Displaying 1 - 20 of 30
  • Alday, P. M. (2019). M/EEG analysis of naturalistic stories: a review from speech to language processing. Language, Cognition and Neuroscience, 34(4), 457-473. doi:10.1080/23273798.2018.1546882.

    Abstract

    M/EEG research using naturally spoken stories as stimuli has focused largely on speech and not language processing. The temporal resolution of M/EEG is a two-edged sword, allowing for the study of the fine acoustic structure of speech, yet easily overwhelmed by the temporal noise of variation in constituent length. Recent theories on the neural encoding of linguistic structure require the temporal resolution of M/EEG, yet suffer from confounds when studied on traditional, heavily controlled stimuli. Recent methodological advances allow for synthesising naturalistic designs and traditional, controlled designs into effective M/EEG research on naturalistic language. In this review, we highlight common threads throughout the at-times distinct research traditions of speech and language processing. We conclude by examining the tradeoffs and successes of three M/EEG studies on fully naturalistic language paradigms and the future directions they suggest.
  • Araújo, S., Fernandes, T., & Huettig, F. (2019). Learning to read facilitates retrieval of phonological representations in rapid automatized naming: Evidence from unschooled illiterate, ex-illiterate, and schooled literate adults. Developmental Science, 22(4): e12783. doi:10.1111/desc.12783.

    Abstract

    Rapid automatized naming (RAN) of visual items is a powerful predictor of reading skills. However, the direction and locus of the association between RAN and reading is still largely unclear. Here we investigated whether literacy acquisition directly bolsters RAN efficiency for objects, adopting a strong methodological design, by testing three groups of adults matched in age and socioeconomic variables, who differed only in literacy/schooling: unschooled illiterate and ex-illiterate, and schooled literate adults. To investigate in a fine-grained manner whether and how literacy facilitates lexical retrieval, we orthogonally manipulated the word-form frequency (high vs. low) and phonological neighborhood density (dense vs. spare) of the objects’ names. We observed that literacy experience enhances the automaticity with which visual stimuli (e.g., objects) can be retrieved and named: relative to readers (ex-illiterate and literate), illiterate adults performed worse on RAN. Crucially, the group difference was exacerbated and significant only for those items that were of low frequency and from sparse neighborhoods. These results thus suggest that, regardless of schooling and age at which literacy was acquired, learning to read facilitates the access to and retrieval of phonological representations, especially of difficult lexical items.
  • Bode, S., Feuerriegel, D., Bennett, D., & Alday, P. M. (2019). The Decision Decoding ToolBOX (DDTBOX) -- A Multivariate Pattern Analysis Toolbox for Event-Related Potentials. Neuroinformatics, 17(1), 27-42. doi:10.1007/s12021-018-9375-z.

    Abstract

    In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004; Lopez-Calderon and Luck 2014; Oostenveld et al. 2011). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.
  • Bosker, H. R., Van Os, M., Does, R., & Van Bergen, G. (2019). Counting 'uhm's: how tracking the distribution of native and non-native disfluencies influences online language comprehension. Journal of Memory and Language, 106, 189-202. doi:10.1016/j.jml.2019.02.006.

    Abstract

    Disfluencies, like 'uh', have been shown to help listeners anticipate reference to low-frequency words. The associative account of this 'disfluency bias' proposes that listeners learn to associate disfluency with low-frequency referents based on prior exposure to non-arbitrary disfluency distributions (i.e., greater probability of low-frequency words after disfluencies). However, there is limited evidence for listeners actually tracking disfluency distributions online. The present experiments are the first to show that adult listeners, exposed to a typical or more atypical disfluency distribution (i.e., hearing a talker unexpectedly say uh before high-frequency words), flexibly adjust their predictive strategies to the disfluency distribution at hand (e.g., learn to predict high-frequency referents after disfluency). However, when listeners were presented with the same atypical disfluency distribution but produced by a non-native speaker, no adjustment was observed. This suggests pragmatic inferences can modulate distributional learning, revealing the flexibility of, and constraints on, distributional learning in incremental language comprehension.
  • Brehm, L., Jackson, C. N., & Miller, K. L. (2019). Speaker-specific processing of anomalous utterances. Quarterly Journal of Experimental Psychology, 72(4), 764-778. doi:10.1177/1747021818765547.

