Clyde Francks

Publications

Displaying 1 - 11 of 11
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Francks, C. (2009). Understanding the genetics of behavioural and psychiatric traits will only be achieved through a realistic assessment of their complexity. Laterality: Asymmetries of Body, Brain and Cognition, 14(1), 11-16. doi:10.1080/13576500802536439.

    Abstract

    Francks et al. (2007) performed a recent study in which the first putative genetic effect on human handedness was identified (the imprinted locus LRRTM1 on human chromosome 2). In this issue of Laterality, Tim Crow and colleagues present a critique of that study. The present paper presents a personal response to that critique which argues that Francks et al. (2007) published a substantial body of evidence implicating LRRTM1 in handedness and schizophrenia. Progress will now be achieved by others trying to validate, refute, or extend those findings, rather than by further armchair discussion.
  • Need, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperavičiūtė, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S. E., Fisher, E. M. C., St. Jean, P. L., Giegling, I. and 13 moreNeed, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperavičiūtė, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S. E., Fisher, E. M. C., St. Jean, P. L., Giegling, I., Hartmann, A. M., Möller, H.-J., Ruppert, A., Fraser, G., Crombie, C., Middleton, L. T., St. Clair, D., Roses, A. D., Muglia, P., Francks, C., Rujescu, D., Meltzer, H. Y., & Goldstein, D. B. (2009). A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genetics, 5(2), e1000373. doi:10.1371/journal.pgen.1000373.

    Abstract

    We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.
  • Scott, L. J., Muglia, P., Kong, X. Q., Guan, W., Flickinger, M., Upmanyu, R., Tozzi, F., Li, J. Z., Burmeister, M., Absher, D., Thompson, R. C., Francks, C., Meng, F., Antoniades, A., Southwick, A. M., Schatzberg, A. F., Bunney, W. E., Barchas, J. D., Jones, E. G., Day, R. and 13 moreScott, L. J., Muglia, P., Kong, X. Q., Guan, W., Flickinger, M., Upmanyu, R., Tozzi, F., Li, J. Z., Burmeister, M., Absher, D., Thompson, R. C., Francks, C., Meng, F., Antoniades, A., Southwick, A. M., Schatzberg, A. F., Bunney, W. E., Barchas, J. D., Jones, E. G., Day, R., Matthews, K., McGuffin, P., Strauss, J. S., Kennedy, J. L., Middleton, L., Roses, A. D., Watson, S. J., Vincent, J. B., Myers, R. M., Farmer, A. E., Akil, H., Burns, D. K., & Boehnke, M. (2009). Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7501-7506. doi:10.1073/pnas.0813386106.

    Abstract

    Bipolar disorder (BP) is a disabling and often life-threatening disorder that affects approximately 1% of the population worldwide. To identify genetic variants that increase the risk of BP, we genotyped on the Illumina HumanHap550 Beadchip 2,076 bipolar cases and 1,676 controls of European ancestry from the National Institute of Mental Health Human Genetics Initiative Repository, and the Prechter Repository and samples collected in London, Toronto, and Dundee. We imputed SNP genotypes and tested for SNP-BP association in each sample and then performed meta-analysis across samples. The strongest association P value for this 2-study meta-analysis was 2.4 x 10(-6). We next imputed SNP genotypes and tested for SNP-BP association based on the publicly available Affymetrix 500K genotype data from the Wellcome Trust Case Control Consortium for 1,868 BP cases and a reference set of 12,831 individuals. A 3-study meta-analysis of 3,683 nonoverlapping cases and 14,507 extended controls on >2.3 M genotyped and imputed SNPs resulted in 3 chromosomal regions with association P approximately 10(-7): 1p31.1 (no known genes), 3p21 (>25 known genes), and 5q15 (MCTP1). The most strongly associated nonsynonymous SNP rs1042779 (OR = 1.19, P = 1.8 x 10(-7)) is in the ITIH1 gene on chromosome 3, with other strongly associated nonsynonymous SNPs in GNL3, NEK4, and ITIH3. Thus, these chromosomal regions harbor genes implicated in cell cycle, neurogenesis, neuroplasticity, and neurosignaling. In addition, we replicated the reported ANK3 association results for SNP rs10994336 in the nonoverlapping GSK sample (OR = 1.37, P = 0.042). Although these results are promising, analysis of additional samples will be required to confirm that variant(s) in these regions influence BP risk.

    Additional information

    Supp_Inform_Scott_et_al.pdf
  • Berrettini, W., Yuan, X., Tozzi, F., Song, K., Francks, C., Chilcoat, H., Waterworth, D., Muglia, P., & Mooser, V. (2008). Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Molecular Psychiatry, 13, 368-373. doi:10.1038/sj.mp.4002154.

    Abstract

    Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these approximately 7500 persons, a common haplotype in the CHRNA3-CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=6.9 x 10(-5)). In a third set of European populations (n= approximately 7500) which had been genotyped for approximately 6000 SNPs in approximately 2000 genes, an allele in the same haplotype was associated with CPD (nominal P=2.6 x 10(-6)). These results (in three independent populations of European origin, totaling approximately 15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND.

    Additional information

    Suppl.Material.doc
  • Need, A. C., Attix, D. K., McEvoy, J. M., Cirulli, E. T., Linney, K. N., Wagoner, A. P., Gumbs, C. E., Giegling, I., Möller, H.-J., Francks, C., Muglia, P., Roses, A., Gibson, G., Weale, M. E., Rujescu, D., & Goldstein, D. B. (2008). Failure to replicate effect of Kibra on human memory in two large cohorts of European origin. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 667-668. doi:10.1002/ajmg.b.30658.

