tasking with simple linguistic tasks: Evidence for serial processing. Acta Psychologica, 191, 131-148. doi:10.1016/j.actpsy.2018.09.006.

    Abstract

    In contrast to the large amount of dual-task research investigating the coordination of a linguistic and a nonlinguistic
    task, little research has investigated how two linguistic tasks are coordinated. However, such research
    would greatly contribute to our understanding of how interlocutors combine speech planning and listening in
    conversation. In three dual-task experiments we studied how participants coordinated the processing of an
    auditory stimulus (S1), which was either a syllable or a tone, with selecting a name for a picture (S2). Two SOAs,
    of 0 ms and 1000 ms, were used. To vary the time required for lexical selection and to determine when lexical
    selection took place, the pictures were presented with categorically related or unrelated distractor words. In
    Experiment 1 participants responded overtly to both stimuli. In Experiments 2 and 3, S1 was not responded to
    overtly, but determined how to respond to S2, by naming the picture or reading the distractor aloud. Experiment
    1 yielded additive effects of SOA and distractor type on the picture naming latencies. The presence of semantic
    interference at both SOAs indicated that lexical selection occurred after response selection for S1. With respect to
    the coordination of S1 and S2 processing, Experiments 2 and 3 yielded inconclusive results. In all experiments,
    syllables interfered more with picture naming than tones. This is likely because the syllables activated phonological
    representations also implicated in picture naming. The theoretical and methodological implications of the
    findings are discussed.

    Additional information

    1-s2.0-S0001691817305589-mmc1.pdf
  • Favier, S., Wright, A., Meyer, A. S., & Huettig, F. (2019). Proficiency modulates between- but not within-language structural priming. Journal of Cultural Cognitive Science, 3(suppl. 1), 105-124. doi:10.1007/s41809-019-00029-1.

    Abstract

    The oldest of the Celtic language family, Irish differs considerably from English, notably with respect to word order and case marking. In spite of differences in surface constituent structure, less restricted accounts of bilingual shared syntax predict that processing datives and passives in Irish should prime the production of their English equivalents. Furthermore, this cross-linguistic influence should be sensitive to L2 proficiency, if shared structural representations are assumed to develop over time. In Experiment 1, we investigated cross-linguistic structural priming from Irish to English in 47 bilingual adolescents who are educated through Irish. Testing took place in a classroom setting, using written primes and written sentence generation. We found that priming for prepositional-object (PO) datives was predicted by self-rated Irish (L2) proficiency, in line with previous studies. In Experiment 2, we presented translations of the materials to an English-educated control group (n=54). We found a within-language priming effect for PO datives, which was not modulated by English (L1) proficiency. Our findings are compatible with current theories of bilingual language processing and L2 syntactic acquisition.
  • Felemban, D., Verdonschot, R. G., Iwamoto, Y., Uchiyama, Y., Kakimoto, N., Kreiborg, S., & Murakami, S. (2018). A quantitative experimental phantom study on MRI image uniformity. Dentomaxillofacial Radiology, 47(6): 20180077. doi:10.1259/dmfr.20180077.

    Abstract

    Objectives: Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA).
    Methods: Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method.
    Results: Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals).
    Conclusions: Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
  • Felker, E. R., Klockmann, H. E., & De Jong, N. H. (2019). How conceptualizing influences fluency in first and second language speech production. Applied Psycholinguistics, 40(1), 111-136. doi:10.1017/S0142716418000474.

    Abstract

    When speaking in any language, speakers must conceptualize what they want to say before they can formulate and articulate their message. We present two experiments employing a novel experimental paradigm in which the formulating and articulating stages of speech production were kept identical across conditions of differing conceptualizing difficulty. We tracked the effect of difficulty in conceptualizing during the generation of speech (Experiment 1) and during the abandonment and regeneration of speech (Experiment 2) on speaking fluency by Dutch native speakers in their first (L1) and second (L2) language (English). The results showed that abandoning and especially regenerating a speech plan taxes the speaker, leading to disfluencies. For most fluency measures, the increases in disfluency were similar across L1 and L2. However, a significant interaction revealed that abandoning and regenerating a speech plan increases the time needed to solve conceptual difficulties while speaking in the L2 to a greater degree than in the L1. This finding supports theories in which cognitive resources for conceptualizing are shared with those used for later stages of speech planning. Furthermore, a practical implication for language assessment is that increasing the conceptual difficulty of speaking tasks should be considered with caution.
  • Felker, E. R., Troncoso Ruiz, A., Ernestus, M., & Broersma, M. (2018). The ventriloquist paradigm: Studying speech processing in conversation with experimental control over phonetic input. The Journal of the Acoustical Society of America, 144(4), EL304-EL309. doi:10.1121/1.5063809.

    Abstract

    This article presents the ventriloquist paradigm, an innovative method for studying speech processing in dialogue whereby participants interact face-to-face with a confederate who, unbeknownst to them, communicates by playing pre-recorded speech. Results show that the paradigm convinces more participants that the speech is live than a setup without the face-to-face element, and it elicits more interactive conversation than a setup in which participants believe their partner is a computer. By reconciling the ecological validity of a conversational context with full experimental control over phonetic exposure, the paradigm offers a wealth of new possibilities for studying speech processing in interaction.
  • Fields, E. C., Weber, K., Stillerman, B., Delaney-Busch, N., & Kuperberg, G. (2019). Functional MRI reveals evidence of a self-positivity bias in the medial prefrontal cortex during the comprehension of social vignettes. Social Cognitive and Affective Neuroscience, 14(6), 613-621. doi:10.1093/scan/nsz035.

    Abstract

    A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants’ self-concept without any requirement of explicit self-judgment. We presented social vignettes that were either self-relevant or non-self-relevant with a neutral, positive, or negative outcome described in the second sentence. In previous work using event-related potentials, this paradigm has shown evidence of a self-positivity bias that influences early stages of semantically processing incoming stimuli. In the present fMRI study, we found evidence for this bias within the mPFC: an interaction between self-relevance and valence, with only positive scenarios showing a self vs other effect within the mPFC. We suggest that the mPFC may play a role in maintaining a positively-biased self-concept and discuss the implications of these findings for the social neuroscience of the self and the role of the mPFC.

    Additional information

    Supplementary data
  • Filippi, P., Congdon, J. V., Hoang, J., Bowling, D. L., Reber, S. A., Pasukonis, A., Hoeschele, M., Ocklenburg, S., De Boer, B., Sturdy, C. B., Newen, A., & Güntürkün, O. (2017). Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proceedings of the Royal Society B: Biological Sciences, 284: 20170990. doi:10.1098/rspb.2017.0990.

    Abstract

    Writing over a century ago, Darwin hypothesized that vocal expression of emotion dates back to our earliest terrestrial ancestors. If this hypothesis is true, we should expect to find cross-species acoustic universals in emotional vocalizations. Studies suggest that acoustic attributes of aroused vocalizations are shared across many mammalian species, and that humans can use these attributes to infer emotional content. But do these acoustic attributes extend to non-mammalian vertebrates? In this study, we asked human participants to judge the emotional content of vocalizations of nine vertebrate species representing three different biological classes—Amphibia, Reptilia (non-aves and aves) and Mammalia. We found that humans are able to identify higher levels of arousal in vocalizations across all species. This result was consistent across different language groups (English, German and Mandarin native speakers), suggesting that this ability is biologically rooted in humans. Our findings indicate that humans use multiple acoustic parameters to infer relative arousal in vocalizations for each species, but mainly rely on fundamental frequency and spectral centre of gravity to identify higher arousal vocalizations across species. These results suggest that fundamental mechanisms of vocal emotional expression are shared among vertebrates and could represent a homologous signalling system.
  • Filippi, P., Gogoleva, S. S., Volodina, E. V., Volodin, I. A., & De Boer, B. (2017). Humans identify negative (but not positive) arousal in silver fox vocalizations: Implications for the adaptive value of interspecific eavesdropping. Current Zoology, 63(4), 445-456. doi:10.1093/cz/zox035.

    Abstract

    The ability to identify emotional arousal in heterospecific vocalizations may facilitate behaviors that increase survival opportunities. Crucially, this ability may orient inter-species interactions, particularly between humans and other species. Research shows that humans identify emotional arousal in vocalizations across multiple species, such as cats, dogs, and piglets. However, no previous study has addressed humans' ability to identify emotional arousal in silver foxes. Here, we adopted low-and high-arousal calls emitted by three strains of silver fox-Tame, Aggressive, and Unselected-in response to human approach. Tame and Aggressive foxes are genetically selected for friendly and attacking behaviors toward humans, respectively. Unselected foxes show aggressive and fearful behaviors toward humans. These three strains show similar levels of emotional arousal, but different levels of emotional valence in relation to humans. This emotional information is reflected in the acoustic features of the calls. Our data suggest that humans can identify high-arousal calls of Aggressive and Unselected foxes, but not of Tame foxes. Further analyses revealed that, although within each strain different acoustic parameters affect human accuracy in identifying high-arousal calls, spectral center of gravity, harmonic-to-noise ratio, and F0 best predict humans' ability to discriminate high-arousal calls across all strains. Furthermore, we identified in spectral center of gravity and F0 the best predictors for humans' absolute ratings of arousal in each call. Implications for research on the adaptive value of inter-specific eavesdropping are discussed.

