Publications

Displaying 1 - 20 of 20
  • Ronderos, C. R., Zhang, Y., & Rubio-Fernandez, P. (2024). Weighted parameters in demonstrative use: The case of Spanish teens and adults. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 3279-3286).
  • Sander, J., Çetinçelik, M., Zhang, Y., Rowland, C. F., & Harmon, Z. (2024). Why does joint attention predict vocabulary acquisition? The answer depends on what coding scheme you use. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1607-1613).

    Abstract

    Despite decades of study, we still know less than we would like about the association between joint attention (JA) and language acquisition. This is partly because of disagreements on how to operationalise JA. In this study, we examine the impact of applying two different, influential JA operationalisation schemes to the same dataset of child-caregiver interactions, to determine which yields a better fit to children's later vocabulary size. Two coding schemes— one defining JA in terms of gaze overlap and one in terms of social aspects of shared attention—were applied to video-recordings of dyadic naturalistic toy-play interactions (N=45). We found that JA was predictive of later production vocabulary when operationalised as shared focus (study 1), but also that its operationalisation as shared social awareness increased its predictive power (study 2). Our results emphasise the critical role of methodological choices in understanding how and why JA is associated with vocabulary size.
  • Yang, J., Zhang, Y., & Yu, C. (2024). Learning semantic knowledge based on infant real-time. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 741-747).

    Abstract

    Early word learning involves mapping individual words to their meanings and building organized semantic representations among words. Previous corpus-based studies (e.g., using text from websites, newspapers, child-directed speech corpora) demonstrated that linguistic information such as word co-occurrence alone is sufficient to build semantically organized word knowledge. The present study explored two new research directions to advance understanding of how infants acquire semantically organized word knowledge. First, infants in the real world hear words surrounded by contextual information. Going beyond inferring semantic knowledge merely from language input, we examined the role of extra-linguistic contextual information in learning semantic knowledge. Second, previous research relies on large amounts of linguistic data to demonstrate in-principle learning, which is unrealistic compared with the input children receive. Here, we showed that incorporating extra-linguistic information provides an efficient mechanism through which semantic knowledge can be acquired with a small amount of data infants perceive in everyday learning contexts, such as toy play.

    Additional information

    link to eScholarship
  • Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).

    Abstract

    In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents.
  • Sander, J., Lieberman, A., & Rowland, C. F. (2023). Exploring joint attention in American Sign Language: The influence of sign familiarity. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 632-638).

    Abstract

    Children’s ability to share attention with another social partner (i.e., joint attention) has been found to support language development. Despite the large amount of research examining the effects of joint attention on language in hearing population, little is known about how deaf children learning sign languages achieve joint attention with their caregivers during natural social interaction and how caregivers provide and scaffold learning opportunities for their children. The present study investigates the properties and timing of joint attention surrounding familiar and novel naming events and their relationship to children’s vocabulary. Naturalistic play sessions of caretaker-child-dyads using American Sign Language were analyzed in regards to naming events of either familiar or novel object labeling events and the surrounding joint attention events. We observed that most naming events took place in the context of a successful joint attention event and that sign familiarity was related to the timing of naming events within the joint attention events. Our results suggest that caregivers are highly sensitive to their child’s visual attention in interactions and modulate joint attention differently in the context of naming events of familiar vs. novel object labels.
  • Fletcher, J., Kidd, E., Stoakes, H., & Nordlinger, R. (2022). Prosodic phrasing, pitch range, and word order variation in Murrinhpatha. In R. Billington (Ed.), Proceedings of the 18th Australasian International Conference on Speech Science and Technology (pp. 201-205). Canberra: Australasian Speech Science and Technology Association.

    Abstract

    Like many Indigenous Australian languages, Murrinhpatha has flexible word order with no apparent configurational syntax. We analyzed an experimental corpus of Murrinhpatha utterances for associations between different thematic role orders, intonational phrasing patterns and pitch downtrends. We found that initial constituents (Agents or Patients) tend to carry the highest pitch targets (HiF0), followed by patterns of downstep and declination. Sentence-final verbs always have lower Hif0 values than either initial or medial Agents or Patients. Thematic role order does not influence intonational
    patterns, with the results suggesting that Murrinhpatha has positional prosody, although final nominals can disrupt global
    pitch downtrends regardless of thematic role.
  • Alhama, R. G., Rowland, C. F., & Kidd, E. (2020). Evaluating word embeddings for language acquisition. In E. Chersoni, C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 38-42). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL). doi:10.18653/v1/2020.cmcl-1.4.

