Publications

Displaying 1 - 40 of 40
  • Ameka, F. K. (1991). Ewe: Its grammatical constructions and illocutionary devices. PhD Thesis, Australian National University, Canberra.
  • Anijs, M. (2024). Networks within networks: Probing the neuronal and molecular underpinnings of language-related disorders using human cell models. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Bayer, J., & Marslen-Wilson, W. (1986). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.7 1986. Nijmegen: MPI for Psycholinguistics.
  • Bowerman, M., & Meyer, A. (1991). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.12 1991. Nijmegen: MPI for Psycholinguistics.
  • Collins, J. (2024). Linguistic areas and prehistoric migrations. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Université de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Cutler, A. (1982). Speech errors: A classified bibliography. Bloomington: Indiana University Linguistics Club.
  • Cutler, A., & Butterfield, S. (1986). The perceptual integrity of initial consonant clusters. In R. Lawrence (Ed.), Speech and Hearing: Proceedings of the Institute of Acoustics (pp. 31-36). Edinburgh: Institute of Acoustics.
  • Doherty, M., & Klein, W. (Eds.). (1991). Übersetzung [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (84).
  • Eekhof, L. S. (2024). Reading the mind: The relationship between social cognition and narrative processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Ehrich, V., & Levelt, W. J. M. (Eds.). (1982). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.3 1982. Nijmegen: MPI for Psycholinguistics.
  • Hintz, F., & Meyer, A. S. (Eds.). (2024). Individual differences in language skills [Special Issue]. Journal of Cognition, 7(1).
  • Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: Implications for the structure of a syntactic processor. In J. Horecký (Ed.), COLING 82. Proceedings of the Ninth International Conference on Computational Linguistics, Prague, July 5-10, 1982 (pp. 151-156). Amsterdam: North-Holland.

    Abstract

    Human speakers often produce sentences incrementally. They can start speaking having in mind only a fragmentary idea of what they want to say, and while saying this they refine the contents underlying subsequent parts of the utterance. This capability imposes a number of constraints on the design of a syntactic processor. This paper explores these constraints and evaluates some recent computational sentence generators from the perspective of incremental production.
  • Kempen, G., & De Vroomen, P. (Eds.). (1991). Informatiewetenschap 1991: Wetenschappelijke bijdragen aan de eerste STINFON-conferentie. Leiden: STINFON.
  • Kempen, G., & Takens, R. (Eds.). (1986). Psychologie, informatica en informatisering. Lisse: Swets & Zeitlinger.
  • Klein, W., & Weissenborn, J. (Eds.). (1982). Here and there: Cross-linguistic studies on deixis and demonstration. Amsterdam: Benjamins.
  • Klein, W., & Von Stechow, A. (1982). Intonation und Bedeutung von Fokus. Konstanz: Universität Konstanz.
  • Klein, W. (Ed.). (1982). Speech, place, and action: Studies of language in context. New York: Wiley.
  • Klein, W. (Ed.). (1986). Sprachverfall [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (62).
  • Klein, W. (Ed.). (1982). Zweitspracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (45).
  • Koutamanis, E. (2024). Spreading the word: Cross-linguistic influence in the bilingual child's lexicon. PhD Thesis, Radboud University, Nijmegen.
  • Levelt, W. J. M. (1991). Lexical access in speech production: Stages versus cascading. In H. Peters, W. Hulstijn, & C. Starkweather (Eds.), Speech motor control and stuttering (pp. 3-10). Amsterdam: Excerpta Medica.
  • Levinson, S. C. (2024). The dark matter of pragmatics: Known unknowns. Cambridge: Cambridge University Press. doi:10.1017/9781009489584.

    Abstract

    This Element tries to discern the known unknowns in the field
    of pragmatics, the ‘Dark Matter’ of the title. We can identify a key
    bottleneck in human communication, the sheer limitation on the speed
    of speech encoding: pragmatics occupies the niche nestled between
    slow speech encoding and fast comprehension. Pragmatic strategies
    are tricks for evading this tight encoding bottleneck by meaning more
    than you say. Five such tricks are reviewed, which are all domains where
    we have made considerable progress. We can then ask for each of these
    areas, where have we neglected to push the frontier forward? These are
    the known unknowns of pragmatics, key areas, and topics for future
    research. The Element thus offers a brief review of some central areas of
    pragmatics, and a survey of targets for future research.
  • Mamus, E. (2024). Perceptual experience shapes how blind and sighted people express concepts in multimodal language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Mishra, C., Nandanwar, A., & Mishra, S. (2024). HRI in Indian education: Challenges opportunities. In H. Admoni, D. Szafir, W. Johal, & A. Sandygulova (Eds.), Designing an introductory HRI course (workshop at HRI 2024). ArXiv. doi:10.48550/arXiv.2403.12223.

    Abstract

    With the recent advancements in the field of robotics and the increased focus on having general-purpose robots widely available to the general public, it has become increasingly necessary to pursue research into Human-robot interaction (HRI). While there have been a lot of works discussing frameworks for teaching HRI in educational institutions with a few institutions already offering courses to students, a consensus on the course content still eludes the field. In this work, we highlight a few challenges and opportunities while designing an HRI course from an Indian perspective. These topics warrant further deliberations as they have a direct impact on the design of HRI courses and wider implications for the entire field.
  • Mishra, C. (2024). The face says it all: Investigating gaze and affective behaviors of social robots. PhD Thesis, Radboud University, Nijmegen.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Senft, G. (1991). Bakavilisi Biga - we can 'turn' the language - or: What happens to English words in Kilivila language? In W. Bahner, J. Schildt, & D. Viehwegger (Eds.), Proceedings of the XIVth International Congress of Linguists (pp. 1743-1746). Berlin: Akademie Verlag.
  • Senft, G. (1986). Kilivila: The language of the Trobriand Islanders. Berlin: Mouton de Gruyter.
  • Seuren, P. A. M. (1982). De spelling van het Sranan: Een diskussie en een voorstel. Nijmegen: Masusa.
  • Seuren, P. A. M. (1991). Notes on noun phrases and quantification. In Proceedings of the International Conference on Current Issues in Computational Linguistics (pp. 19-44). Penang, Malaysia: Universiti Sains Malaysia.
  • Seuren, P. A. M. (1982). Riorientamenti metodologici nello studio della variabilità linguistica. In D. Gambarara, & A. D'Atri (Eds.), Ideologia, filosofia e linguistica: Atti del Convegno Internazionale di Studi, Rende (CS) 15-17 Settembre 1978 ( (pp. 499-515). Roma: Bulzoni.
  • Seuren, P. A. M. (1991). What makes a text untranslatable? In H. M. N. Noor Ein, & H. S. Atiah (Eds.), Pragmatik Penterjemahan: Prinsip, Amalan dan Penilaian Menuju ke Abad 21 ("The Pragmatics of Translation: Principles, Practice and Evaluation Moving towards the 21st Century") (pp. 19-27). Kuala Lumpur: Dewan Bahasa dan Pustaka.
  • Silverstein, P., Bergmann, C., & Syed, M. (Eds.). (2024). Open science and metascience in developmental psychology [Special Issue]. Infant and Child Development, 33(1).
  • Stärk, K. (2024). The company language keeps: How distributional cues influence statistical learning for language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.

Share this page