Else Eising

Publications

Displaying 1 - 5 of 5
  • Alagöz, G., Eising, E., Mekki, Y., Bignardi, G., Fontanillas, P., 23andMe Research Team, Nivard, M. G., Luciano, M., Cox, N. J., Fisher, S. E., & Gordon, R. L. (2025). The shared genetic architecture and evolution of human language and musical rhythm. Nature Human Behaviour, 9, 376-390. doi:10.1038/s41562-024-02051-y.

    Abstract

    Rhythm and language-related traits are phenotypically correlated, but their genetic overlap is largely unknown. Here, we leveraged two large-scale genome-wide association studies performed to shed light on the shared genetics of rhythm (N=606,825) and dyslexia (N=1,138,870). Our results reveal an intricate shared genetic and neurobiological architecture, and lay groundwork for resolving longstanding debates about the potential co-evolution of human language and musical traits.
  • Raykov, P. P., Daly, J., Fisher, S. E., Eising, E., Geerligs, L., & Bird, C. M. (2025). No effect of apolipoprotein E polymorphism on MRI brain activity during movie watching. Brain and Neuroscience Advances. Advance online publication, 9. doi:10.1177/23982128251314577.

    Abstract

    Apolipoprotein E ε4 is a major genetic risk factor for Alzheimer’s disease, and some apolipoprotein E ε4 carriers show Alzheimer’s disease–related neuropathology many years before cognitive changes are apparent. Therefore, studying healthy apolipoprotein E genotyped individuals offers an opportunity to investigate the earliest changes in brain measures that may signal the presence of disease-related processes. For example, subtle changes in functional magnetic resonance imaging functional connectivity, particularly within the default mode network, have been described when comparing healthy ε4 carriers to ε3 carriers. Similarly, very mild impairments of episodic memory have also been documented in healthy apolipoprotein E ε4 carriers. Here, we use a naturalistic activity (movie watching), and a marker of episodic memory encoding (transient changes in functional magnetic resonance imaging activity and functional connectivity around so-called ‘event boundaries’), to investigate potential phenotype differences associated with the apolipoprotein E ε4 genotype in a large sample of healthy adults. Using Bayes factor analyses, we found strong evidence against existence of differences associated with apolipoprotein E allelic status. Similarly, we did not find apolipoprotein E-associated differences when we ran exploratory analyses examining: functional system segregation across the whole brain, and connectivity within the default mode network. We conclude that apolipoprotein E genotype has little or no effect on how ongoing experiences are processed in healthy adults. The mild phenotype differences observed in some studies may reflect early effects of Alzheimer’s disease–related pathology in apolipoprotein E ε4 carriers.
  • Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 1065-1078. doi:10.1038/s41380-018-0020-x.

    Abstract

    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.

    Additional information

    Eising_etal_2018sup.pdf
  • Eising, E., A Datson, N., van den Maagdenberg, A. M., & Ferrari, M. D. (2013). Epigenetic mechanisms in migraine: a promising avenue? BMC Medicine, 11(1): 26. doi:10.1186/1741-7015-11-26.

    Abstract

    Migraine is a disabling common brain disorder typically characterized by attacks of severe headache and associated with autonomic and neurological symptoms. Its etiology is far from resolved. This review will focus on evidence that epigenetic mechanisms play an important role in disease etiology. Epigenetics comprise both DNA methylation and post-translational modifications of the tails of histone proteins, affecting chromatin structure and gene expression. Besides playing a role in establishing cellular and developmental stage-specific regulation of gene expression, epigenetic processes are also important for programming lasting cellular responses to environmental signals. Epigenetic mechanisms may explain how non-genetic endogenous and exogenous factors such as female sex hormones, stress hormones and inflammation trigger may modulate attack frequency. Developing drugs that specifically target epigenetic mechanisms may open up exciting new avenues for the prophylactic treatment of migraine.
  • Eising, E., De Vries, B., Ferrari, M. D., Terwindt, G. M., & Van Den Maagdenberg, A. M. J. M. (2013). Pearls and pitfalls in genetic studies of migraine. Cephalalgia, 33(8), 614-625. doi:10.1177/0333102413484988.

    Abstract

    Purpose of review: Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Summary: Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Conclusions: Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.

Share this page