    Additional information

    zox035_Supp.zip
  • Filippi, P., Ocklenburg, S., Bowling, D. L., Heege, L., Güntürkün, O., Newen, A., & de Boer, B. (2017). More than words (and faces): evidence for a Stroop effect of prosody in emotion word processing. Cognition & Emotion, 31(5), 879-891. doi:10.1080/02699931.2016.1177489.

    Abstract

    Humans typically combine linguistic and nonlinguistic information to comprehend emotions. We adopted an emotion identification Stroop task to investigate how different channels interact in emotion communication. In experiment 1, synonyms of “happy” and “sad” were spoken with happy and sad prosody. Participants had more difficulty ignoring prosody than ignoring verbal content. In experiment 2, synonyms of “happy” and “sad” were spoken with happy and sad prosody, while happy or sad faces were displayed. Accuracy was lower when two channels expressed an emotion that was incongruent with the channel participants had to focus on, compared with the cross-channel congruence condition. When participants were required to focus on verbal content, accuracy was significantly lower also when prosody was incongruent with verbal content and face. This suggests that prosody biases emotional verbal content processing, even when conflicting with verbal content and face simultaneously. Implications for multimodal communication and language evolution studies are discussed.
  • Filippi, P., Gingras, B., & Fitch, W. T. (2014). Pitch enhancement facilitates word learning across visual contexts. Frontiers in Psychology, 5: 1468. doi:10.3389%2Ffpsyg.2014.01468.

    Abstract

    This study investigates word-learning using a new experimental paradigm that integrates three processes: (a) extracting a word out of a continuous sound sequence, (b) inferring its referential meanings in context, (c) mapping the segmented word onto its broader intended referent, such as other objects of the same semantic category, and to novel utterances. Previous work has examined the role of statistical learning and/or of prosody in each of these processes separately. Here, we combine these strands of investigation into a single experimental approach, in which participants viewed a photograph belonging to one of three semantic categories while hearing a complex, five-word utterance containing a target word. Six between-subjects conditions were tested with 20 adult participants each. In condition 1, the only cue to word-meaning mapping was the co-occurrence of word and referents. This statistical cue was present in all conditions. In condition 2, the target word was sounded at a higher pitch. In condition 3, random words were sounded at a higher pitch, creating an inconsistent cue. In condition 4, the duration of the target word was lengthened. In conditions 5 and 6, an extraneous acoustic cue and a visual cue were associated with the target word, respectively. Performance in this word-learning task was significantly higher than that observed with simple co-occurrence only when pitch prominence consistently marked the target word. We discuss implications for the pragmatic value of pitch marking as well as the relevance of our findings to language acquisition and language evolution.
  • Filippi, P., Laaha, S., & Fitch, W. T. (2017). Utterance-final position and pitch marking aid word learning in school-age children. Royal Society Open Science, 4: 161035. doi:10.1098/rsos.161035.

    Abstract

    We investigated the effects of word order and prosody on word learning in school-age children. Third graders viewed photographs belonging to one of three semantic categories while hearing four-word nonsense utterances containing a target word. In the control condition, all words had the same pitch and, across trials, the position of the target word was varied systematically within each utterance. The only cue to word–meaning mapping was the co-occurrence of target words and referents. This cue was present in all conditions. In the Utterance-final condition, the target word always occurred in utterance-final position, and at the same fundamental frequency as all the other words of the utterance. In the Pitch peak condition, the position of the target word was varied systematically within each utterance across trials, and produced with pitch contrasts typical of infant-directed speech (IDS). In the Pitch peak + Utterance-final condition, the target word always occurred in utterance-final position, and was marked with a pitch contrast typical of IDS. Word learning occurred in all conditions except the control condition. Moreover, learning performance was significantly higher than that observed with simple co-occurrence (control condition) only for the Pitch peak + Utterance-final condition. We conclude that, for school-age children, the combination of words' utterance-final alignment and pitch enhancement boosts word learning.
  • Fisher, S. E., & Tilot, A. K. (2019). Bridging senses: Novel insights from synaesthesia. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190022. doi:10.1098/rstb.2019.0022.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E., Stein, J. F., & Monaco, A. P. (1999). A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia). European Child & Adolescent Psychiatry, 8(suppl. 3), S47-S51. doi:10.1007/PL00010694.

    Abstract

    Family and twin studies of developmental dyslexia have consistently shown that there is a significant heritable component for this disorder. However, any genetic basis for the trait is likely to be complex, involving reduced penetrance, phenocopy, heterogeneity and oligogenic inheritance. This complexity results in reduced power for traditional parametric linkage analysis, where specification of the correct genetic model is important. One strategy is to focus on large multigenerational pedigrees with severe phenotypes and/or apparent simple Mendelian inheritance, as has been successfully demonstrated for speech and language impairment. This approach is limited by the scarcity of such families. An alternative which has recently become feasible due to the development of high-throughput genotyping techniques is the analysis of large numbers of sib-pairs using allele-sharing methodology. This paper outlines our strategy for conducting a systematic genome-wide search for genes involved in dyslexia in a large number of affected sib-pair familites from the UK. We use a series of psychometric tests to obtain different quantitative measures of reading deficit, which should correlate with different components of the dyslexia phenotype, such as phonological awareness and orthographic coding ability. This enable us to use QTL (quantitative trait locus) mapping as a powerful tool for localising genes which may contribute to reading and spelling disability.
  • Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., Weeks, D. E., Stein, J. F., & Monaco, A. P. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics, 64(1), 146-156. doi:10.1086/302190.

    Abstract

    Recent application of nonparametric-linkage analysis to reading disability has implicated a putative quantitative-trait locus (QTL) on the short arm of chromosome 6. In the present study, we use QTL methods to evaluate linkage to the 6p25-21.3 region in a sample of 181 sib pairs from 82 nuclear families that were selected on the basis of a dyslexic proband. We have assessed linkage directly for several quantitative measures that should correlate with different components of the phenotype, rather than using a single composite measure or employing categorical definitions of subtypes. Our measures include the traditional IQ/reading discrepancy score, as well as tests of word recognition, irregular-word reading, and nonword reading. Pointwise analysis by means of sib-pair trait differences suggests the presence, in 6p21.3, of a QTL influencing multiple components of dyslexia, in particular the reading of irregular words (P=.0016) and nonwords (P=.0024). A complementary statistical approach involving estimation of variance components supports these findings (irregular words, P=.007; nonwords, P=.0004). Multipoint analyses place the QTL within the D6S422-D6S291 interval, with a peak around markers D6S276 and D6S105 consistently identified by approaches based on trait differences (irregular words, P=.00035; nonwords, P=.0035) and variance components (irregular words, P=.007; nonwords, P=.0038). Our findings indicate that the QTL affects both phonological and orthographic skills and is not specific to phoneme awareness, as has been previously suggested. Further studies will be necessary to obtain a more precise localization of this QTL, which may lead to the isolation of one of the genes involved in developmental dyslexia.
  • Fisher, S. E. (2019). Human genetics: The evolving story of FOXP2. Current Biology, 29(2), R65-R67. doi:10.1016/j.cub.2018.11.047.

    Abstract

    FOXP2 mutations cause a speech and language disorder, raising interest in potential roles of this gene in human evolution. A new study re-evaluates genomic variation at the human FOXP2 locus but finds no evidence of recent adaptive evolution.
  • Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic Bulletin & Review, 24(1), 34-40. doi: 10.3758/s13423-016-1112-8.

    Abstract

    The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.
  • Fisher, V. J. (2017). Unfurling the wings of flight: Clarifying ‘the what’ and ‘the why’ of mental imagery use in dance. Research in Dance Education, 18(3), 252-272. doi:10.1080/14647893.2017.1369508.

    Abstract

    This article provides clarification regarding ‘the what’ and ‘the why’ of mental imagery use in dance. It proposes that mental images are invoked across sensory modalities and often combine internal and external perspectives. The content of images ranges from ‘direct’ body oriented simulations along a continuum employing analogous mapping through ‘semi-direct’ literal similarities to abstract metaphors. The reasons for employing imagery are diverse and often overlapping, affecting physical, affective (psychological) and cognitive domains. This paper argues that when dance uses imagery, it is mapping aspects of the world to the body via analogy. Such mapping informs and changes our understanding of both our bodies and the world. In this way, mental imagery use in dance is fundamentally a process of embodied cognition
  • Fitz, H., & Chang, F. (2017). Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production. Cognition, 166, 225-250. doi:10.1016/j.cognition.2017.05.008.

