Publications

Displaying 101 - 121 of 121
  • Seuren, P. A. M. (1991). What makes a text untranslatable? In H. M. N. Noor Ein, & H. S. Atiah (Eds.), Pragmatik Penterjemahan: Prinsip, Amalan dan Penilaian Menuju ke Abad 21 ("The Pragmatics of Translation: Principles, Practice and Evaluation Moving towards the 21st Century") (pp. 19-27). Kuala Lumpur: Dewan Bahasa dan Pustaka.
  • Shayan, S., Moreira, A., Windhouwer, M., Koenig, A., & Drude, S. (2013). LEXUS 3 - a collaborative environment for multimedia lexica. In Proceedings of the Digital Humanities Conference 2013 (pp. 392-395).
  • Shi, R., Werker, J., & Cutler, A. (2003). Function words in early speech perception. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 3009-3012).

    Abstract

    Three experiments examined whether infants recognise functors in phrases, and whether their representations of functors are phonetically well specified. Eight- and 13- month-old English infants heard monosyllabic lexical words preceded by real functors (e.g., the, his) versus nonsense functors (e.g., kuh); the latter were minimally modified segmentally (but not prosodically) from real functors. Lexical words were constant across conditions; thus recognition of functors would appear as longer listening time to sequences with real functors. Eightmonth- olds' listening times to sequences with real versus nonsense functors did not significantly differ, suggesting that they did not recognise real functors, or functor representations lacked phonetic specification. However, 13-month-olds listened significantly longer to sequences with real functors. Thus, somewhere between 8 and 13 months of age infants learn familiar functors and represent them with segmental detail. We propose that accumulated frequency of functors in input in general passes a critical threshold during this time.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2013). Modelling the effects of formal literacy training on language mediated visual attention. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 3420-3425). Austin, TX: Cognitive Science Society.

    Abstract

    Recent empirical evidence suggests that language-mediated eye gaze is partly determined by level of formal literacy training. Huettig, Singh and Mishra (2011) showed that high-literate individuals' eye gaze was closely time locked to phonological overlap between a spoken target word and items presented in a visual display. In contrast, low-literate individuals' eye gaze was not related to phonological overlap, but was instead strongly influenced by semantic relationships between items. Our present study tests the hypothesis that this behavior is an emergent property of an increased ability to extract phonological structure from the speech signal, as in the case of high-literates, with low-literates more reliant on more coarse grained structure. This hypothesis was tested using a neural network model, that integrates linguistic information extracted from the speech signal with visual and semantic information within a central resource. We demonstrate that contrasts in fixation behavior similar to those observed between high and low literates emerge when models are trained on speech signals of contrasting granularity.
  • Sumner, M., Kurumada, C., Gafter, R., & Casillas, M. (2013). Phonetic variation and the recognition of words with pronunciation variants. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 3486-3492). Austin, TX: Cognitive Science Society.
  • Ten Bosch, L., Boves, L., & Ernestus, M. (2013). Towards an end-to-end computational model of speech comprehension: simulating a lexical decision task. In Proceedings of INTERSPEECH 2013: 14th Annual Conference of the International Speech Communication Association (pp. 2822-2826).

    Abstract

    This paper describes a computational model of speech comprehension that takes the acoustic signal as input and predicts reaction times as observed in an auditory lexical decision task. By doing so, we explore a new generation of end-to-end computational models that are able to simulate the behaviour of human subjects participating in a psycholinguistic experiment. So far, nearly all computational models of speech comprehension do not start from the speech signal itself, but from abstract representations of the speech signal, while the few existing models that do start from the acoustic signal cannot directly model reaction times as obtained in comprehension experiments. The main functional components in our model are the perception stage, which is compatible with the psycholinguistic model Shortlist B and is implemented with techniques from automatic speech recognition, and the decision stage, which is based on the linear ballistic accumulation decision model. We successfully tested our model against data from 20 participants performing a largescale auditory lexical decision experiment. Analyses show that the model is a good predictor for the average judgment and reaction time for each word.
  • Timmer, K., Ganushchak, L. Y., Mitlina, Y., & Schiller, N. O. (2013). Choosing first or second language phonology in 125 ms [Abstract]. Journal of Cognitive Neuroscience, 25 Suppl., 164.

