Displaying 1 - 25 of 25
-
Coopmans, C. W., Mai, A., & Martin, A. E. (2024). “Not” in the brain and behavior. PLOS Biology, 22: e3002656. doi:10.1371/journal.pbio.3002656.
-
Ding, R., Ten Oever, S., & Martin, A. E. (2024). Delta-band activity underlies referential meaning representation during pronoun resolution. Journal of Cognitive Neuroscience, 36(7), 1472-1492. doi:10.1162/jocn_a_02163.
Abstract
Human language offers a variety of ways to create meaning, one of which is referring to entities, objects, or events in the world. One such meaning maker is understanding to whom or to what a pronoun in a discourse refers to. To understand a pronoun, the brain must access matching entities or concepts that have been encoded in memory from previous linguistic context. Models of language processing propose that internally stored linguistic concepts, accessed via exogenous cues such as phonological input of a word, are represented as (a)synchronous activities across a population of neurons active at specific frequency bands. Converging evidence suggests that delta band activity (1–3 Hz) is involved in temporal and representational integration during sentence processing. Moreover, recent advances in the neurobiology of memory suggest that recollection engages neural dynamics similar to those which occurred during memory encoding. Integrating from these two research lines, we here tested the hypothesis that neural dynamic patterns, especially in delta frequency range, underlying referential meaning representation, would be reinstated during pronoun resolution. By leveraging neural decoding techniques (i.e., representational similarity analysis) on a magnetoencephalogram data set acquired during a naturalistic story-listening task, we provide evidence that delta-band activity underlies referential meaning representation. Our findings suggest that, during spoken language comprehension, endogenous linguistic representations such as referential concepts may be proactively retrieved and represented via activation of their underlying dynamic neural patterns. -
Slaats, S., Meyer, A. S., & Martin, A. E. (2024). Lexical surprisal shapes the time course of syntactic structure building. Neurobiology of Language, 5(4), 942-980. doi:10.1162/nol_a_00155.
Abstract
When we understand language, we recognize words and combine them into sentences. In this article, we explore the hypothesis that listeners use probabilistic information about words to build syntactic structure. Recent work has shown that lexical probability and syntactic structure both modulate the delta-band (<4 Hz) neural signal. Here, we investigated whether the neural encoding of syntactic structure changes as a function of the distributional properties of a word. To this end, we analyzed MEG data of 24 native speakers of Dutch who listened to three fairytales with a total duration of 49 min. Using temporal response functions and a cumulative model-comparison approach, we evaluated the contributions of syntactic and distributional features to the variance in the delta-band neural signal. This revealed that lexical surprisal values (a distributional feature), as well as bottom-up node counts (a syntactic feature) positively contributed to the model of the delta-band neural signal. Subsequently, we compared responses to the syntactic feature between words with high- and low-surprisal values. This revealed a delay in the response to the syntactic feature as a consequence of the surprisal value of the word: high-surprisal values were associated with a delayed response to the syntactic feature by 150–190 ms. The delay was not affected by word duration, and did not have a lexical origin. These findings suggest that the brain uses probabilistic information to infer syntactic structure, and highlight an importance for the role of time in this process.Additional information
supplementary data -
Ten Oever, S., & Martin, A. E. (2024). Interdependence of “what” and “when” in the brain. Journal of Cognitive Neuroscience, 36(1), 167-186. doi:10.1162/jocn_a_02067.