    Abstract

    Continuous vector word representations (or
    word embeddings) have shown success in cap-turing semantic relations between words, as evidenced by evaluation against behavioral data of adult performance on semantic tasks (Pereira et al., 2016). Adult semantic knowl-edge is the endpoint of a language acquisition process; thus, a relevant question is whether these models can also capture emerging word
    representations of young language learners. However, the data for children’s semantic knowledge across development is scarce. In this paper, we propose to bridge this gap by using Age of Acquisition norms to evaluate word embeddings learnt from child-directed input. We present two methods that evaluate word embeddings in terms of (a) the semantic neighbourhood density of learnt words, and (b) con-
    vergence to adult word associations. We apply our methods to bag-of-words models, and find that (1) children acquire words with fewer semantic neighbours earlier, and (2) young learners only attend to very local context. These findings provide converging evidence for validity of our methods in understanding the prerequisite features for a distributional model of word learning.
  • MacDonald, K., Räsänen, O., Casillas, M., & Warlaumont, A. S. (2020). Measuring prosodic predictability in children’s home language environments. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 695-701). Montreal, QB: Cognitive Science Society.

    Abstract

    Children learn language from the speech in their home environment. Recent work shows that more infant-directed speech
    (IDS) leads to stronger lexical development. But what makes IDS a particularly useful learning signal? Here, we expand on an attention-based account first proposed by Räsänen et al. (2018): that prosodic modifications make IDS less predictable, and thus more interesting. First, we reproduce the critical finding from Räsänen et al.: that lab-recorded IDS pitch is less predictable compared to adult-directed speech (ADS). Next, we show that this result generalizes to the home language environment, finding that IDS in daylong recordings is also less predictable than ADS but that this pattern is much less robust than for IDS recorded in the lab. These results link experimental work on attention and prosodic modifications of IDS to real-world language-learning environments, highlighting some challenges of scaling up analyses of IDS to larger datasets that better capture children’s actual input.
  • Van den Heuvel, H., Oostdijk, N., Rowland, C. F., & Trilsbeek, P. (2020). The CLARIN Knowledge Centre for Atypical Communication Expertise. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the 12th Language Resources and Evaluation Conference (LREC 2020) (pp. 3312-3316). Marseille, France: European Language Resources Association.

    Abstract

    This paper introduces a new CLARIN Knowledge Center which is the K-Centre for Atypical Communication Expertise (ACE for short) which has been established at the Centre for Language and Speech Technology (CLST) at Radboud University. Atypical communication is an umbrella term used here to denote language use by second language learners, people with language disorders or those suffering from language disabilities, but also more broadly by bilinguals and users of sign languages. It involves multiple modalities (text, speech, sign, gesture) and encompasses different developmental stages. ACE closely collaborates with The Language Archive (TLA) at the Max Planck Institute for Psycholinguistics in order to safeguard GDPR-compliant data storage and access. We explain the mission of ACE and show its potential on a number of showcases and a use case.
  • Alhama, R. G., Siegelman, N., Frost, R., & Armstrong, B. C. (2019). The role of information in visual word recognition: A perceptually-constrained connectionist account. In A. Goel, C. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 83-89). Austin, TX: Cognitive Science Society.

    Abstract

    Proficient readers typically fixate near the center of a word, with a slight bias towards word onset. We explore a novel account of this phenomenon based on combining information-theory with visual perceptual constraints in a connectionist model of visual word recognition. This account posits that the amount of information-content available for word identification varies across fixation locations and across languages, thereby explaining the overall fixation location bias in different languages, making the novel prediction that certain words are more readily identified when fixating at an atypical fixation location, and predicting specific cross-linguistic differences. We tested these predictions across several simulations in English and Hebrew, and in a pilot behavioral experiment. Results confirmed that the bias to fixate closer to word onset aligns with maximizing information in the visual signal, that some words are more readily identified at atypical fixation locations, and that these effects vary to some degree across languages.
  • Frost, R. L. A., Isbilen, E. S., Christiansen, M. H., & Monaghan, P. (2019). Testing the limits of non-adjacent dependency learning: Statistical segmentation and generalisation across domains. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 1787-1793). Montreal, QB: Cognitive Science Society.

