Andrea E. Martin

Publications

Displaying 1 - 12 of 12
  • Coopmans, C. W., Mai, A., Slaats, S., Weissbart, H., & Martin, A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. Nature Reviews Neuroscience, 24, 723. doi:10.1038/s41583-023-00734-5.
  • Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure in language and action: A formal comparison. Psychological Review, 130(4), 935-952. doi:10.1037/rev0000429.

    Abstract

    Since the cognitive revolution, language and action have been compared as cognitive systems, with cross-domain convergent views recently gaining renewed interest in biology, neuroscience, and cognitive science. Language and action are both combinatorial systems whose mode of combination has been argued to be hierarchical, combining elements into constituents of increasingly larger size. This structural similarity has led to the suggestion that they rely on shared cognitive and neural resources. In this article, we compare the conceptual and formal properties of hierarchy in language and action using set theory. We show that the strong compositionality of language requires a particular formalism, a magma, to describe the algebraic structure corresponding to the set of hierarchical structures underlying sentences. When this formalism is applied to actions, it appears to be both too strong and too weak. To overcome these limitations, which are related to the weak compositionality and sequential nature of action structures, we formalize the algebraic structure corresponding to the set of actions as a trace monoid. We aim to capture the different system properties of language and action in terms of the distinction between hierarchical sets and hierarchical sequences and discuss the implications for the way both systems could be represented in the brain.
  • Guest, O., & Martin, A. E. (2023). On logical inference over brains, behaviour, and artificial neural networks. Computational Brain & Behavior, 6, 213-227. doi:10.1007/s42113-022-00166-x.

    Abstract

    In the cognitive, computational, and neuro-sciences, practitioners often reason about what computational models represent or learn, as well as what algorithm is instantiated. The putative goal of such reasoning is to generalize claims about the model in question, to claims about the mind and brain, and the neurocognitive capacities of those systems. Such inference is often based on a model’s performance on a task, and whether that performance approximates human behavior or brain activity. Here we demonstrate how such argumentation problematizes the relationship between models and their targets; we place emphasis on artificial neural networks (ANNs), though any theory-brain relationship that falls into the same schema of reasoning is at risk. In this paper, we model inferences from ANNs to brains and back within a formal framework — metatheoretical calculus — in order to initiate a dialogue on both how models are broadly understood and used, and on how to best formally characterize them and their functions. To these ends, we express claims from the published record about models’ successes and failures in first-order logic. Our proposed formalization describes the decision-making processes enacted by scientists to adjudicate over theories. We demonstrate that formalizing the argumentation in the literature can uncover potential deep issues about how theory is related to phenomena. We discuss what this means broadly for research in cognitive science, neuroscience, and psychology; what it means for models when they lose the ability to mediate between theory and data in a meaningful way; and what this means for the metatheoretical calculus our fields deploy when performing high-level scientific inference.
  • Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. The Journal of Neuroscience, 43(26), 4867-4883. doi:10.1523/JNEUROSCI.0964-22.2023.

    Abstract

    To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses to the words themselves are changed. In a step towards understanding how the brain builds sentence structure, the present study concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants (51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using temporal response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical information (word frequency), from responses to sensory- and distributional variables. The results suggest that delta-band responses to words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word frequency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sentences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta band, the amplitude was larger in the word list condition around 100 milliseconds in right frontal areas. We conclude that low-frequency responses to words are changed by sentential context. The results of this study speak to how the neural representation of words is affected by structural context, and as such provide insight into how the brain instantiates compositionality in language.
  • Tezcan, F., Weissbart, H., & Martin, A. E. (2023). A tradeoff between acoustic and linguistic feature encoding in spoken language comprehension. eLife, 12: e82386. doi:10.7554/eLife.82386.