Abstract
From a brain's-eye-view, when a stimulus occurs and what it is are interrelated aspects of interpreting the perceptual world. Yet in practice, the putative perceptual inferences about sensory content and timing are often dichotomized and not investigated as an integrated process. We here argue that neural temporal dynamics can influence what is perceived, and in turn, stimulus content can influence the time at which perception is achieved. This computational principle results from the highly interdependent relationship of what and when in the environment. Both brain processes and perceptual events display strong temporal variability that is not always modeled; we argue that understanding—and, minimally, modeling—this temporal variability is key for theories of how the brain generates unified and consistent neural representations and that we ignore temporal variability in our analysis practice at the peril of both data interpretation and theory-building. Here, we review what and when interactions in the brain, demonstrate via simulations how temporal variability can result in misguided interpretations and conclusions, and outline how to integrate and synthesize what and when in theories and models of brain computation. -
Ten Oever, S., Titone, L., te Rietmolen, N., & Martin, A. E. (2024). Phase-dependent word perception emerges from region-specific sensitivity to the statistics of language. Proceedings of the National Academy of Sciences of the United States of America, 121(3): e2320489121. doi:10.1073/pnas.2320489121.
Abstract
Neural oscillations reflect fluctuations in excitability, which biases the percept of ambiguous sensory input. Why this bias occurs is still not fully understood. We hypothesized that neural populations representing likely events are more sensitive, and thereby become active on earlier oscillatory phases, when the ensemble itself is less excitable. Perception of ambiguous input presented during less-excitable phases should therefore be biased toward frequent or predictable stimuli that have lower activation thresholds. Here, we show such a frequency bias in spoken word recognition using psychophysics, magnetoencephalography (MEG), and computational modelling. With MEG, we found a double dissociation, where the phase of oscillations in the superior temporal gyrus and medial temporal gyrus biased word-identification behavior based on phoneme and lexical frequencies, respectively. This finding was reproduced in a computational model. These results demonstrate that oscillations provide a temporal ordering of neural activity based on the sensitivity of separable neural populations. -
Weissbart, H., & Martin, A. E. (2024). The structure and statistics of language jointly shape cross-frequency neural dynamics during spoken language comprehension. Nature Communications, 15: 8850. doi:10.1038/s41467-024-53128-1.
Abstract
Humans excel at extracting structurally-determined meaning from speech despite inherent physical variability. This study explores the brain’s ability to predict and understand spoken language robustly. It investigates the relationship between structural and statistical language knowledge in brain dynamics, focusing on phase and amplitude modulation. Using syntactic features from constituent hierarchies and surface statistics from a transformer model as predictors of forward encoding models, we reconstructed cross-frequency neural dynamics from MEG data during audiobook listening. Our findings challenge a strict separation of linguistic structure and statistics in the brain, with both aiding neural signal reconstruction. Syntactic features have a more temporally spread impact, and both word entropy and the number of closing syntactic constituents are linked to the phase-amplitude coupling of neural dynamics, implying a role in temporal prediction and cortical oscillation alignment during speech processing. Our results indicate that structured and statistical information jointly shape neural dynamics during spoken language comprehension and suggest an integration process via a cross-frequency coupling mechanism -
Zhao, J., Martin, A. E., & Coopmans, C. W. (2024). Structural and sequential regularities modulate phrase-rate neural tracking. Scientific Reports, 14: 16603. doi:10.1038/s41598-024-67153-z.
Abstract
Electrophysiological brain activity has been shown to synchronize with the quasi-regular repetition of grammatical phrases in connected speech—so-called phrase-rate neural tracking. Current debate centers around whether this phenomenon is best explained in terms of the syntactic properties of phrases or in terms of syntax-external information, such as the sequential repetition of parts of speech. As these two factors were confounded in previous studies, much of the literature is compatible with both accounts. Here, we used electroencephalography (EEG) to determine if and when the brain is sensitive to both types of information. Twenty native speakers of Mandarin Chinese listened to isochronously presented streams of monosyllabic words, which contained either grammatical two-word phrases (e.g., catch fish, sell house) or non-grammatical word combinations (e.g., full lend, bread far). Within the grammatical conditions, we varied two structural factors: the position of the head of each phrase and the type of attachment. Within the non-grammatical conditions, we varied the consistency with which parts of speech were repeated. Tracking was quantified through evoked power and inter-trial phase coherence, both derived from the frequency-domain representation of EEG responses. As expected, neural tracking at the phrase rate was stronger in grammatical sequences than in non-grammatical sequences without syntactic structure. Moreover, it was modulated by both attachment type and head position, revealing the structure-sensitivity of phrase-rate tracking. We additionally found that the brain tracks the repetition of parts of speech in non-grammatical sequences. These data provide an integrative perspective on the current debate about neural tracking effects, revealing that the brain utilizes regularities computed over multiple levels of linguistic representation in guiding rhythmic computation.Additional information
full stimulus list, the raw EEG data, and the analysis scripts -
Zioga, I., Zhou, Y. J., Weissbart, H., Martin, A. E., & Haegens, S. (2024). Alpha and beta oscillations differentially support word production in a rule-switching task. eNeuro, 11(4): ENEURO.0312-23.2024. doi:10.1523/ENEURO.0312-23.2024.