    Abstract

    Achieving linguistic proficiency requires identifying words from speech, and discovering the constraints that govern the way those words are used. In a recent study of non-adjacent dependency learning, Frost and Monaghan (2016) demonstrated that learners may perform these tasks together, using similar statistical processes - contrary to prior suggestions. However, in their study, non-adjacent dependencies were marked by phonological cues (plosive-continuant-plosive structure), which may have influenced learning. Here, we test the necessity of these cues by comparing learning across three conditions; fixed phonology, which contains these cues, varied phonology, which omits them, and shapes, which uses visual shape sequences to assess the generality of statistical processing for these tasks. Participants segmented the sequences and generalized the structure in both auditory conditions, but learning was best when phonological cues were present. Learning was around chance on both tasks for the visual shapes group, indicating statistical processing may critically differ across domains.
  • Hahn, L. E., Ten Buuren, M., De Nijs, M., Snijders, T. M., & Fikkert, P. (2019). Acquiring novel words in a second language through mutual play with child songs - The Noplica Energy Center. In L. Nijs, H. Van Regenmortel, & C. Arculus (Eds.), MERYC19 Counterpoints of the senses: Bodily experiences in musical learning (pp. 78-87). Ghent, Belgium: EuNet MERYC 2019.

    Abstract

    Child songs are a great source for linguistic learning. Here we explore whether children can acquire novel words in a second language by playing a game featuring child songs in a playhouse. We present data from three studies that serve as scientific proof for the functionality of one game of the playhouse: the Energy Center. For this game, three hand-bikes were mounted on a panel. When children start moving the hand-bikes, child songs start playing simultaneously. Once the children produce enough energy with the hand-bikes, the songs are additionally accompanied with the sounds of musical instruments. In our studies, children executed a picture-selection task to evaluate whether they acquired new vocabulary from the songs presented during the game. Two of our studies were run in the field, one at a Dutch and one at an Indian pre-school. The third study features data from a more controlled laboratory setting. Our results partly confirm that the Energy Center is a successful means to support vocabulary acquisition in a second language. More research with larger sample sizes and longer access to the Energy Center is needed to evaluate the overall functionality of the game. Based on informal observations at our test sites, however, we are certain that children do pick up linguistic content from the songs during play, as many of the children repeat words and phrases from songs they heard. We will pick up upon these promising observations during future studies
  • Parhammer*, S. I., Ebersberg*, M., Tippmann*, J., Stärk*, K., Opitz, A., Hinger, B., & Rossi, S. (2019). The influence of distraction on speech processing: How selective is selective attention? In Proceedings of Interspeech 2019 (pp. 3093-3097). doi:10.21437/Interspeech.2019-2699.

    Abstract

    -* indicates shared first authorship -
    The present study investigated the effects of selective attention on the processing of morphosyntactic errors in unattended parts of speech. Two groups of German native (L1) speakers participated in the present study. Participants listened to sentences in which irregular verbs were manipulated in three different conditions (correct, incorrect but attested ablaut pattern, incorrect and crosslinguistically unattested ablaut pattern). In order to track fast dynamic neural reactions to the stimuli, electroencephalography was used. After each sentence, participants in Experiment 1 performed a semantic judgement task, which deliberately distracted the participants from the syntactic manipulations and directed their attention to the semantic content of the sentence. In Experiment 2, participants carried out a syntactic judgement task, which put their attention on the critical stimuli. The use of two different attentional tasks allowed for investigating the impact of selective attention on speech processing and whether morphosyntactic processing steps are performed automatically. In Experiment 2, the incorrect attested condition elicited a larger N400 component compared to the correct condition, whereas in Experiment 1 no differences between conditions were found. These results suggest that the processing of morphosyntactic violations in irregular verbs is not entirely automatic but seems to be strongly affected by selective attention.
  • Wolf, M. C., Smith, A. C., Meyer, A. S., & Rowland, C. F. (2019). Modality effects in vocabulary acquisition. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 1212-1218). Montreal, QB: Cognitive Science Society.