    Abstract

    When we comprehend language from speech, the phase of the neural response aligns with particular features of the speech input, resulting in a phenomenon referred to as neural tracking. In recent years, a large body of work has demonstrated the tracking of the acoustic envelope and abstract linguistic units at the phoneme and word levels, and beyond. However, the degree to which speech tracking is driven by acoustic edges of the signal, or by internally-generated linguistic units, or by the interplay of both, remains contentious. In this study, we used naturalistic story-listening to investigate (1) whether phoneme-level features are tracked over and above acoustic edges, (2) whether word entropy, which can reflect sentence- and discourse-level constraints, impacted the encoding of acoustic and phoneme-level features, and (3) whether the tracking of acoustic edges was enhanced or suppressed during comprehension of a first language (Dutch) compared to a statistically familiar but uncomprehended language (French). We first show that encoding models with phoneme-level linguistic features, in addition to acoustic features, uncovered an increased neural tracking response; this signal was further amplified in a comprehended language, putatively reflecting the transformation of acoustic features into internally generated phoneme-level representations. Phonemes were tracked more strongly in a comprehended language, suggesting that language comprehension functions as a neural filter over acoustic edges of the speech signal as it transforms sensory signals into abstract linguistic units. We then show that word entropy enhances neural tracking of both acoustic and phonemic features when sentence- and discourse-context are less constraining. When language was not comprehended, acoustic features, but not phonemic ones, were more strongly modulated, but in contrast, when a native language is comprehended, phoneme features are more strongly modulated. Taken together, our findings highlight the flexible modulation of acoustic, and phonemic features by sentence and discourse-level constraint in language comprehension, and document the neural transformation from speech perception to language comprehension, consistent with an account of language processing as a neural filter from sensory to abstract representations.
  • Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. doi:10.1523/JNEUROSCI.1500-22.2023.

    Abstract

    Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.
  • Doumas, L. A., & Martin, A. E. (2016). Abstraction in time: Finding hierarchical linguistic structure in a model of relational processing. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2279-2284). Austin, TX: Cognitive Science Society.

    Abstract

    Abstract mental representation is fundamental for human cognition. Forming such representations in time, especially from dynamic and noisy perceptual input, is a challenge for any processing modality, but perhaps none so acutely as for language processing. We show that LISA (Hummel & Holyaok, 1997) and DORA (Doumas, Hummel, & Sandhofer, 2008), models built to process and to learn structured (i.e., symbolic) rep resentations of conceptual properties and relations from unstructured inputs, show oscillatory activation during processing that is highly similar to the cortical activity elicited by the linguistic stimuli from Ding et al.(2016). We argue, as Ding et al.(2016), that this activation reflects formation of hierarchical linguistic representation, and furthermore, that the kind of computational mechanisms in LISA/DORA (e.g., temporal binding by systematic asynchrony of firing) may underlie formation of abstract linguistic representations in the human brain. It may be this repurposing that allowed for the generation or mergence of hierarchical linguistic structure, and therefore, human language, from extant cognitive and neural systems. We conclude that models of thinking and reasoning and models of language processing must be integrated —not only for increased plausiblity, but in order to advance both fields towards a larger integrative model of human cognition
  • Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S. (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171. doi:10.1016/j.jml.2015.10.007.

    Abstract

    We used ERPs to investigate the pre-activation of form and meaning in language comprehension. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a…”), followed by a word that was predictable (book), form-related (hook) or semantically related (page) to the predictable word, or unrelated (sofa). At a 500 ms SOA (Experiment 1), semantically related words, but not form-related words, elicited a reduced N400 compared to unrelated words. At a 700 ms SOA (Experiment 2), semantically related words and form-related words elicited reduced N400 effects, but the effect for form-related words occurred in very high-cloze sentences only. At both SOAs, form-related words elicited an enhanced, post-N400 posterior positivity (Late Positive Component effect). The N400 effects suggest that readers can pre-activate meaning and form information for highly predictable words, but form pre-activation is more limited than meaning pre-activation. The post-N400 LPC effect suggests that participants detected the form similarity between expected and encountered input. Pre-activation of word forms crucially depends upon the time that readers have to make predictions, in line with production-based accounts of linguistic prediction.
  • Martin, A. E. (2016). Language processing as cue integration: Grounding the psychology of language in perception and neurophysiology. Frontiers in Psychology, 7: 120. doi:10.3389/fpsyg.2016.00120.