Abstract
Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word “tuna”, an exemplar from the same category—“seafood”—would be “shrimp”, and a feature would be “pink”). A cue indicated the task rule—exemplar or feature—either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more “complex, linguistic processes” and offers a novel task to investigate links between rule-switching, working memory, and word production. -
Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biology, 20(7): e3001713. doi:10.1371/journal.pbio.3001713.
Abstract
Human language stands out in the natural world as a biological signal that uses a structured system to combine the meanings of small linguistic units (e.g., words) into larger constituents (e.g., phrases and sentences). However, the physical dynamics of speech (or sign) do not stand in a one-to-one relationship with the meanings listeners perceive. Instead, listeners infer meaning based on their knowledge of the language. The neural readouts of the perceptual and cognitive processes underlying these inferences are still poorly understood. In the present study, we used scalp electroencephalography (EEG) to compare the neural response to phrases (e.g., the red vase) and sentences (e.g., the vase is red), which were close in semantic meaning and had been synthesized to be physically indistinguishable. Differences in structure were well captured in the reorganization of neural phase responses in delta (approximately <2 Hz) and theta bands (approximately 2 to 7 Hz),and in power and power connectivity changes in the alpha band (approximately 7.5 to 13.5 Hz). Consistent with predictions from a computational model, sentences showed more power, more power connectivity, and more phase synchronization than phrases did. Theta–gamma phase–amplitude coupling occurred, but did not differ between the syntactic structures. Spectral–temporal response function (STRF) modeling revealed different encoding states for phrases and sentences, over and above the acoustically driven neural response. Our findings provide a comprehensive description of how the brain encodes and separates linguistic structures in the dynamics of neural responses. They imply that phase synchronization and strength of connectivity are readouts for the constituent structure of language. The results provide a novel basis for future neurophysiological research on linguistic structure representation in the brain, and, together with our simulations, support time-based binding as a mechanism of structure encoding in neural dynamics. -
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.
Abstract
It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language. -
Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.
Abstract
Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.Additional information
supplementary information -
Doumas, L. A. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2022). A theory of relation learning and cross-domain generalization. Psychological Review, 129(5), 999-1041. doi:10.1037/rev0000346.
Abstract
People readily generalize knowledge to novel domains and stimuli. We present a theory, instantiated in a computational model, based on the idea that cross-domain generalization in humans is a case of analogical inference over structured (i.e., symbolic) relational representations. The model is an extension of the Learning and Inference with Schemas and Analogy (LISA; Hummel & Holyoak, 1997, 2003) and Discovery of Relations by Analogy (DORA; Doumas et al., 2008) models of relational inference and learning. The resulting model learns both the content and format (i.e., structure) of relational representations from nonrelational inputs without supervision, when augmented with the capacity for reinforcement learning it leverages these representations to learn about individual domains, and then generalizes to new domains on the first exposure (i.e., zero-shot learning) via analogical inference. We demonstrate the capacity of the model to learn structured relational representations from a variety of simple visual stimuli, and to perform cross-domain generalization between video games (Breakout and Pong) and between several psychological tasks. We demonstrate that the model’s trajectory closely mirrors the trajectory of children as they learn about relations, accounting for phenomena from the literature on the development of children’s reasoning and analogy making. The model’s ability to generalize between domains demonstrates the flexibility afforded by representing domains in terms of their underlying relational structure, rather than simply in terms of the statistical relations between their inputs and outputs. -
Ten Oever, S., Carta, S., Kaufeld, G., & Martin, A. E. (2022). Neural tracking of phrases in spoken language comprehension is automatic and task-dependent. eLife, 11: e77468. doi:10.7554/eLife.77468.