    Abstract

    We are often in a bilingual situation (e.g., overhearing a conversation in the train). We investigated whether first (L1) and second language (L2) phonologies are automatically activated. A masked priming paradigm was used, with Russian words as targets and either Russian or English words as primes. Event-related potentials (ERPs) were recorded while Russian (L1) – English (L2) bilinguals read aloud L1 target words (e.g. РЕЙС /reis/ ‘fl ight’) primed with either L1 (e.g. РАНА /rana/ ‘wound’) or L2 words (e.g. PACK). Target words were read faster when they were preceded by phonologically related L1 primes but not by orthographically related L2 primes. ERPs showed orthographic priming in the 125-200 ms time window. Thus, both L1 and L2 phonologies are simultaneously activated during L1 reading. The results provide support for non-selective models of bilingual reading, which assume automatic activation of the non-target language phonology even when it is not required by the task.
  • Ünal, E., & Papafragou, A. (2013). Linguistic and conceptual representations of inference as a knowledge source. In S. Baiz, N. Goldman, & R. Hawkes (Eds.), Proceedings of the 37th Annual Boston University Conference on Language Development (BUCLD 37) (pp. 433-443). Boston: Cascadilla Press.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Van Valin Jr., R. D. (2000). Focus structure or abstract syntax? A role and reference grammar account of some ‘abstract’ syntactic phenomena. In Z. Estrada Fernández, & I. Barreras Aguilar (Eds.), Memorias del V Encuentro Internacional de Lingüística en el Noroeste: (2 v.) Estudios morfosintácticos (pp. 39-62). Hermosillo: Editorial Unison.
  • Van de Weijer, J. (1997). Language input to a prelingual infant. In A. Sorace, C. Heycock, & R. Shillcock (Eds.), Proceedings of the GALA '97 conference on language acquisition (pp. 290-293). Edinburgh University Press.

    Abstract

    Pitch, intonation, and speech rate were analyzed in a collection of everyday speech heard by one Dutch infant between the ages of six and nine months. Components of each of these variables were measured in the speech of three adult speakers (mother, father, baby-sitter) when they addressed the infant, and when they addressed another adult. The results are in line with previously reported findings which are usually based on laboratory or prearranged settings: infant-directed speech in a natural setting exhibits more pitch variation, a larger number of simple intonation contours, and slower speech rate than does adult-directed speech.
  • Van Heuven, V. J., Haan, J., Janse, E., & Van der Torre, E. J. (1997). Perceptual identification of sentence type and the time-distribution of prosodic interrogativity markers in Dutch. In Proceedings of the ESCA Tutorial and Research Workshop on Intonation: Theory, Models and Applications, Athens, Greece, 1997 (pp. 317-320).