    Abstract

    It is unknown whether modality affects the efficiency with which humans learn novel word forms and their meanings, with previous studies reporting both written and auditory advantages. The current study implements controls whose absence in previous work likely offers explanation for such contradictory findings. In two novel word learning experiments, participants were trained and tested on pseudoword - novel object pairs, with controls on: modality of test, modality of meaning, duration of exposure and transparency of word form. In both experiments word forms were presented in either their written or spoken form, each paired with a pictorial meaning (novel object). Following a 20-minute filler task, participants were tested on their ability to identify the picture-word form pairs on which they were trained. A between subjects design generated four participant groups per experiment 1) written training, written test; 2) written training, spoken test; 3) spoken training, written test; 4) spoken training, spoken test. In Experiment 1 the written stimulus was presented for a time period equal to the duration of the spoken form. Results showed that when the duration of exposure was equal, participants displayed a written training benefit. Given words can be read faster than the time taken for the spoken form to unfold, in Experiment 2 the written form was presented for 300 ms, sufficient time to read the word yet 65% shorter than the duration of the spoken form. No modality effect was observed under these conditions, when exposure to the word form was equivalent. These results demonstrate, at least for proficient readers, that when exposure to the word form is controlled across modalities the efficiency with which word form-meaning associations are learnt does not differ. Our results therefore suggest that, although we typically begin as aural-only word learners, we ultimately converge on developing learning mechanisms that learn equally efficiently from both written and spoken materials.
  • Cristia, A., Ganesh, S., Casillas, M., & Ganapathy, S. (2018). Talker diarization in the wild: The case of child-centered daylong audio-recordings. In Proceedings of Interspeech 2018 (pp. 2583-2587). doi:10.21437/Interspeech.2018-2078.

    Abstract

    Speaker diarization (answering 'who spoke when') is a widely researched subject within speech technology. Numerous experiments have been run on datasets built from broadcast news, meeting data, and call centers—the task sometimes appears close to being solved. Much less work has begun to tackle the hardest diarization task of all: spontaneous conversations in real-world settings. Such diarization would be particularly useful for studies of language acquisition, where researchers investigate the speech children produce and hear in their daily lives. In this paper, we study audio gathered with a recorder worn by small children as they went about their normal days. As a result, each child was exposed to different acoustic environments with a multitude of background noises and a varying number of adults and peers. The inconsistency of speech and noise within and across samples poses a challenging task for speaker diarization systems, which we tackled via retraining and data augmentation techniques. We further studied sources of structured variation across raw audio files, including the impact of speaker type distribution, proportion of speech from children, and child age on diarization performance. We discuss the extent to which these findings might generalize to other samples of speech in the wild.
  • Isbilen, E., Frost, R. L. A., Monaghan, P., & Christiansen, M. (2018). Bridging artificial and natural language learning: Comparing processing- and reflection-based measures of learning. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1856-1861). Austin, TX: Cognitive Science Society.

    Abstract

    A common assumption in the cognitive sciences is that artificial and natural language learning rely on shared mechanisms. However, attempts to bridge the two have yielded ambiguous results. We suggest that an empirical disconnect between the computations employed during learning and the methods employed at test may explain these mixed results. Further, we propose statistically-based chunking as a potential computational link between artificial and natural language learning. We compare the acquisition of non-adjacent dependencies to that of natural language structure using two types of tasks: reflection-based 2AFC measures, and processing-based recall measures, the latter being more computationally analogous to the processes used during language acquisition. Our results demonstrate that task-type significantly influences the correlations observed between artificial and natural language acquisition, with reflection-based and processing-based measures correlating within – but not across – task-type. These findings have fundamental implications for artificial-to-natural language comparisons, both methodologically and theoretically.
  • Räsänen, O., Seshadri, S., & Casillas, M. (2018). Comparison of syllabification algorithms and training strategies for robust word count estimation across different languages and recording conditions. In Proceedings of Interspeech 2018 (pp. 1200-1204). doi:10.21437/Interspeech.2018-1047.