Abstract
Linguistic phrases are tracked in sentences even though there is no one-to-one acoustic phrase marker in the physical signal. This phenomenon suggests an automatic tracking of abstract linguistic structure that is endogenously generated by the brain. However, all studies investigating linguistic tracking compare conditions where either relevant information at linguistic timescales is available, or where this information is absent altogether (e.g., sentences versus word lists during passive listening). It is therefore unclear whether tracking at phrasal timescales is related to the content of language, or rather, results as a consequence of attending to the timescales that happen to match behaviourally relevant information. To investigate this question, we presented participants with sentences and word lists while recording their brain activity with magnetoencephalography (MEG). Participants performed passive, syllable, word, and word-combination tasks corresponding to attending to four different rates: one they would naturally attend to, syllable-rates, word-rates, and phrasal-rates, respectively. We replicated overall findings of stronger phrasal-rate tracking measured with mutual information for sentences compared to word lists across the classical language network. However, in the inferior frontal gyrus (IFG) we found a task effect suggesting stronger phrasal-rate tracking during the word-combination task independent of the presence of linguistic structure, as well as stronger delta-band connectivity during this task. These results suggest that extracting linguistic information at phrasal rates occurs automatically with or without the presence of an additional task, but also that IFG might be important for temporal integration across various perceptual domains. -
Ten Oever, S., Kaushik, K., & Martin, A. E. (2022). Inferring the nature of linguistic computations in the brain. PLoS Computational Biology, 18(7): e1010269. doi:10.1371/journal.pcbi.1010269.
Abstract
Sentences contain structure that determines their meaning beyond that of individual words. An influential study by Ding and colleagues (2016) used frequency tagging of phrases and sentences to show that the human brain is sensitive to structure by finding peaks of neural power at the rate at which structures were presented. Since then, there has been a rich debate on how to best explain this pattern of results with profound impact on the language sciences. Models that use hierarchical structure building, as well as models based on associative sequence processing, can predict the neural response, creating an inferential impasse as to which class of models explains the nature of the linguistic computations reflected in the neural readout. In the current manuscript, we discuss pitfalls and common fallacies seen in the conclusions drawn in the literature illustrated by various simulations. We conclude that inferring the neural operations of sentence processing based on these neural data, and any like it, alone, is insufficient. We discuss how to best evaluate models and how to approach the modeling of neural readouts to sentence processing in a manner that remains faithful to cognitive, neural, and linguistic principles. -
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Capitalization interacts with syntactic complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(6), 1146-1164. doi:10.1037/xlm0000780.
Abstract
We investigated whether readers use the low-level cue of proper noun capitalization in the parafovea to infer syntactic category, and whether this results in an early update of the representation of a sentence’s syntactic structure. Participants read sentences containing either a subject relative or object relative clause, in which the relative clause’s overt argument was a proper noun (e.g., The tall lanky guard who alerted Charlie/Charlie alerted to the danger was young) across three experiments. In Experiment 1 these sentences were presented in normal sentence casing or entirely in upper case. In Experiment 2 participants received either valid or invalid parafoveal previews of the relative clause. In Experiment 3 participants viewed relative clauses in only normal conditions. We hypothesized that we would observe relative clause effects (i.e., inflated fixation times for object relative clauses) while readers were still fixated on the word who, if readers use capitalization to infer a parafoveal word’s syntactic class. This would constitute a syntactic parafoveal-on-foveal effect. Furthermore, we hypothesised that this effect should be influenced by sentence casing in Experiment 1 (with no cue for syntactic category being available in upper case sentences) but not by parafoveal preview validity of the target words. We observed syntactic parafoveal-on-foveal effects in Experiment 1 and 3, and a Bayesian analysis of the combined data from all three experiments. These effects seemed to be influenced more by noun capitalization than lexical processing. We discuss our findings in relation to models of eye movement control and sentence processing theories. -
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). Readers detect an low-level phonological violation between two parafoveal words. Cognition, 204: 104395. doi:10.1016/j.cognition.2020.104395.
