Publications

Displaying 1101 - 1105 of 1105
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • Zora, H., Riad, T., Ylinen, S., & Csépe, V. (2021). Phonological variations are compensated at the lexical level: Evidence from auditory neural activity. Frontiers in Human Neuroscience, 15: 622904. doi:10.3389/fnhum.2021.622904.

    Abstract

    Dealing with phonological variations is important for speech processing. This article addresses whether phonological variations introduced by assimilatory processes are compensated for at the pre-lexical or lexical level, and whether the nature of variation and the phonological context influence this process. To this end, Swedish nasal regressive place assimilation was investigated using the mismatch negativity (MMN) component. In nasal regressive assimilation, the coronal nasal assimilates to the place of articulation of a following segment, most clearly with a velar or labial place of articulation, as in utan mej “without me” > [ʉːtam mɛjː]. In a passive auditory oddball paradigm, 15 Swedish speakers were presented with Swedish phrases with attested and unattested phonological variations and contexts for nasal assimilation. Attested variations – a coronal-to-labial change as in utan “without” > [ʉːtam] – were contrasted with unattested variations – a labial-to-coronal change as in utom “except” > ∗[ʉːtɔn] – in appropriate and inappropriate contexts created by mej “me” [mɛjː] and dej “you” [dɛjː]. Given that the MMN amplitude depends on the degree of variation between two stimuli, the MMN responses were expected to indicate to what extent the distance between variants was tolerated by the perceptual system. Since the MMN response reflects not only low-level acoustic processing but also higher-level linguistic processes, the results were predicted to indicate whether listeners process assimilation at the pre-lexical and lexical levels. The results indicated no significant interactions across variations, suggesting that variations in phonological forms do not incur any cost in lexical retrieval; hence such variation is compensated for at the lexical level. However, since the MMN response reached significance only for a labial-to-coronal change in a labial context and for a coronal-to-labial change in a coronal context, the compensation might have been influenced by the nature of variation and the phonological context. It is therefore concluded that while assimilation is compensated for at the lexical level, there is also some influence from pre-lexical processing. The present results reveal not only signal-based perception of phonological units, but also higher-level lexical processing, and are thus able to reconcile the bottom-up and top-down models of speech processing.
  • Zora, H., & Csépe, V. (2021). Perception of Prosodic Modulations of Linguistic and Paralinguistic Origin: Evidence From Early Auditory Event-Related Potentials. Frontiers in Neuroscience, 15: 797487. doi:10.3389/fnins.2021.797487.

    Abstract

    How listeners handle prosodic cues of linguistic and paralinguistic origin is a central question for spoken communication. In the present EEG study, we addressed this question by examining neural responses to variations in pitch accent (linguistic) and affective (paralinguistic) prosody in Swedish words, using a passive auditory oddball paradigm. The results indicated that changes in pitch accent and affective prosody elicited mismatch negativity (MMN) responses at around 200 ms, confirming the brain’s pre-attentive response to any prosodic modulation. The MMN amplitude was, however, statistically larger to the deviation in affective prosody in comparison to the deviation in pitch accent and affective prosody combined, which is in line with previous research indicating not only a larger MMN response to affective prosody in comparison to neutral prosody but also a smaller MMN response to multidimensional deviants than unidimensional ones. The results, further, showed a significant P3a response to the affective prosody change in comparison to the pitch accent change at around 300 ms, in accordance with previous findings showing an enhanced positive response to emotional stimuli. The present findings provide evidence for distinct neural processing of different prosodic cues, and statistically confirm the intrinsic perceptual and motivational salience of paralinguistic information in spoken communication.
  • De Zubicaray, G. I., Hartsuiker, R. J., & Acheson, D. J. (2014). Mind what you say—general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 8: 514. doi:10.3389%2Ffnhum.2014.00514.

    Abstract

    For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech.

    This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
  • Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G., & Jensen, O. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10): e1001965. doi:10.1371/journal.pbio.1001965.

    Abstract

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.

Share this page