    Abstract

    I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.
  • Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2012). Event-related brain potentials index cue-based retrieval interference during sentence comprehension. NeuroImage, 59(2), 1859-1869. doi:10.1016/j.neuroimage.2011.08.057.

    Abstract

    Successful language use requires access to products of past processing within an evolving discourse. A central issue for any neurocognitive theory of language then concerns the role of memory variables during language processing. Under a cue-based retrieval account of language comprehension, linguistic dependency resolution (e.g., retrieving antecedents) is subject to interference from other information in the sentence, especially information that occurs between the words that form the dependency (e.g., between the antecedent and the retrieval site). Retrieval interference may then shape processing complexity as a function of the match of the information at retrieval with the antecedent versus other recent or similar items in memory. To address these issues, we studied the online processing of ellipsis in Castilian Spanish, a language with morphological gender agreement. We recorded event-related brain potentials while participants read sentences containing noun-phrase ellipsis indicated by the determiner otro/a (‘another’). These determiners had a grammatically correct or incorrect gender with respect to their antecedent nouns that occurred earlier in the sentence. Moreover, between each antecedent and determiner, another noun phrase occurred that was structurally unavailable as an antecedent and that matched or mismatched the gender of the antecedent (i.e., a local agreement attractor). In contrast to extant P600 results on agreement violation processing, and inconsistent with predictions from neurocognitive models of sentence processing, grammatically incorrect determiners evoked a sustained, broadly distributed negativity compared to correct ones between 400 and 1000 ms after word onset, possibly related to sustained negativities as observed for referential processing difficulties. Crucially, this effect was modulated by the attractor: an increased negativity was observed for grammatically correct determiners that did not match the gender of the attractor, suggesting that structurally unavailable noun phrases were at least temporarily considered for grammatically correct ellipsis. These results constitute the first ERP evidence for cue-based retrieval interference during comprehension of grammatical sentences.
  • Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2012). Brain regions that process case: Evidence from basque. Human Brain Mapping, 33(11), 2509-2520. doi:10.1002/hbm.21377.

    Abstract

    The aim of this event-related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well-understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions-of-interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
  • Nieuwland, M. S., & Martin, A. E. (2012). If the real world were irrelevant, so to speak: The role of propositional truth-value in counterfactual sentence comprehension. Cognition, 122(1), 102-109. doi:10.1016/j.cognition.2011.09.001.

    Abstract

    Propositional truth-value can be a defining feature of a sentence’s relevance to the unfolding discourse, and establishing propositional truth-value in context can be key to successful interpretation. In the current study, we investigate its role in the comprehension of counterfactual conditionals, which describe imaginary consequences of hypothetical events, and are thought to require keeping in mind both what is true and what is false. Pre-stored real-world knowledge may therefore intrude upon and delay counterfactual comprehension, which is predicted by some accounts of discourse comprehension, and has been observed during online comprehension. The impact of propositional truth-value may thus be delayed in counterfactual conditionals, as also claimed for sentences containing other types of logical operators (e.g., negation, scalar quantifiers). In an event-related potential (ERP) experiment, we investigated the impact of propositional truth-value when described consequences are both true and predictable given the counterfactual premise. False words elicited larger N400 ERPs than true words, in negated counterfactual sentences (e.g., “If N.A.S.A. had not developed its Apollo Project, the first country to land on the moon would have been Russia/America”) and real-world sentences (e.g., “Because N.A.S.A. developed its Apollo Project, the first country to land on the moon was America/Russia”) alike. These indistinguishable N400 effects of propositional truth-value, elicited by opposite word pairs, argue against disruptions by real-world knowledge during counterfactual comprehension, and suggest that incoming words are mapped onto the counterfactual context without any delay. Thus, provided a sufficiently constraining context, propositional truth-value rapidly impacts ongoing semantic processing, be the proposition factual or counterfactual.

Share this page