Displaying 1 - 2 of 2
-
Carota, F., Nili, H., Pulvermüller, F., & Kriegeskorte, N. (2021). Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: Evidence from RSA of BOLD signals. NeuroImage, 224: 117408. doi:10.1016/j.neuroimage.2020.117408.
Abstract
A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic relationships among concepts. However, the functional relevance of these different accounts and how they capture information-encoding of meaning in the brain still remains elusive.
We investigated to what extent distributional and taxonomic models explained word-elicited neural responses using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) and novel model comparisons.
Our findings show that the brain encodes both types of semantic similarities, but in distinct cortical regions. Posterior middle temporal regions reflected word links based on hierarchical taxonomies, along with the action-relatedness of the semantic word categories. In contrast, distributional semantics best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations coexisted in angular gyrus supporting semantic binding and integration. These results reveal that neuronal networks with distinct cortical distributions across higher-order association cortex encode different representational properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory consistently with sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG (BA 47) enable semantic combinatorics in the context of language use.
Our approach helps to elucidate the nature of semantic representations essential for understanding human language. -
Lemhöfer, K., Schriefers, H., & Indefrey, P. (2020). Syntactic processing in L2 depends on perceived reliability of the input: Evidence from P600 responses to correct input. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(10), 1948-1965. doi:10.1037/xlm0000895.
Abstract
In 3 ERP experiments, we investigated how experienced L2 speakers process natural and correct syntactic input that deviates from their own, sometimes incorrect, syntactic representations. Our previous study (Lemhöfer, Schriefers, & Indefrey, 2014) had shown that L2 speakers do engage in native-like syntactic processing of gender agreement but base this processing on their own idiosyncratic (and sometimes incorrect) grammars. However, as in other standard ERP studies, but different from realistic L2 input, the materials in that study contained a large proportion of incorrect sentences. In the present study, German speakers of Dutch read exclusively objectively correct Dutch sentences that did or did not contain subjective determiner “errors” (e.g., de boot “the boat,” which conflicts with the intuition of many German speakers that the correct phrase should be het boot). During reading for comprehension (Experiment 1), no syntax-related ERP responses for subjectively incorrect compared to correct phrases were observed. The same was true even when participants explicitly attended to and learned from the determiners in the sentences (Experiment 2). Only when participants judged the correctness of determiners in each sentence (Experiment 3) did a clear P600 appear. These results suggest that the full and native-like use of subjective grammars, as reflected in the P600 to subjective violations, occurs only when speakers have reason to mistrust the grammaticality of the input, either because of the nature of the task (grammaticality judgments) or because of the salient presence of incorrect sentences.
Share this page