    Abstract

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions
  • Fitz, H., & Chang, F. (2019). Language ERPs reflect learning through prediction error propagation. Cognitive Psychology, 111, 15-52. doi:10.1016/j.cogpsych.2019.03.002.

    Abstract

    Event-related potentials (ERPs) provide a window into how the brain is processing language. Here, we propose a theory that argues that ERPs such as the N400 and P600 arise as side effects of an error-based learning mechanism that explains linguistic adaptation and language learning. We instantiated this theory in a connectionist model that can simulate data from three studies on the N400 (amplitude modulation by expectancy, contextual constraint, and sentence position), five studies on the P600 (agreement, tense, word category, subcategorization and garden-path sentences), and a study on the semantic P600 in role reversal anomalies. Since ERPs are learning signals, this account explains adaptation of ERP amplitude to within-experiment frequency manipulations and the way ERP effects are shaped by word predictability in earlier sentences. Moreover, it predicts that ERPs can change over language development. The model provides an account of the sensitivity of ERPs to expectation mismatch, the relative timing of the N400 and P600, the semantic nature of the N400, the syntactic nature of the P600, and the fact that ERPs can change with experience. This approach suggests that comprehension ERPs are related to sentence production and language acquisition mechanisms
  • FitzPatrick, I., & Indefrey, P. (2014). Head start for target language in bilingual listening. Brain Research, 1542, 111-130. doi:10.1016/j.brainres.2013.10.014.

    Abstract

    In this study we investigated the availability of non-target language semantic features in bilingual speech processing. We recorded EEG from Dutch-English bilinguals who listened to spoken sentences in their L2 (English) or L1 (Dutch). In Experiments 1 and 3 the sentences contained an interlingual homophone. The sentence context was either biased towards the target language meaning of the homophone (target biased), the non-target language meaning (non-target biased), or neither meaning of the homophone (fully incongruent). These conditions were each compared to a semantically congruent control condition. In L2 sentences we observed an N400 in the non-target biased condition that had an earlier offset than the N400 to fully incongruent homophones. In the target biased condition, a negativity emerged that was later than the N400 to fully incongruent homophones. In L1 contexts, neither target biased nor non-target biased homophones yielded significant N400 effects (compared to the control condition). In Experiments 2 and 4 the sentences contained a language switch to a non-target language word that could be semantically congruent or incongruent. Semantically incongruent words (switched, and non-switched) elicited an N400 effect. The N400 to semantically congruent language-switched words had an earlier offset than the N400 to incongruent words. Both congruent and incongruent language switches elicited a Late Positive Component (LPC). These findings show that bilinguals activate both meanings of interlingual homophones irrespective of their contextual fit. In L2 contexts, the target-language meaning of the homophone has a head start over the non-target language meaning. The target-language head start is also evident for language switches from both L2-to-L1 and L1-to-L2
  • Flecken, M., von Stutterheim, C., & Carroll, M. (2014). Grammatical aspect influences motion event perception: Evidence from a cross-linguistic non-verbal recognition task. Language and Cognition, 6(1), 45-78. doi:10.1017/langcog.2013.2.

    Abstract

    Using eye-tracking as a window on cognitive processing, this study investigates language effects on attention to motion events in a non-verbal task. We compare gaze allocation patterns by native speakers of German and Modern Standard Arabic (MSA), two languages that differ with regard to the grammaticalization of temporal concepts. Findings of the non-verbal task, in which speakers watch dynamic event scenes while performing an auditory distracter task, are compared to gaze allocation patterns which were obtained in an event description task, using the same stimuli. We investigate whether differences in the grammatical aspectual systems of German and MSA affect the extent to which endpoints of motion events are linguistically encoded and visually processed in the two tasks. In the linguistic task, we find clear language differences in endpoint encoding and in the eye-tracking data (attention to event endpoints) as well: German speakers attend to and linguistically encode endpoints more frequently than speakers of MSA. The fixation data in the non-verbal task show similar language effects, providing relevant insights with regard to the language-and-thought debate. The present study is one of the few studies that focus explicitly on language effects related to grammatical concepts, as opposed to lexical concepts.
  • Floyd, S. (2014). [Review of the book Flexible word classes: Typological studies of underspecified parts of speech ed. by Jan Rijkhoff and Eva van Lier]. Linguistics, 52, 1499-1502. doi:10.1515/ling-2014-0027.
  • Floyd, S., San Roque, L., & Majid, A. (2018). Smell is coded in grammar and frequent in discourse: Cha'palaa olfactory language in cross-linguistic perspective. Journal of Linguistic Anthropology, 28(2), 175-196. doi:10.1111/jola.12190.

    Abstract

    It has long been claimed that there is no lexical field of smell, and that smell is of too little validity to be expressed in grammar. We demonstrate both claims are false. The Cha'palaa language (Ecuador) has at least 15 abstract smell terms, each of which is formed using a type of classifier previously thought not to exist. Moreover, using conversational corpora we show that Cha'palaa speakers also talk about smell more than Imbabura Quechua and English speakers. Together, this shows how language and social interaction may jointly reflect distinct cultural orientations towards sensory experience in general and olfaction in particular.
  • Floyd, S., Rossi, G., Baranova, J., Blythe, J., Dingemanse, M., Kendrick, K. H., Zinken, J., & Enfield, N. J. (2018). Universals and cultural diversity in the expression of gratitude. Royal Society Open Science, 5: 180391. doi:10.1098/rsos.180391.

    Abstract

    Gratitude is argued to have evolved to motivate and maintain social reciprocity among people, and to be linked to a wide range of positive effects — social, psychological, and even physical. But is socially reciprocal behaviour dependent on the expression of gratitude, for example by saying "thank you" as in English? Current research has not included cross-cultural elements, and has tended to conflate gratitude as an emotion with gratitude as a linguistic practice, as might appear to be the case in English. Here we ask to what extent people actually express gratitude in different societies by focussing on episodes of everyday life where someone obtains a good, service, or support from another, and comparing these episodes across eight languages from five continents. What we find is that expressions of gratitude in these episodes are remarkably rare, suggesting that social reciprocity in everyday life relies on tacit understandings of people’s rights and duties surrounding mutual assistance and collaboration. At the same time, we also find minor cross-cultural variation, with slightly higher rates in Western European languages English and Italian, showing that universal tendencies of social reciprocity should not be conflated with more culturally variable practices of expressing gratitude. Our study complements previous experimental and culture-specific research on social reciprocity with a systematic comparison of audiovisual corpora of naturally occurring social interaction from different cultures from around the world.
  • Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.

    Abstract

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
  • Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain, 137, 2027-2039. doi:10.1093/brain/awu113.

    Abstract

    Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke’s to Broca’s region (i.e. long segment), Wernicke’s to Geschwind’s region (i.e. posterior segment) and Broca’s to Geschwind’s region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28–87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = −0.630, t(−3.129), P = 0.011]. For the right hemisphere, age [beta = −0.678, t(–3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.

    Additional information

    supplementary information
  • Forkel, S. J., & Catani, M. (2018). Lesion mapping in acute stroke aphasia and its implications for recovery. Neuropsychologia, 115, 88-100. doi:10.1016/j.neuropsychologia.2018.03.036.

    Abstract

    Patients with stroke offer a unique window into understanding human brain function. Mapping stroke lesions poses several challenges due to the complexity of the lesion anatomy and the mechanisms causing local and remote disruption on brain networks. In this prospective longitudinal study, we compare standard and advanced approaches to white matter lesion mapping applied to acute stroke patients with aphasia. Eighteen patients with acute left hemisphere stroke were recruited and scanned within two weeks from symptom onset. Aphasia assessment was performed at baseline and six-month follow-up. Structural and diffusion MRI contrasts indicated an area of maximum overlap in the anterior external/extreme capsule with diffusion images showing a larger overlap extending into posterior perisylvian regions. Anatomical predictors of recovery included damage to ipsilesional tracts (as shown by both structural and diffusion images) and contralesional tracts (as shown by diffusion images only). These findings indicate converging results from structural and diffusion lesion mapping methods but also clear differences between the two approaches in their ability to identify predictors of recovery outside the lesioned regions.
  • Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell'Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73-84. doi:10.1016/j.cortex.2012.09.005.

    Abstract

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top–down modulation of early visual processing.

    Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the ‘inferior fronto-occipital fasciculus’ (iFOF) has not been demonstrated. Conversely, a ‘superior fronto-occipital fasciculus’ (sFOF), also referred to as ‘subcallosal bundle’ by some authors, is reported in monkey axonal tracing studies but not in human dissections.

    In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the ‘subcallosal bundle’ in animals (1893).

    Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an ‘occipital extension’ of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract.

    In conclusion, our experimental findings and review of the literature suggest that a ventral pathway in humans, namely the iFOF, mediates a direct communication between occipital and frontal lobes. Whether the iFOF represents a unique human pathway awaits further ad hoc investigations in animals.
  • Frances, C., Costa, A., & Baus, C. (2018). On the effects of regional accents on memory and credibility. Acta Psychologica, 186, 63-70. doi:10.1016/j.actpsy.2018.04.003.

    Abstract

    The information we obtain from how speakers sound—for example their accent—affects how we interpret the messages they convey. A clear example is foreign accented speech, where reduced intelligibility and speaker's social categorization (out-group member) affect memory and the credibility of the message (e.g., less trustworthiness). In the present study, we go one step further and ask whether evaluations of messages are also affected by regional accents—accents from a different region than the listener. In the current study, we report results from three experiments on immediate memory recognition and immediate credibility assessments as well as the illusory truth effect. These revealed no differences between messages conveyed in local—from the same region as the participant—and regional accents—from native speakers of a different country than the participants. Our results suggest that when the accent of a speaker has high intelligibility, social categorization by accent does not seem to negatively affect how we treat the speakers' messages.
  • Frances, C., Costa, A., & Baus, C. (2018). On the effects of regional accents on memory and credibility. Acta Psychologica, 186, 63-70. doi:10.1016/j.actpsy.2018.04.003.

    Abstract

    The information we obtain from how speakers sound—for example their accent—affects how we interpret the
    messages they convey. A clear example is foreign accented speech, where reduced intelligibility and speaker's
    social categorization (out-group member) affect memory and the credibility of the message (e.g., less trust-
    worthiness). In the present study, we go one step further and ask whether evaluations of messages are also
    affected by regional accents—accents from a different region than the listener. In the current study, we report
    results from three experiments on immediate memory recognition and immediate credibility assessments as well
    as the illusory truth effect. These revealed no differences between messages conveyed in local—from the same
    region as the participant—and regional accents—from native speakers of a different country than the partici-
    pants. Our results suggest that when the accent of a speaker has high intelligibility, social categorization by
    accent does not seem to negatively affect how we treat the speakers' messages.
  • Francisco, A. A., Groen, M. A., Jesse, A., & McQueen, J. M. (2017). Beyond the usual cognitive suspects: The importance of speechreading and audiovisual temporal sensitivity in reading ability. Learning and Individual Differences, 54, 60-72. doi:10.1016/j.lindif.2017.01.003.

    Abstract

    The aim of this study was to clarify whether audiovisual processing accounted for variance in reading and reading-related abilities, beyond the effect of a set of measures typically associated with individual differences in both reading and audiovisual processing. Testing adults with and without a diagnosis of dyslexia, we showed that—across all participants, and after accounting for variance in cognitive abilities—audiovisual temporal sensitivity contributed uniquely to variance in reading errors. This is consistent with previous studies demonstrating an audiovisual deficit in dyslexia. Additionally, we showed that speechreading (identification of speech based on visual cues from the talking face alone) was a unique contributor to variance in phonological awareness in dyslexic readers only: those who scored higher on speechreading, scored lower on phonological awareness. This suggests a greater reliance on visual speech as a compensatory mechanism when processing auditory speech is problematic. A secondary aim of this study was to better understand the nature of dyslexia. The finding that a sub-group of dyslexic readers scored low on phonological awareness and high on speechreading is consistent with a hybrid perspective of dyslexia: There are multiple possible pathways to reading impairment, which may translate into multiple profiles of dyslexia.
  • Francisco, A. A., Jesse, A., Groen, M. A., & McQueen, J. M. (2017). A general audiovisual temporal processing deficit in adult readers with dyslexia. Journal of Speech, Language, and Hearing Research, 60, 144-158. doi:10.1044/2016_JSLHR-H-15-0375.

    Abstract

    Purpose: Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. Method: We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of audiovisual speech and nonspeech stimuli, their time window of audiovisual integration for speech (using incongruent /aCa/ syllables), and their audiovisual perception of phonetic categories. Results: Adult readers with dyslexia showed less sensitivity to audiovisual simultaneity than typical readers for both speech and nonspeech events. We found no differences between readers with dyslexia and typical readers in the temporal window of integration for audiovisual speech or in the audiovisual perception of phonetic categories. Conclusions: The results suggest an audiovisual temporal deficit in dyslexia that is not specific to speech-related events. But the differences found for audiovisual temporal sensitivity did not translate into a deficit in audiovisual speech perception. Hence, there seems to be a hiatus between simultaneity judgment and perception, suggesting a multisensory system that uses different mechanisms across tasks. Alternatively, it is possible that the audiovisual deficit in dyslexia is only observable when explicit judgments about audiovisual simultaneity are required
  • Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.

    Abstract

    The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers.
  • Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of Life Reviews, 30, 22-24. doi:10.1016/j.plrev.2019.07.004.
  • Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., Hamlin, J. K., Hannon, E. E., Kline, M., Levelt, C., Lew-Williams, C., Nazzi, T., Panneton, R., Rabagliati, H., Soderstrom, M., Sullivan, J., Waxman, S., & Yurovsky, D. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. Infancy, 22(4), 421-435. doi:10.1111/infa.12182.

    Abstract

    The ideal of scientific progress is that we accumulate measurements and integrate these into theory, but recent discussion of replicability issues has cast doubt on whether psychological research conforms to this model. Developmental research—especially with infant participants—also has discipline-specific replicability challenges, including small samples and limited measurement methods. Inspired by collaborative replication efforts in cognitive and social psychology, we describe a proposal for assessing and promoting replicability in infancy research: large-scale, multi-laboratory replication efforts aiming for a more precise understanding of key developmental phenomena. The ManyBabies project, our instantiation of this proposal, will not only help us estimate how robust and replicable these phenomena are, but also gain new theoretical insights into how they vary across ages, linguistic communities, and measurement methods. This project has the potential for a variety of positive outcomes, including less-biased estimates of theoretically important effects, estimates of variability that can be used for later study planning, and a series of best-practices blueprints for future infancy research.
  • Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. PLoS One, 13(5): e0197304. doi:10.1371/journal.pone.0197304.

    Abstract

    Results from a recent neuroimaging study on spoken sentence comprehension have been interpreted as evidence for cortical entrainment to hierarchical syntactic structure. We present a simple computational model that predicts the power spectra from this study, even
    though the model's linguistic knowledge is restricted to the lexical level, and word-level representations are not combined into higher-level units (phrases or sentences). Hence, the
    cortical entrainment results can also be explained from the lexical properties of the stimuli, without recourse to hierarchical syntax.
  • Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct patterns of brain activity during language comprehension. Language, Cognition and Neuroscience, 32(9), 1192-1203. doi:10.1080/23273798.2017.1323109.

    Abstract

    We investigate the effects of two types of relationship between the words of a sentence or text – predictability and semantic similarity – by reanalysing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data from studies in which participants comprehend naturalistic stimuli. Each content word's predictability given previous words is quantified by a probabilistic language model, and semantic similarity to previous words is quantified by a distributional semantics model. Brain activity time-locked to each word is regressed on the two model-derived measures. Results show that predictability and semantic similarity have near identical N400 effects but are dissociated in the fMRI data, with word predictability related to activity in, among others, the visual word-form area, and semantic similarity related to activity in areas associated with the semantic network. This indicates that both predictability and similarity play a role during natural language comprehension and modulate distinct cortical regions.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.

    Abstract

    Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.

    Abstract

    An important part of understanding speech motor control consists of capturing the
    interaction between speech production and speech perception. This study tests a
    prediction of theoretical frameworks that have tried to account for these interactions: if
    speech production targets are specified in auditory terms, individuals with better
    auditory acuity should have more precise speech targets, evidenced by decreased
    within-phoneme variability and increased between-phoneme distance. A study was
    carried out consisting of perception and production tasks in counterbalanced order.
    Auditory acuity was assessed using an adaptive speech discrimination task, while
    production variability was determined using a pseudo-word reading task. Analyses of
    the production data were carried out to quantify average within-phoneme variability as
    well as average between-phoneme contrasts. Results show that individuals not only
    vary in their production and perceptual abilities, but that better discriminators have
    more distinctive vowel production targets (that is, targets with less within-phoneme
    variability and greater between-phoneme distances), confirming the initial hypothesis.
    This association between speech production and perception did not depend on local
    phoneme density in vowel space. This study suggests that better auditory acuity leads
    to more precise speech production targets, which may be a consequence of auditory
    feedback affecting speech production over time.
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.