    Abstract

    Existing work shows that readers often interpret grammatical errors (e.g., The key to the cabinets *were shiny) and sentence-level blends (“without-blend”: Claudia left without her headphones *off) in a non-literal fashion, inferring that a more frequent or more canonical utterance was intended instead. This work examines how interlocutor identity affects the processing and interpretation of anomalous sentences. We presented anomalies in the context of “emails” attributed to various writers in a self-paced reading paradigm and used comprehension questions to probe how sentence interpretation changed based upon properties of the item and properties of the “speaker.” Experiment 1 compared standardised American English speakers to L2 English speakers; Experiment 2 compared the same standardised English speakers to speakers of a non-Standardised American English dialect. Agreement errors and without-blends both led to more non-literal responses than comparable canonical items. For agreement errors, more non-literal interpretations also occurred when sentences were attributed to speakers of Standardised American English than either non-Standardised group. These data suggest that understanding sentences relies on expectations and heuristics about which utterances are likely. These are based upon experience with language, with speaker-specific differences, and upon more general cognitive biases.

    Supplementary material

    Supplementary material
  • Brehm, L., Jackson, C. N., & Miller, K. L. (2019). Incremental interpretation in the first and second language. In M. Brown, & B. Dailey (Eds.), BUCLD 43: Proceedings of the 43rd annual Boston University Conference on Language Development (pp. 109-122). Sommerville, MA: Cascadilla Press.
  • Brehm, L., Hussey, E., & Christianson, K. (2019). The role of word frequency and morpho-orthography in agreement processing. Language, Cognition and Neuroscience. Advance online publication. doi:10.1080/23273798.2019.1631456.

    Abstract

    Agreement attraction in comprehension (when an ungrammatical verb is read quickly if preceded by a feature-matching local noun) is well described by a cue-based retrieval framework. This suggests a role for lexical retrieval in attraction. To examine this, we manipulated two probabilistic factors known to affect lexical retrieval: local noun word frequency and morpho-orthography (agreement morphology realised with or without –s endings) in a self-paced reading study. Noun number and word frequency affected noun and verb region reading times, with higher-frequency words not eliciting attraction. Morpho-orthography impacted verb processing but not attraction: atypical plurals led to slower verb reading times regardless of verb number. Exploratory individual difference analyses further underscore the importance of lexical retrieval dynamics in sentence processing. This provides evidence that agreement operates via a cue-based retrieval mechanism over lexical representations that vary in their strength and association to number features.

    Supplementary material

    Supplemental material
  • Fairs, A. (2019). Linguistic dual-tasking: Understanding temporal overlap between production and comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Goldrick, M., Brehm, L., Pyeong Whan, C., & Smolensky, P. (2019). Transient blend states and discrete agreement-driven errors in sentence production. In G. J. Snover, M. Nelson, B. O'Connor, & J. Pater (Eds.), Proceedings of the Society for Computation in Linguistics (SCiL 2019) (pp. 375-376). doi:10.7275/n0b2-5305.
  • Hoedemaker, R. S., & Meyer, A. S. (2019). Planning and coordination of utterances in a joint naming task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(4), 732-752. doi:10.1037/xlm0000603.

    Abstract

    Dialogue requires speakers to coordinate. According to the model of dialogue as joint action, interlocutors achieve this coordination by corepresenting their own and each other’s task share in a functionally equivalent manner. In two experiments, we investigated this corepresentation account using an interactive joint naming task in which pairs of participants took turns naming sets of objects on a shared display. Speaker A named the first, or the first and third object, and Speaker B named the second object. In control conditions, Speaker A named one, two, or all three objects and Speaker B remained silent. We recorded the timing of the speakers’ utterances and Speaker A’s eye movements. Interturn pause durations indicated that the speakers effectively coordinated their utterances in time. Speaker A’s speech onset latencies depended on the number of objects they named, but were unaffected by Speaker B’s naming task. This suggests speakers were not fully incorporating their partner’s task into their own speech planning. Moreover, Speaker A’s eye movements indicated that they were much less likely to attend to objects their partner named than to objects they named themselves. When speakers did inspect their partner’s objects, viewing times were too short to suggest that speakers were retrieving these object names as if they were planning to name the objects themselves. These results indicate that speakers prioritized planning their own responses over attending to their interlocutor’s task and suggest that effective coordination can be achieved without full corepresentation of the partner’s task.
  • Huettig, F., & Guerra, E. (2019). Effects of speech rate, preview time of visual context, and participant instructions reveal strong limits on prediction in language processing. Brain Research, 1706, 196-208. doi:10.1016/j.brainres.2018.11.013.