Abstract
In two eye-tracking studies we investigated whether readers can detect a violation of the phonological-grammatical convention for the indefinite article an to be followed by a word beginning with a vowel when these two words appear in the parafovea. Across two experiments participants read sentences in which the word an was followed by a parafoveal preview that was either correct (e.g. Icelandic), incorrect and represented a phonological violation (e.g. Mongolian), or incorrect without representing a phonological violation (e.g. Ethiopian), with this parafoveal preview changing to the target word as participants made a saccade into the space preceding an. Our data suggests that participants detected the phonological violation while the target word was still two words to the right of fixation, with participants making more regressions from the previewed word and having longer go-past times on this word when they received a violation preview as opposed to a non-violation preview. We argue that participants were attempting to perform aspects of sentence integration on the basis of low-level orthographic information from the previewed word.Additional information
Data files and R Scripts -
Cutter, M. G., Martin, A. E., & Sturt, P. (2020). The activation of contextually predictable words in syntactically illegal positions. Quarterly Journal of Experimental Psychology, 73(9), 1423-1430. doi:10.1177/1747021820911021.
Abstract
We present an eye-tracking study testing a hypothesis emerging from several theories of prediction during language processing, whereby predictable words should be skipped more than unpredictable words even in syntactically illegal positions. Participants read sentences in which a target word became predictable by a certain point (e.g., “bone” is 92% predictable given, “The dog buried his. . .”), with the next word actually being an intensifier (e.g., “really”), which a noun cannot follow. The target noun remained predictable to appear later in the sentence. We used the boundary paradigm to present the predictable noun or an alternative unpredictable noun (e.g., “food”) directly after the intensifier, until participants moved beyond the intensifier, at which point the noun changed to a syntactically legal word. Participants also read sentences in which predictable or unpredictable nouns appeared in syntactically legal positions. A Bayesian linear-mixed model suggested a 5.7% predictability effect on skipping of nouns in syntactically legal positions, and a 3.1% predictability effect on skipping of nouns in illegal positions. We discuss our findings in relation to theories of lexical prediction during reading.Additional information
OSF data -
Doumas, L. A. A., Martin, A. E., & Hummel, J. E. (2020). Relation learning in a neurocomputational architecture supports cross-domain transfer. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (
Eds. ), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 932-937). Montreal, QB: Cognitive Science Society.Abstract
Humans readily generalize, applying prior knowledge to novel situations and stimuli. Advances in machine learning have begun to approximate and even surpass human performance, but these systems struggle to generalize what they have learned to untrained situations. We present a model based on wellestablished neurocomputational principles that demonstrates human-level generalisation. This model is trained to play one video game (Breakout) and performs one-shot generalisation to a new game (Pong) with different characteristics. The model
generalizes because it learns structured representations that are functionally symbolic (viz., a role-filler binding calculus) from unstructured training data. It does so without feedback, and without requiring that structured representations are specified a priori. Specifically, the model uses neural co-activation to discover which characteristics of the input are invariant and to learn relational predicates, and oscillatory regularities in network firing to bind predicates to arguments. To our knowledge,
this is the first demonstration of human-like generalisation in a machine system that does not assume structured representa-
tions to begin with. -
Hashemzadeh, M., Kaufeld, G., White, M., Martin, A. E., & Fyshe, A. (2020). From language to language-ish: How brain-like is an LSTM representation of nonsensical language stimuli? In T. Cohn, Y. He, & Y. Liu (
Eds. ), Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 645-655). Association for Computational Linguistics.Abstract
The representations generated by many mod-
els of language (word embeddings, recurrent
neural networks and transformers) correlate
to brain activity recorded while people read.