    Abstract

    When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.
  • Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.

    Abstract

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing.
  • Frauenfelder, U. H., & Cutler, A. (1985). Preface. Linguistics, 23(5). doi:10.1515/ling.1985.23.5.657.
  • Frega, M., Linda, K., Keller, J. M., Gümüş-Akay, G., Mossink, B., Van Rhijn, J. R., Negwer, M., Klein Gunnewiek, T., Foreman, K., Kompier, N., Schoenmaker, C., Van den Akker, W., Van der Werf, I., Oudakker, A., Zhou, H., Kleefstra, T., Schubert, D., Van Bokhoven, H., & Nadif Kasri, N. (2019). Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nature Communications, 10: 4928. doi:10.1038/s41467-019-12947-3.

    Abstract

    Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.

    Additional information

    supplementary information
  • Frega, M., van Gestel, S. H. C., Linda, K., Van der Raadt, J., Keller, J., Van Rhijn, J. R., Schubert, D., Albers, C. A., & Kasri, N. N. (2017). Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. Journal of Visualized Experiments, e45900. doi:10.3791/54900.

    Abstract

    Neurons derived from human induced Pluripotent Stem Cells (hiPSCs) provide a promising new tool for studying neurological disorders. In the past decade, many protocols for differentiating hiPSCs into neurons have been developed. However, these protocols are often slow with high variability, low reproducibility, and low efficiency. In addition, the neurons obtained with these protocols are often immature and lack adequate functional activity both at the single-cell and network levels unless the neurons are cultured for several months. Partially due to these limitations, the functional properties of hiPSC-derived neuronal networks are still not well characterized. Here, we adapt a recently published protocol that describes production of human neurons from hiPSCs by forced expression of the transcription factor neurogenin-212. This protocol is rapid (yielding mature neurons within 3 weeks) and efficient, with nearly 100% conversion efficiency of transduced cells (>95% of DAPI-positive cells are MAP2 positive). Furthermore, the protocol yields a homogeneous population of excitatory neurons that would allow the investigation of cell-type specific contributions to neurological disorders. We modified the original protocol by generating stably transduced hiPSC cells, giving us explicit control over the total number of neurons. These cells are then used to generate hiPSC-derived neuronal networks on micro-electrode arrays. In this way, the spontaneous electrophysiological activity of hiPSC-derived neuronal networks can be measured and characterized, while retaining interexperimental consistency in terms of cell density. The presented protocol is broadly applicable, especially for mechanistic and pharmacological studies on human neuronal networks.

    Additional information

    video component of this article
  • French, C. A., Vinueza Veloz, M. F., Zhou, K., Peter, S., Fisher, S. E., Costa, R. M., & De Zeeuw, C. I. (2019). Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 24, 447-462. doi:10.1038/s41380-018-0199-x.

    Abstract

    Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Frost, R. L. A., Monaghan, P., & Tatsumi, T. (2017). Domain-general mechanisms for speech segmentation: The role of duration information in language learning. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 466-476. doi:10.1037/xhp0000325.

    Abstract

    Speech segmentation is supported by multiple sources of information that may either inform language processing specifically, or serve learning more broadly. The Iambic/Trochaic Law (ITL), where increased duration indicates the end of a group and increased emphasis indicates the beginning of a group, has been proposed as a domain-general mechanism that also applies to language. However, language background has been suggested to modulate use of the ITL, meaning that these perceptual grouping preferences may instead be a consequence of language exposure. To distinguish between these accounts, we exposed native-English and native-Japanese listeners to sequences of speech (Experiment 1) and nonspeech stimuli (Experiment 2), and examined segmentation using a 2AFC task. Duration was manipulated over 3 conditions: sequences contained either an initial-item duration increase, or a final-item duration increase, or items of uniform duration. In Experiment 1, language background did not affect the use of duration as a cue for segmenting speech in a structured artificial language. In Experiment 2, the same results were found for grouping structured sequences of visual shapes. The results are consistent with proposals that duration information draws upon a domain-general mechanism that can apply to the special case of language acquisition
  • Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2019). Mark my words: High frequency marker words impact early stages of language learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1883-1898. doi:10.1037/xlm0000683.

    Abstract

    High frequency words have been suggested to benefit both speech segmentation and grammatical categorization of the words around them. Despite utilizing similar information, these tasks are usually investigated separately in studies examining learning. We determined whether including high frequency words in continuous speech could support categorization when words are being segmented for the first time. We familiarized learners with continuous artificial speech comprising repetitions of target words, which were preceded by high-frequency marker words. Crucially, marker words distinguished targets into 2 distributionally defined categories. We measured learning with segmentation and categorization tests and compared performance against a control group that heard the artificial speech without these marker words (i.e., just the targets, with no cues for categorization). Participants segmented the target words from speech in both conditions, but critically when the marker words were present, they influenced acquisition of word-referent mappings in a subsequent transfer task, with participants demonstrating better early learning for mappings that were consistent (rather than inconsistent) with the distributional categories. We propose that high-frequency words may assist early grammatical categorization, while speech segmentation is still being learned.

    Additional information

    Supplemental Material
  • Frost, R. L. A., & Monaghan, P. (2017). Sleep-driven computations in speech processing. PLoS One, 12(1): e0169538. doi:10.1371/journal.pone.0169538.

    Abstract

    Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting—on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously—with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.

    Additional information

    Data available
  • Fuhrmann, D., Ravignani, A., Marshall-Pescini, S., & Whiten, A. (2014). Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports, 4: 5283. doi:10.1038/srep05283.

    Abstract

    Cumulative tool-based culture underwrote our species' evolutionary success and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

    Additional information

    Supplementary Information
  • Furman, R., Kuntay, A., & Ozyurek, A. (2014). Early language-specificity of children's event encoding in speech and gesture: Evidence from caused motion in Turkish. Language, Cognition and Neuroscience, 29, 620-634. doi:10.1080/01690965.2013.824993.

    Abstract

    Previous research on language development shows that children are tuned early on to the language-specific semantic and syntactic encoding of events in their native language. Here we ask whether language-specificity is also evident in children's early representations in gesture accompanying speech. In a longitudinal study, we examined the spontaneous speech and cospeech gestures of eight Turkish-speaking children aged one to three and focused on their caused motion event expressions. In Turkish, unlike in English, the main semantic elements of caused motion such as Action and Path can be encoded in the verb (e.g. sok- ‘put in’) and the arguments of a verb can be easily omitted. We found that Turkish-speaking children's speech indeed displayed these language-specific features and focused on verbs to encode caused motion. More interestingly, we found that their early gestures also manifested specificity. Children used iconic cospeech gestures (from 19 months onwards) as often as pointing gestures and represented semantic elements such as Action with Figure and/or Path that reinforced or supplemented speech in language-specific ways until the age of three. In the light of previous reports on the scarcity of iconic gestures in English-speaking children's early productions, we argue that the language children learn shapes gestures and how they get integrated with speech in the first three years of life.
  • Galbiati, A., Verga, L., Giora, E., Zucconi, M., & Ferini-Strambi, L. (2019). The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Medicine Reviews, 43, 37-46. doi:10.1016/j.smrv.2018.09.008.

    Abstract

    Several studies report an association between REM Sleep Behavior Disorder (RBD) and neurodegenerative diseases, in particular synucleinopathies. Interestingly, the onset of RBD precedes the development of neurodegeneration by several years. This review and meta-analysis aims to establish the rate of conversion of RBD into neurodegenerative diseases. Longitudinal studies were searched from the PubMed, Web of Science, and SCOPUS databases. Using random-effect modeling, we performed a meta-analysis on the rate of RBD conversions into neurodegeneration. Furthermore, we fitted a Kaplan-Meier analysis and compared the differences between survival curves of different diseases with log-rank tests. The risk for developing neurodegenerative diseases was 33.5% at five years follow-up, 82.4% at 10.5 years and 96.6% at 14 years. The average conversion rate was 31.95% after a mean duration of follow-up of 4.75 ± 2.43 years. The majority of RBD patients converted to Parkinson's Disease (43%), followed by Dementia with Lewy Bodies (25%). The estimated risk for RBD patients to develop a neurodegenerative disease over a long-term follow-up is more than 90%. Future studies should include control group for the evaluation of REM sleep without atonia as marker for neurodegeneration also in non-clinical population and target RBD as precursor of neurodegeneration to develop protective trials.
  • Ganushchak, L., Konopka, A. E., & Chen, Y. (2014). What the eyes say about planning of focused referents during sentence formulation: a cross-linguistic investigation. Frontiers in Psychology, 5: 1124. doi:10.3389/fpsyg.2014.01124.