    Abstract

    Dutch distinguishes at least four sentence types: statements and questions, the latter type being subdivided into wh-questions (beginning with a question word), yes/no-questions (with inversion of subject and finite), and declarative questions (lexico-syntactically identical to statement). Acoustically, each of these (sub)types was found to have clearly distinct global F0-patterns, as well as a characteristic distribution of final rises [1,2]. The present paper explores the separate contribution of parameters of global downtrend and size of accent-lending pitch movements versus aspects of the terminal rise to the human identification of the four sentence (sub)types, at various positions in the time-course of the utterance. The results show that interrogativity in Dutch can be identified at an early point in the utterance. However, wh-questions are not distinct from statements.
  • Van Putten, S. (2013). The meaning of the Avatime additive particle tsye. In M. Balbach, L. Benz, S. Genzel, M. Grubic, A. Renans, S. Schalowski, M. Stegenwallner, & A. Zeldes (Eds.), Information structure: Empirical perspectives on theory (pp. 55-74). Potsdam: Universitätsverlag Potsdam. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:kobv:517-opus-64804.
  • von Stutterheim, C., & Flecken, M. (Eds.). (2013). Principles of information organization in L2 discourse [Special Issue]. International Review of Applied linguistics in Language Teaching (IRAL), 51(2).
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Wagner, A., & Braun, A. (2003). Is voice quality language-dependent? Acoustic analyses based on speakers of three different languages. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 651-654). Adelaide: Causal Productions.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In M. J. Solé, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of Phonetic Sciences.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 1437-1440). Adelaide: Causal Productions.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signalto-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A. (2000). Phonotactic and acoustic cues for word segmentation in English. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2000) (pp. 782-785).

    Abstract

    This study investigates the influence of both phonotactic and acoustic cues on the segmentation of spoken English. Listeners detected embedded English words in nonsense sequences (word spotting). Words aligned with phonotactic boundaries were easier to detect than words without such alignment. Acoustic cues to boundaries could also have signaled word boundaries, especially when word onsets lacked phonotactic alignment. However, only one of several durational boundary cues showed a marginally significant correlation with response times (RTs). The results suggest that word segmentation in English is influenced primarily by phonotactic constraints and only secondarily by acoustic aspects of the speech signal.
  • Weber, A. (2000). The role of phonotactics in the segmentation of native and non-native continuous speech. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP, Workshop on Spoken Word Access Processes. Nijmegen: MPI for Psycholinguistics.

    Abstract

    Previous research has shown that listeners make use of their knowledge of phonotactic constraints to segment speech into individual words. The present study investigates the influence of phonotactics when segmenting a non-native language. German and English listeners detected embedded English words in nonsense sequences. German listeners also had knowledge of English, but English listeners had no knowledge of German. Word onsets were either aligned with a syllable boundary or not, according to the phonotactics of the two languages. Words aligned with either German or English phonotactic boundaries were easier for German listeners to detect than words without such alignment. Responses of English listeners were influenced primarily by English phonotactic alignment. The results suggest that both native and non-native phonotactic constraints influence lexical segmentation of a non-native, but familiar, language.
  • De Zubicaray, G. I., Acheson, D. J., & Hartsuiker, R. J. (Eds.). (2013). Mind what you say - general and specific mechanisms for monitoring in speech production [Research topic] [Special Issue]. Frontiers in Human Neuroscience. Retrieved from http://www.frontiersin.org/human_neuroscience/researchtopics/mind_what_you_say_-_general_an/1197.

    Abstract

    Psycholinguistic research has typically portrayed speech production as a relatively automatic process. This is because when errors are made, they occur as seldom as one in every thousand words we utter. However, it has long been recognised that we need some form of control over what we are currently saying and what we plan to say. This capacity to both monitor our inner speech and self-correct our speech output has often been assumed to be a property of the language comprehension system. More recently, it has been demonstrated that speech production benefits from interfacing with more general cognitive processes such as selective attention, short-term memory (STM) and online response monitoring to resolve potential conflict and successfully produce the output of a verbal plan. The conditions and levels of representation according to which these more general planning, monitoring and control processes are engaged during speech production remain poorly understood. Moreover, there remains a paucity of information about their neural substrates, despite some of the first evidence of more general monitoring having come from electrophysiological studies of error related negativities (ERNs). While aphasic speech errors continue to be a rich source of information, there has been comparatively little research focus on instances of speech repair. The purpose of this Frontiers Research Topic is to provide a forum for researchers to contribute investigations employing behavioural, neuropsychological, electrophysiological, neuroimaging and virtual lesioning techniques. In addition, while the focus of the research topic is on novel findings, we welcome submission of computational simulations, review articles and methods papers.

Share this page