However, these decoding results are usually
based on the brain’s reaction to syntactically
and semantically sound language stimuli. In
this study, we asked: how does an LSTM (long
short term memory) language model, trained
(by and large) on semantically and syntac-
tically intact language, represent a language
sample with degraded semantic or syntactic
information? Does the LSTM representation
still resemble the brain’s reaction? We found
that, even for some kinds of nonsensical lan-
guage, there is a statistically significant rela-
tionship between the brain’s activity and the
representations of an LSTM. This indicates
that, at least in some instances, LSTMs and the
human brain handle nonsensical data similarly. -
Kaufeld, G., Naumann, W., Meyer, A. S., Bosker, H. R., & Martin, A. E. (2020). Contextual speech rate influences morphosyntactic prediction and integration. Language, Cognition and Neuroscience, 35(7), 933-948. doi:10.1080/23273798.2019.1701691.
Abstract
Understanding spoken language requires the integration and weighting of multiple cues, and may call on cue integration mechanisms that have been studied in other areas of perception. In the current study, we used eye-tracking (visual-world paradigm) to examine how contextual speech rate (a lower-level, perceptual cue) and morphosyntactic knowledge (a higher-level, linguistic cue) are iteratively combined and integrated. Results indicate that participants used contextual rate information immediately, which we interpret as evidence of perceptual inference and the generation of predictions about upcoming morphosyntactic information. Additionally, we observed that early rate effects remained active in the presence of later conflicting lexical information. This result demonstrates that (1) contextual speech rate functions as a cue to morphosyntactic inferences, even in the presence of subsequent disambiguating information; and (2) listeners iteratively use multiple sources of information to draw inferences and generate predictions during speech comprehension. We discuss the implication of these demonstrations for theories of language processing -
Kaufeld, G., Ravenschlag, A., Meyer, A. S., Martin, A. E., & Bosker, H. R. (2020). Knowledge-based and signal-based cues are weighted flexibly during spoken language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(3), 549-562. doi:10.1037/xlm0000744.
Abstract
During spoken language comprehension, listeners make use of both knowledge-based and signal-based sources of information, but little is known about how cues from these distinct levels of representational hierarchy are weighted and integrated online. In an eye-tracking experiment using the visual world paradigm, we investigated the flexible weighting and integration of morphosyntactic gender marking (a knowledge-based cue) and contextual speech rate (a signal-based cue). We observed that participants used the morphosyntactic cue immediately to make predictions about upcoming referents, even in the presence of uncertainty about the cue’s reliability. Moreover, we found speech rate normalization effects in participants’ gaze patterns even in the presence of preceding morphosyntactic information. These results demonstrate that cues are weighted and integrated flexibly online, rather than adhering to a strict hierarchy. We further found rate normalization effects in the looking behavior of participants who showed a strong behavioral preference for the morphosyntactic gender cue. This indicates that rate normalization effects are robust and potentially automatic. We discuss these results in light of theories of cue integration and the two-stage model of acoustic context effects -
Kaufeld, G., Bosker, H. R., Ten Oever, S., Alday, P. M., Meyer, A. S., & Martin, A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content-specific hierarchy. The Journal of Neuroscience, 49(2), 9467-9475. doi:10.1523/JNEUROSCI.0302-20.2020.