    Abstract

    This study investigated how sentence formulation is influenced by a preceding discourse context. In two eye-tracking experiments, participants described pictures of two-character transitive events in Dutch (Experiment 1) and Chinese (Experiment 2). Focus was manipulated by presenting questions before each picture. In the Neutral condition, participants first heard ‘What is happening here?’ In the Object or Subject Focus conditions, the questions asked about the Object or Subject character (What is the policeman stopping? Who is stopping the truck?). The target response was the same in all conditions (The policeman is stopping the truck). In both experiments, sentence formulation in the Neutral condition showed the expected pattern of speakers fixating the subject character (policeman) before the object character (truck). In contrast, in the focus conditions speakers rapidly directed their gaze preferentially only to the character they needed to encode to answer the question (the new, or focused, character). The timing of gaze shifts to the new character varied by language group (Dutch vs. Chinese): shifts to the new character occurred earlier when information in the question can be repeated in the response with the same syntactic structure (in Chinese but not in Dutch). The results show that discourse affects the timecourse of linguistic formulation in simple sentences and that these effects can be modulated by language-specific linguistic structures such as parallels in the syntax of questions and declarative sentences.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gao, Y., Zheng, L., Liu, X., Nichols, E. S., Zhang, M., Shang, L., Ding, G., Meng, Z., & Liu, L. (2019). First and second language reading difficulty among Chinese–English bilingual children: The prevalence and influences from demographic characteristics. Frontiers in Psychology, 10: 2544. doi:10.3389/fpsyg.2019.02544.

    Abstract

    Learning to read a second language (L2) can pose a great challenge for children who have already been struggling to read in their first language (L1). Moreover, it is not clear whether, to what extent, and under what circumstances L1 reading difficulty increases the risk of L2 reading difficulty. This study investigated Chinese (L1) and English (L2) reading skills in a large representative sample of 1,824 Chinese–English bilingual children in Grades 4 and 5 from both urban and rural schools in Beijing. We examined the prevalence of reading difficulty in Chinese only (poor Chinese readers, PC), English only (poor English readers, PE), and both Chinese and English (poor bilingual readers, PB) and calculated the co-occurrence, that is, the chances of becoming a poor reader in English given that the child was already a poor reader in Chinese. We then conducted a multinomial logistic regression analysis and compared the prevalence of PC, PE, and PB between children in Grade 4 versus Grade 5, in urban versus rural areas, and in boys versus girls. Results showed that compared to girls, boys demonstrated significantly higher risk of PC, PE, and PB. Meanwhile, compared to the 5th graders, the 4th graders demonstrated significantly higher risk of PC and PB. In addition, children enrolled in the urban schools were more likely to become better second language readers, thus leading to a concerning rural–urban gap in the prevalence of L2 reading difficulty. Finally, among these Chinese–English bilingual children, regardless of sex and school location, poor reading skill in Chinese significantly increased the risk of also being a poor English reader, with a considerable and stable co-occurrence of approximately 36%. In sum, this study suggests that despite striking differences between alphabetic and logographic writing systems, L1 reading difficulty still significantly increases the risk of L2 reading difficulty. This indicates the shared meta-linguistic skills in reading different writing systems and the importance of understanding the universality and the interdependent relationship of reading between different writing systems. Furthermore, the male disadvantage (in both L1 and L2) and the urban–rural gap (in L2) found in the prevalence of reading difficulty calls for special attention to disadvantaged populations in educational practice.
  • Gao, X., Dera, J., Nijhoff, A. D., & Willems, R. M. (2019). Is less readable liked better? The case of font readability in poetry appreciation. PLoS One, 14(12): e0225757. doi:10.1371/journal.pone.0225757.

    Abstract

    Previous research shows conflicting findings for the effect of font readability on comprehension and memory for language. It has been found that—perhaps counterintuitively–a hard to read font can be beneficial for language comprehension, especially for difficult language. Here we test how font readability influences the subjective experience of poetry reading. In three experiments we tested the influence of poem difficulty and font readability on the subjective experience of poems. We specifically predicted that font readability would have opposite effects on the subjective experience of easy versus difficult poems. Participants read poems which could be more or less difficult in terms of conceptual or structural aspects, and which were presented in a font that was either easy or more difficult to read. Participants read existing poems and subsequently rated their subjective experience (measured through four dependent variables: overall liking, perceived flow of the poem, perceived topic clarity, and perceived structure). In line with previous literature we observed a Poem Difficulty x Font Readability interaction effect for subjective measures of poetry reading. We found that participants rated easy poems as nicer when presented in an easy to read font, as compared to when presented in a hard to read font. Despite the presence of the interaction effect, we did not observe the predicted opposite effect for more difficult poems. We conclude that font readability can influence reading of easy and more difficult poems differentially, with strongest effects for easy poems.

    Additional information

    https://osf.io/jwcqt/
  • Gao, X., & Jiang, T. (2018). Sensory constraints on perceptual simulation during sentence reading. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 848-855. doi:10.1037/xhp0000475.

    Abstract

    Resource-constrained models of language processing predict that perceptual simulation during language understanding would be compromised by sensory limitations (such as reading text in unfamiliar/difficult font), whereas strong versions of embodied theories of language would predict that simulating perceptual symbols in language would not be impaired even under sensory-constrained situations. In 2 experiments, sensory decoding difficulty was manipulated by using easy and hard fonts to study perceptual simulation during sentence reading (Zwaan, Stanfield, & Yaxley, 2002). Results indicated that simulating perceptual symbols in language was not compromised by surface-form decoding challenges such as difficult font, suggesting relative resilience of embodied language processing in the face of certain sensory constraints. Further implications for learning from text and individual differences in language processing will be discussed
  • Garcia, R., Dery, J. E., Roeser, J., & Höhle, B. (2018). Word order preferences of Tagalog-speaking adults and children. First Language, 38(6), 617-640. doi:10.1177/0142723718790317.

    Abstract

    This article investigates the word order preferences of Tagalog-speaking adults and five- and seven-year-old children. The participants were asked to complete sentences to describe pictures depicting actions between two animate entities. Adults preferred agent-initial constructions in the patient voice but not in the agent voice, while the children produced mainly agent-initial constructions regardless of voice. This agent-initial preference, despite the lack of a close link between the agent and the subject in Tagalog, shows that this word order preference is not merely syntactically-driven (subject-initial preference). Additionally, the children’s agent-initial preference in the agent voice, contrary to the adults’ lack of preference, shows that children do not respect the subject-last principle of ordering Tagalog full noun phrases. These results suggest that language-specific optional features like a subject-last principle take longer to be acquired.
  • Garcia, R., Roeser, J., & Höhle, B. (2019). Thematic role assignment in the L1 acquisition of Tagalog: Use of word order and morphosyntactic markers. Language Acquisition, 26(3), 235-261. doi:10.1080/10489223.2018.1525613.

    Abstract

    It is a common finding across languages that young children have problems in understanding patient-initial sentences. We used Tagalog, a verb-initial language with a reliable voice-marking system and highly frequent patient voice constructions, to test the predictions of several accounts that have been proposed to explain this difficulty: the frequency account, the Competition Model, and the incremental processing account. Study 1 presents an analysis of Tagalog child-directed speech, which showed that the dominant argument order is agent-before-patient and that morphosyntactic markers are highly valid cues to thematic role assignment. In Study 2, we used a combined self-paced listening and picture verification task to test how Tagalog-speaking adults and 5- and 7-year-old children process reversible transitive sentences. Results showed that adults performed well in all conditions, while children’s accuracy and listening times for the first noun phrase indicated more difficulty in interpreting patient-initial sentences in the agent voice compared to the patient voice. The patient voice advantage is partly explained by both the frequency account and incremental processing account.
  • Gaskell, M. G., Warker, J., Lindsay, S., Frost, R. L. A., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep Underpins the Plasticity of Language Production. Psychological Science, 25(7), 1457-1465. doi:10.1177/0956797614535937.

    Abstract

    The constraints that govern acceptable phoneme combinations in speech perception and production have considerable plasticity. We addressed whether sleep influences the acquisition of new constraints and their integration into the speech-production system. Participants repeated sequences of syllables in which two phonemes were artificially restricted to syllable onset or syllable coda, depending on the vowel in that sequence. After 48 sequences, participants either had a 90-min nap or remained awake. Participants then repeated 96 sequences so implicit constraint learning could be examined, and then were tested for constraint generalization in a forced-choice task. The sleep group, but not the wake group, produced speech errors at test that were consistent with restrictions on the placement of phonemes in training. Furthermore, only the sleep group generalized their learning to new materials. Polysomnography data showed that implicit constraint learning was associated with slow-wave sleep. These results show that sleep facilitates the integration of new linguistic knowledge with existing production constraints. These data have relevance for systems-consolidation models of sleep.