    Abstract

    Word count estimation (WCE) from audio recordings has a number of applications, including quantifying the amount of speech that language-learning infants hear in their natural environments, as captured by daylong recordings made with devices worn by infants. To be applicable in a wide range of scenarios and also low-resource domains, WCE tools should be extremely robust against varying signal conditions and require minimal access to labeled training data in the target domain. For this purpose, earlier work has used automatic syllabification of speech, followed by a least-squares-mapping of syllables to word counts. This paper compares a number of previously proposed syllabifiers in the WCE task, including a supervised bi-directional long short-term memory (BLSTM) network that is trained on a language for which high quality syllable annotations are available (a “high resource language”), and reports how the alternative methods compare on different languages and signal conditions. We also explore additive noise and varying-channel data augmentation strategies for BLSTM training, and show how they improve performance in both matching and mismatching languages. Intriguingly, we also find that even though the BLSTM works on languages beyond its training data, the unsupervised algorithms can still outperform it in challenging signal conditions on novel languages.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Casillas, M., Bergelson, E., Warlaumont, A. S., Cristia, A., Soderstrom, M., VanDam, M., & Sloetjes, H. (2017). A New Workflow for Semi-automatized Annotations: Tests with Long-Form Naturalistic Recordings of Childrens Language Environments. In Proceedings of Interspeech 2017 (pp. 2098-2102). doi:10.21437/Interspeech.2017-1418.

    Abstract

    Interoperable annotation formats are fundamental to the utility, expansion, and sustainability of collective data repositories.In language development research, shared annotation schemes have been critical to facilitating the transition from raw acoustic data to searchable, structured corpora. Current schemes typically require comprehensive and manual annotation of utterance boundaries and orthographic speech content, with an additional, optional range of tags of interest. These schemes have been enormously successful for datasets on the scale of dozens of recording hours but are untenable for long-format recording corpora, which routinely contain hundreds to thousands of audio hours. Long-format corpora would benefit greatly from (semi-)automated analyses, both on the earliest steps of annotation—voice activity detection, utterance segmentation, and speaker diarization—as well as later steps—e.g., classification-based codes such as child-vs-adult-directed speech, and speech recognition to produce phonetic/orthographic representations. We present an annotation workflow specifically designed for long-format corpora which can be tailored by individual researchers and which interfaces with the current dominant scheme for short-format recordings. The workflow allows semi-automated annotation and analyses at higher linguistic levels. We give one example of how the workflow has been successfully implemented in a large cross-database project.
  • Casillas, M., Amatuni, A., Seidl, A., Soderstrom, M., Warlaumont, A., & Bergelson, E. (2017). What do Babies hear? Analyses of Child- and Adult-Directed Speech. In Proceedings of Interspeech 2017 (pp. 2093-2097). doi:10.21437/Interspeech.2017-1409.

    Abstract

    Child-directed speech is argued to facilitate language development, and is found cross-linguistically and cross-culturally to varying degrees. However, previous research has generally focused on short samples of child-caregiver interaction, often in the lab or with experimenters present. We test the generalizability of this phenomenon with an initial descriptive analysis of the speech heard by young children in a large, unique collection of naturalistic, daylong home recordings. Trained annotators coded automatically-detected adult speech 'utterances' from 61 homes across 4 North American cities, gathered from children (age 2-24 months) wearing audio recorders during a typical day. Coders marked the speaker gender (male/female) and intended addressee (child/adult), yielding 10,886 addressee and gender tags from 2,523 minutes of audio (cf. HB-CHAAC Interspeech ComParE challenge; Schuller et al., in press). Automated speaker-diarization (LENA) incorrectly gender-tagged 30% of male adult utterances, compared to manually-coded consensus. Furthermore, we find effects of SES and gender on child-directed and overall speech, increasing child-directed speech with child age, and interactions of speaker gender, child gender, and child age: female caretakers increased their child-directed speech more with age than male caretakers did, but only for male infants. Implications for language acquisition and existing classification algorithms are discussed.

Share this page