    Abstract

    It was recently suggested that the Kibra polymorphism rs17070145 has a strong effect on multiple episodic memory tasks in humans. We attempted to replicate this using two cohorts of European genetic origin (n = 319 and n = 365). We found no association with either the original SNP or a set of tagging SNPs in the Kibra gene with multiple verbal memory tasks, including one that was an exact replication (Auditory Verbal Learning Task, AVLT). These results suggest that Kibra does not have a strong and general effect on human memory.

    Additional information

    SupplementaryMethodsIAmJMedGen.doc
  • Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P. H., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J. E., Hansen, T., Jakobsen, K. D., Muglia, P., Francks, C., Matthews, P. M., Gylfason, A., Halldorsson, B. V., Gudbjartsson, D., Thorgeirsson, T. E., Sigurdsson, A. and 55 moreStefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P. H., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J. E., Hansen, T., Jakobsen, K. D., Muglia, P., Francks, C., Matthews, P. M., Gylfason, A., Halldorsson, B. V., Gudbjartsson, D., Thorgeirsson, T. E., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Bjornsson, A., Mattiasdottir, S., Blondal, T., Haraldsson, M., Magnusdottir, B. B., Giegling, I., Möller, H.-J., Hartmann, A., Shianna, K. V., Ge, D., Need, A. C., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Paunio, T., Toulopoulou, T., Bramon, E., Forti, M. D., Murray, R., Ruggeri, M., Vassos, E., Tosato, S., Walshe, M., Li, T., Vasilescu, C., Muhleisen, T. W., Wang, A. G., Ullum, H., Djurovic, S., Melle, I., Olesen, J., Kiemeney, L. A., Franke, B., Sabatti, C., Freimer, N. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A., Andreassen, O. A., Ophoff, R. A., Georgi, A., Rietschel, M., Werge, T., Petursson, H., Goldstein, D. B., Nothen, M. M., Peltonen, L., Collier, D. A., St. Clair, D., & Stefansson, K. (2008). Large recurrent microdeletions associated with schizophrenia [Letter to Nature]. Nature, 455(7210), 232-236. doi:10.1038/nature07229.

    Abstract

    Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.

    Additional information

    Suppl.Material.pdf
  • Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., Marlow, A. J., MacPhie, I. L., Walter, J., Pennington, B. F., Fisher, S. E., Olson, R. K., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75(6), 1046-1058. doi:10.1086/426404.

    Abstract

    Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of ∼12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability.
  • Loo, S. K., Fisher, S. E., Francks, C., Ogdie, M. N., MacPhie, I. L., Yang, M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2004). Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: Unique and shared genetic effects. Molecular Psychiatry, 9, 485-493. doi:10.1038/sj.mp.4001450.

    Abstract

    Attention-deficit/hyperactivity disorder (ADHD) and reading disability (RD) are common highly heritable disorders of childhood, which frequently co-occur. Data from twin and family studies suggest that this overlap is, in part, due to shared genetic underpinnings. Here, we report the first genome-wide linkage analysis of measures of reading ability in children with ADHD, using a sample of 233 affected sibling pairs who previously participated in a genome-wide scan for susceptibility loci in ADHD. Quantitative trait locus (QTL) analysis of a composite reading factor defined from three highly correlated reading measures identified suggestive linkage (multipoint maximum lod score, MLS>2.2) in four chromosomal regions. Two regions (16p, 17q) overlap those implicated by our previous genome-wide scan for ADHD in the same sample: one region (2p) provides replication for an RD susceptibility locus, and one region (10q) falls approximately 35 cM from a modestly highlighted region in an independent genome-wide scan of siblings with ADHD. Investigation of an individual reading measure of Reading Recognition supported linkage to putative RD susceptibility regions on chromosome 8p (MLS=2.4) and 15q (MLS=1.38). Thus, the data support the existence of genetic factors that have pleiotropic effects on ADHD and reading ability--as suggested by shared linkages on 16p, 17q and possibly 10q--but also those that appear to be unique to reading--as indicated by linkages on 2p, 8p and 15q that coincide with those previously found in studies of RD. Our study also suggests that reading measures may represent useful phenotypes in ADHD research. The eventual identification of genes underlying these unique and shared linkages may increase our understanding of ADHD, RD and the relationship between the two.
  • Ogdie, M. N., Fisher, S. E., Yang, M., Ishii, J., Francks, C., Loo, S. K., Cantor, R. M., McCracken, J. T., McGough, J. J., Smalley, S. L., & Nelson, S. F. (2004). Attention Deficit Hyperactivity Disorder: Fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics, 75(4), 661-668. doi:10.1086/424387.

    Abstract

    We completed fine mapping of nine positional candidate regions for attention-deficit/hyperactivity disorder (ADHD) in an extended population sample of 308 affected sibling pairs (ASPs), constituting the largest linkage sample of families with ADHD published to date. The candidate chromosomal regions were selected from all three published genomewide scans for ADHD, and fine mapping was done to comprehensively validate these positional candidate regions in our sample. Multipoint maximum LOD score (MLS) analysis yielded significant evidence of linkage on 6q12 (MLS 3.30; empiric P=.024) and 17p11 (MLS 3.63; empiric P=.015), as well as suggestive evidence on 5p13 (MLS 2.55; empiric P=.091). In conjunction with the previously reported significant linkage on the basis of fine mapping 16p13 in the same sample as this report, the analyses presented here indicate that four chromosomal regions—5p13, 6q12, 16p13, and 17p11—are likely to harbor susceptibility genes for ADHD. The refinement of linkage within each of these regions lays the foundation for subsequent investigations using association methods to detect risk genes of moderate effect size.
  • Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK [Letter to JMG]. Journal of Medical Genetics, 41(11), 853-857. doi:10.1136/jmg.2004.018341.

Share this page