    Additional information

    https://osf.io/zqg9y/
  • Gaspard III, J. C., Bauer, G. B., Mann, D. A., Boerner, K., Denum, L., Frances, C., & Reep, R. L. (2017). Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology. Journal of Comparative Physiology, 203, 111-120. doi:10.1007/s00359-016-1142-8.

    Abstract

    Manatees live in shallow, frequently turbid
    waters. The sensory means by which they navigate in these
    conditions are unknown. Poor visual acuity, lack of echo-
    location, and modest chemosensation suggest that other
    modalities play an important role. Rich innervation of sen-
    sory hairs that cover the entire body and enlarged soma-
    tosensory areas of the brain suggest that tactile senses are
    good candidates. Previous tests of detection of underwater
    vibratory stimuli indicated that they use passive movement
    of the hairs to detect particle displacements in the vicinity
    of a micron or less for frequencies from 10 to 150 Hz. In
    the current study, hydrodynamic stimuli were created by
    a sinusoidally oscillating sphere that generated a dipole
    field at frequencies from 5 to 150 Hz. Go/no-go tests of
    manatee postcranial mechanoreception of hydrodynamic
    stimuli indicated excellent sensitivity but about an order of
    magnitude less than the facial region. When the vibrissae
    were trimmed, detection thresholds were elevated, suggest-
    ing that the vibrissae were an important means by which
    detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90%
    correct at all frequencies tested. We hypothesize that mana-
    tees utilize vibrissae as a three-dimensional array to detect
    and localize low-frequency hydrodynamic stimuli
  • Gehrig, J., Michalareas, G., Forster, M.-T., Lei, J., Hok, P., Laufs, H., Senft, C., Seifert, V., Schoffelen, J.-M., Hanslmayr, H., & Kell, C. A. (2019). Low-frequency oscillations code speech during verbal working memory. The Journal of Neuroscience, 39(33), 6498-6512. doi:10.1523/JNEUROSCI.0018-19.2019.

    Abstract

    The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time.
    During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired
    knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be
    represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical
    evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings
    in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery.
    Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed
    that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory.
    The positive relationship between beta power during working memory and task performance suggests that working memory
    representations benefit from increased phase separation.
  • Gerrits, F., Senft, G., & Wisse, D. (2018). Bomiyoyeva and bomduvadoya: Two rare structures on the Trobriand Islands exclusively reserved for Tabalu chiefs. Anthropos, 113, 93-113. doi:10.5771/0257-9774-2018-1-93.

    Abstract

    This article presents information about two so far undescribed buildings made by the Trobriand Islanders, the bomiyoyeva and the bomduvadova. These structures are connected to the highest-ranking chiefs living in Labai and Omarakana on Kiriwina Island. They highlight the power and eminence of these chiefs. After a brief report on the history of this project, the structure of the two houses, their function, and their use is described and information on their construction and their mythical background is provided. Finally, everyday as well as ritual, social, and political functions of both buildings are discussed. [Melanesia, Trobriand Islands, Tabalu chiefs, yams houses, bomiyoyeva, bomduvadova, authoritative capacities]

    Additional information

    link to journal
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.

    Abstract

    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.

    Abstract

    Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.

    Additional information

    mmc1.docx
  • Gisladottir, R. S., Bögels, S., & Levinson, S. C. (2018). Oscillatory brain responses reflect anticipation during comprehension of speech acts in spoken dialogue. Frontiers in Human Neuroscience, 12: 34. doi:10.3389/fnhum.2018.00034.

    Abstract

    Everyday conversation requires listeners to quickly recognize verbal actions, so-called speech acts, from the underspecified linguistic code and prepare a relevant response within the tight time constraints of turn-taking. The goal of this study was to determine the time-course of speech act recognition by investigating oscillatory EEG activity during comprehension of spoken dialogue. Participants listened to short, spoken dialogues with target utterances that delivered three distinct speech acts (Answers, Declinations, Pre-offers). The targets were identical across conditions at lexico-syntactic and phonetic/prosodic levels but differed in the pragmatic interpretation of the speech act performed. Speech act comprehension was associated with reduced power in the alpha/beta bands just prior to Declination speech acts, relative to Answers and Pre-offers. In addition, we observed reduced power in the theta band during the beginning of Declinations, relative to Answers. Based on the role of alpha and beta desynchronization in anticipatory processes, the results are taken to indicate that anticipation plays a role in speech act recognition. Anticipation of speech acts could be critical for efficient turn-taking, allowing interactants to quickly recognize speech acts and respond within the tight time frame characteristic of conversation. The results show that anticipatory processes can be triggered by the characteristics of the interaction, including the speech act type.

    Additional information

    data sheet 1.pdf
  • Glock, P., Raum, B., Heermann, T., Kretschmer, S., Schweizer, J., Mücksch, J., Alagöz, G., & Schwille, P. (2019). Stationary patterns in a two-protein reaction-diffusion system. ACS Synthetic Biology, 8(1), 148-157. doi:10.1021/acssynbio.8b00415.

    Abstract

    Patterns formed by reaction-diffusion mechanisms are crucial for the development or sustenance of most organisms in nature. Patterns include dynamic waves, but are more often found as static distributions, such as animal skin patterns. Yet, a simplistic biological model system to reproduce and quantitatively investigate static reaction-diffusion patterns has been missing so far. Here, we demonstrate that the Escherichia coli MM system, known for its oscillatory behavior between the cell poles, is under certain conditions capable of transitioning to quasi-stationary protein distributions on membranes closely resembling Turing patterns. We systematically titrated both proteins, MinD and MinE, and found that removing all purification tags and linkers from the N-terminus of MinE was critical for static patterns to occur. At small bulk heights, dynamic patterns dominate, such as in rod-shaped microcompartments. We see implications of this work for studying pattern formation in general, but also for creating artificial gradients as downstream cues in synthetic biology applications.
  • Goldrick, M., McClain, R., Cibelli, E., Adi, Y., Gustafson, E., Moers, C., & Keshet, J. (2019). The influence of lexical selection disruptions on articulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(6), 1107-1141. doi:10.1037/xlm0000633.

    Abstract

    Interactive models of language production predict that it should be possible to observe long-distance interactions; effects that arise at one level of processing influence multiple subsequent stages of representation and processing. We examine the hypothesis that disruptions arising in nonform-based levels of planning—specifically, lexical selection—should modulate articulatory processing. A novel automatic phonetic analysis method was used to examine productions in a paradigm yielding both general disruptions to formulation processes and, more specifically, overt errors during lexical selection. This analysis method allowed us to examine articulatory disruptions at multiple levels of analysis, from whole words to individual segments. Baseline performance by young adults was contrasted with young speakers’ performance under time pressure (which previous work has argued increases interaction between planning and articulation) and performance by older adults (who may have difficulties inhibiting nontarget representations, leading to heightened interactive effects). The results revealed the presence of interactive effects. Our new analysis techniques revealed these effects were strongest in initial portions of responses, suggesting that speech is initiated as soon as the first segment has been planned. Interactive effects did not increase under response pressure, suggesting interaction between planning and articulation is relatively fixed. Unexpectedly, lexical selection disruptions appeared to yield some degree of facilitation in articulatory processing (possibly reflecting semantic facilitation of target retrieval) and older adults showed weaker, not stronger interactive effects (possibly reflecting weakened connections between lexical and form-level representations).
  • Goncharova, M. V., & Klenova, A. V. (2019). Siberian crane chick calls reflect their thermal state. Bioacoustics, 28, 115-128. doi:10.1080/09524622.2017.1399827.

    Abstract

    Chicks can convey information about their needs with calls. But it is still unknown if there are any universal need indicators in chick vocalizations. Previous studies have shown that in some species vocal activity and/or temporal-frequency variables of calls are related to the chick state, whereas other studies did not confirm it. Here, we tested experimentally whether vocal activity and temporal-frequency variables of calls change with cooling. We studied 10 human-raised
    Siberian crane (Grus leucogeranus) chicks at 3–15 days of age. We found that the cooled chicks produced calls higher in fundamental
    frequency and power variables, longer in duration and at a higher calling rate than in the control chicks. However, we did not find
    significant changes in level of entropy and occurrence of non-linear phenomena in chick calls recorded during the experimental cooling. We suggest that the level of vocal activity is a universal indicator of need for warmth in precocial and semi-precocial birds (e.g. cranes), but not in altricial ones. We also assume that coding of needs via temporal-frequency variables of calls is typical in species whose adults could not confuse their chicks with other chicks. Siberian cranes stay on separate territories during their breeding season, so parents do not need to check individuality of their offspring in the home area. In this case, all call characteristics are available for other purposes and serve to communicate chicks’ vital needs.
  • Gonzalez Gomez, N., Hayashi, A., Tsuji, S., Mazuka, R., & Nazzi, T. (2014). The role of the input on the development of the LC bias: A crosslinguistic comparison. Cognition, 132(3), 301-311. doi:10.1016/j.cognition.2014.04.004.