Abstract
Neural oscillations track linguistic information during speech comprehension (e.g., Ding et al., 2016; Keitel et al., 2018), and are known to be modulated by acoustic landmarks and speech intelligibility (e.g., Doelling et al., 2014; Zoefel & VanRullen, 2015). However, studies investigating linguistic tracking have either relied on non-naturalistic isochronous stimuli or failed to fully control for prosody. Therefore, it is still unclear whether low frequency activity tracks linguistic structure during natural speech, where linguistic structure does not follow such a palpable temporal pattern. Here, we measured electroencephalography (EEG) and manipulated the presence of semantic and syntactic information apart from the timescale of their occurrence, while carefully controlling for the acoustic-prosodic and lexical-semantic information in the signal. EEG was recorded while 29 adult native speakers (22 women, 7 men) listened to naturally-spoken Dutch sentences, jabberwocky controls with morphemes and sentential prosody, word lists with lexical content but no phrase structure, and backwards acoustically-matched controls. Mutual information (MI) analysis revealed sensitivity to linguistic content: MI was highest for sentences at the phrasal (0.8-1.1 Hz) and lexical timescale (1.9-2.8 Hz), suggesting that the delta-band is modulated by lexically-driven combinatorial processing beyond prosody, and that linguistic content (i.e., structure and meaning) organizes neural oscillations beyond the timescale and rhythmicity of the stimulus. This pattern is consistent with neurophysiologically inspired models of language comprehension (Martin, 2016, 2020; Martin & Doumas, 2017) where oscillations encode endogenously generated linguistic content over and above exogenous or stimulus-driven timing and rhythm information. -
Martin, A. E. (2020). A compositional neural architecture for language. Journal of Cognitive Neuroscience, 32(8), 1407-1427. doi:10.1162/jocn_a_01552.
Abstract
Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de) compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation. -
Meyer, L., Sun, Y., & Martin, A. E. (2020). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 35(9), 1089-1099. doi:10.1080/23273798.2019.1693050.
Abstract
Research on speech processing is often focused on a phenomenon termed “entrainment”, whereby the cortex shadows rhythmic acoustic information with oscillatory activity. Entrainment has been observed to a range of rhythms present in speech; in addition, synchronicity with abstract information (e.g. syntactic structures) has been observed. Entrainment accounts face two challenges: First, speech is not exactly rhythmic; second, synchronicity with representations that lack a clear acoustic counterpart has been described. We propose that apparent entrainment does not always result from acoustic information. Rather, internal rhythms may have functionalities in the generation of abstract representations and predictions. While acoustics may often provide punctate opportunities for entrainment, internal rhythms may also live a life of their own to infer and predict information, leading to intrinsic synchronicity – not to be counted as entrainment. This possibility may open up new research avenues in the psycho– and neurolinguistic study of language processing and language development. -
Meyer, L., Sun, Y., & Martin, A. E. (2020). “Entraining” to speech, generating language? Language, Cognition and Neuroscience, 35(9), 1138-1148. doi:10.1080/23273798.2020.1827155.
Abstract
Could meaning be read from acoustics, or from the refraction rate of pyramidal cells innervated by the cochlea, everyone would be an omniglot. Speech does not contain sufficient acoustic cues to identify linguistic units such as morphemes, words, and phrases without prior knowledge. Our target article (Meyer, L., Sun, Y., & Martin, A. E. (2019). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 1–11. https://doi.org/10.1080/23273798.2019.1693050) thus questioned the concept of “entrainment” of neural oscillations to such units. We suggested that synchronicity with these points to the existence of endogenous functional “oscillators”—or population rhythmic activity in Giraud’s (2020) terms—that underlie the inference, generation, and prediction of linguistic units. Here, we address a series of inspirational commentaries by our colleagues. As apparent from these, some issues raised by our target article have already been raised in the literature. Psycho– and neurolinguists might still benefit from our reply, as “oscillations are an old concept in vision and motor functions, but a new one in linguistics” (Giraud, A.-L. 2020. Oscillations for all A commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 1–8).
Share this page