    Abstract

    Previous studies have described the existence of a phonotactic bias called the Labial–Coronal (LC) bias, corresponding to a tendency to produce more words beginning with a labial consonant followed by a coronal consonant (i.e. “bat”) than the opposite CL pattern (i.e. “tap”). This bias has initially been interpreted in terms of articulatory constraints of the human speech production system. However, more recently, it has been suggested that this presumably language-general LC bias in production might be accompanied by LC and CL biases in perception, acquired in infancy on the basis of the properties of the linguistic input. The present study investigates the origins of these perceptual biases, testing infants learning Japanese, a language that has been claimed to possess more CL than LC sequences, and comparing them with infants learning French, a language showing a clear LC bias in its lexicon. First, a corpus analysis of Japanese IDS and ADS revealed the existence of an overall LC bias, except for plosive sequences in ADS, which show a CL bias across counts. Second, speech preference experiments showed a perceptual preference for CL over LC plosive sequences (all recorded by a Japanese speaker) in 13- but not in 7- and 10-month-old Japanese-learning infants (Experiment 1), while revealing the emergence of an LC preference between 7 and 10 months in French-learning infants, using the exact same stimuli. These crosslinguistic behavioral differences, obtained with the same stimuli, thus reflect differences in processing in two populations of infants, which can be linked to differences in the properties of the lexicons of their respective native languages. These findings establish that the emergence of a CL/LC bias is related to exposure to a linguistic input.
  • Goodhew, S. C., & Kidd, E. (2017). Language use statistics and prototypical grapheme colours predict synaesthetes' and non-synaesthetes' word-colour associations. Acta Psychologica, 173, 73-86. doi:10.1016/j.actpsy.2016.12.008.

    Abstract

    Synaesthesia is the neuropsychological phenomenon in which individuals experience unusual sensory associations, such as experiencing particular colours in response to particular words. While it was once thought the particular pairings between stimuli were arbitrary and idiosyncratic to particular synaesthetes, there is now growing evidence for a systematic psycholinguistic basis to the associations. Here we sought to assess the explanatory value of quantifiable lexical association measures (via latent semantic analysis; LSA) in the pairings observed between words and colours in synaesthesia. To test this, we had synaesthetes report the particular colours they experienced in response to given concept words, and found that language association between the concept and colour words provided highly reliable predictors of the reported pairings. These results provide convergent evidence for a psycholinguistic basis to synaesthesia, but in a novel way, showing that exposure to particular patterns of associations in language can predict the formation of particular synaesthetic lexical-colour associations. Consistent with previous research, the prototypical synaesthetic colour for the first letter of the word also played a role in shaping the colour for the whole word, and this effect also interacted with language association, such that the effect of the colour for the first letter was stronger as the association between the concept word and the colour word in language increased. Moreover, when a group of non-synaesthetes were asked what colours they associated with the concept words, they produced very similar reports to the synaesthetes that were predicted by both language association and prototypical synaesthetic colour for the first letter of the word. This points to a shared linguistic experience generating the associations for both groups.
  • Goodhew, S. C., McGaw, B., & Kidd, E. (2014). Why is the sunny side always up? Explaining the spatial mapping of concepts by language use. Psychonomic Bulletin & Review, 21(5), 1287-1293. doi:10.3758/s13423-014-0593-6.

    Abstract

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people’s attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
  • Gori, M., Vercillo, T., Sandini, G., & Burr, D. (2014). Tactile feedback improves auditory spatial localization. Frontiers in Psychology, 5: 1121. doi:10.3389/fpsyg.2014.01121.

    Abstract

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gon etal., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial.The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.
  • Goriot, C., Broersma, M., McQueen, J. M., Unsworth, S., & Van Hout, R. (2018). Language balance and switching ability in children acquiring English as a second language. Journal of Experimental Child Psychology, 173, 168-186. doi:10.1016/j.jecp.2018.03.019.

    Abstract

    This study investigated whether relative lexical proficiency in Dutch and English in child second language (L2) learners is related to executive functioning. Participants were Dutch primary school pupils of three different age groups (4–5, 8–9, and 11–12 years) who either were enrolled in an early-English schooling program or were age-matched controls not on that early-English program. Participants performed tasks that measured switching, inhibition, and working memory. Early-English program pupils had greater knowledge of English vocabulary and more balanced Dutch–English lexicons. In both groups, lexical balance, a ratio measure obtained by dividing vocabulary scores in English by those in Dutch, was related to switching but not to inhibition or working memory performance. These results show that for children who are learning an L2 in an instructional setting, and for whom managing two languages is not yet an automatized process, language balance may be more important than L2 proficiency in influencing the relation between childhood bilingualism and switching abilities.
  • De Graaf, T. A., Duecker, F., Stankevich, Y., Ten Oever, S., & Sack, A. T. (2017). Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs. Brain Stimulation, 10(4), 828-835. doi:10.1016/j.brs.2017.04.127.

    Abstract

    Background: Voluntarily opening or closing our eyes results in fundamentally different input patterns and expectancies. Yet it remains unclear how our brains and visual systems adapt to these ocular states.
    Objective/Hypothesis: We here used transcranial magnetic stimulation (TMS) to probe the excitability of the human visual system with eyes open or closed, in the complete absence of visual inputs.
    Methods: Combining Bayesian staircase procedures with computer control of TMS pulse intensity allowed interleaved determination of phosphene thresholds (PT) in both conditions. We measured parieto-occipital EEG baseline activity in several stages to track oscillatory power in the alpha (8-12 Hz) frequency-band, which has previously been shown to be inversely related to phosphene perception.
    Results: Since closing the eyes generally increases alpha power, one might have expected a decrease in excitability (higher PT). While we confirmed a rise in alpha power with eyes closed, visual excitability was actually increased (PT was lower) with eyes closed.
    Conclusions: This suggests that, aside from oscillatory alpha power, additional neuronal mechanisms influence the excitability of early visual cortex. One of these may involve a more internally oriented mode of brain operation, engaged by closing the eyes. In this state, visual cortex may be more susceptible to top-down inputs, to facilitate for example multisensory integration or imagery/working memory, although alternative explanations remain possible. (C) 2017 Elsevier Inc. All rights reserved.

    Additional information

    Supplementary data
  • Grabot, L., Kösem, A., Azizi, L., & Van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audio-visual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145.

    Abstract

    Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information
  • De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.

    Abstract

    The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas.
  • De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.

    Abstract

    In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holistically

    Additional information

    Data Sheet 1.docx
  • Greenfield, P. M., Slobin, D., Cole, M., Gardner, H., Sylva, K., Levelt, W. J. M., Lucariello, J., Kay, A., Amsterdam, A., & Shore, B. (2017). Remembering Jerome Bruner: A series of tributes to Jerome “Jerry” Bruner, who died in 2016 at the age of 100, reflects the seminal contributions that led him to be known as a co-founder of the cognitive revolution. Observer, 30(2). Retrieved from http://www.psychologicalscience.org/observer/remembering-jerome-bruner.

    Abstract

    Jerome Seymour “Jerry” Bruner was born on October 1, 1915, in New York City. He began his academic career as psychology professor at Harvard University; he ended it as University Professor Emeritus at New York University (NYU) Law School. What happened at both ends and in between is the subject of the richly variegated remembrances that follow. On June 5, 2016, Bruner died in his Greenwich Village loft at age 100. He leaves behind his beloved partner Eleanor Fox, who was also his distinguished colleague at NYU Law School; his son Whitley; his daughter Jenny; and three grandchildren.

    Bruner’s interdisciplinarity and internationalism are seen in the remarkable variety of disciplines and geographical locations represented in the following tributes. The reader will find developmental psychology, anthropology, computer science, psycholinguistics, cognitive psychology, cultural psychology, education, and law represented; geographically speaking, the writers are located in the United States, Canada, the United Kingdom, and the Netherlands. The memories that follow are arranged in roughly chronological order according to when the writers had their first contact with Jerry Bruner.
  • Greenhill, S. J., Wu, C.-H., Hua, X., Dunn, M., Levinson, S. C., & Gray, R. D. (2017). Evolutionary dynamics of language systems. Proceedings of the National Academy of Sciences of the United States of America, 114(42), E8822-E8829. doi:10.1073/pnas.1700388114.

    Abstract

    Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000–10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.

Share this page