    Abstract

    There is a consensus among language researchers that people can predict upcoming language. But do people always predict when comprehending language? Notions that “brains … are essentially prediction machines” certainly suggest so. In three eye-tracking experiments we tested this view. Participants listened to simple Dutch sentences (‘Look at the displayed bicycle’) while viewing four objects (a target, e.g. a bicycle, and three unrelated distractors). We used the identical visual stimuli and the same spoken sentences but varied speech rates, preview time, and participant instructions. Target nouns were preceded by definite gender-marked determiners, which allowed participants to predict the target object because only the targets but not the distractors agreed in gender with the determiner. In Experiment 1, participants had four seconds preview and sentences were presented either in a slow or a normal speech rate. Participants predicted the targets as soon as they heard the determiner in both conditions. Experiment 2 was identical except that participants were given only a one second preview. Participants predicted the targets only in the slow speech condition. Experiment 3 was identical to Experiment 2 except that participants were explicitly told to predict. This led only to a small prediction effect in the normal speech condition. Thus, a normal speech rate only afforded prediction if participants had an extensive preview. Even the explicit instruction to predict the target resulted in only a small anticipation effect with a normal speech rate and a short preview. These findings are problematic for theoretical proposals that assume that prediction pervades cognition.
  • Huettig, F., & Pickering, M. (2019). Literacy advantages beyond reading: Prediction of spoken language. Trends in Cognitive Sciences, 23(6), 464-475. doi:10.1016/j.tics.2019.03.008.

    Abstract

    Literacy has many obvious benefits—it exposes the reader to a wealth of new information and enhances syntactic knowledge. However, we argue that literacy has an additional, often overlooked, benefit: it enhances people’s ability to predict spoken language thereby aiding comprehension. Readers are under pressure to process information more quickly than listeners, and reading provides excellent conditions, in particular a stable environment, for training the predictive system. It also leads to increased awareness of words as linguistic units, and more fine-grained phonological and additional orthographic representations, which sharpen lexical representations and facilitate predicted representations to be retrieved. Thus, reading trains core processes and representations involved in language prediction that are common to both reading and listening.
  • Kim, N., Brehm, L., & Yoshida, M. (2019). The online processing of noun phrase ellipsis and mechanisms of antecedent retrieval. Language, Cognition and Neuroscience, 34(2), 190-213. doi:10.1080/23273798.2018.1513542.

    Abstract

    We investigate whether grammatical information is accessed in processing noun phrase ellipsis (NPE) and other anaphoric constructions. The first experiment used an agreement attraction paradigm to reveal that ungrammatical plural verbs following NPE with an antecedent containing a plural modifier (e.g. Derek’s key to the boxes … and Mary’s_ probably *are safe in the drawer) show similar facilitation to non-elided NPs. The second experiment used the same paradigm to examine a coordination construction without anaphoric elements, and the third examined anaphoric one. Agreement attraction was not observed in either experiment, suggesting that processing NPE is different from processing non-anaphoric coordination constructions or anaphoric one. Taken together, the results indicate that the parser is sensitive to grammatical distinctions at the ellipsis site where it prioritises and retrieves the head at the initial stage of processing and retrieves the local noun within the modifier phrase only when it is necessary in parsing NPE.

    Supplementary material

    Kim_Brehm_Yoshida_2018sup.pdf
  • Kim, N., Brehm, L., Sturt, P., & Yoshida, M. (2019). How long can you hold the filler: Maintenance and retrieval. Language, Cognition and Neuroscience. Advance online publication. doi:10.1080/23273798.2019.1626456.

    Abstract

    This study attempts to reveal the mechanisms behind the online formation of Wh-Filler-Gap Dependencies (WhFGD). Specifically, we aim to uncover the way in which maintenance and retrieval work in WhFGD processing, by paying special attention to the information that is retrieved when the gap is recognized. We use the agreement attraction phenomenon (Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Representations and processes. Journal of Memory and Language, 61(2), 206-237) as a probe. The first and second experiments examined the type of information that is maintained and how maintenance is motivated, investigating the retrieved information at the gap for reactivated fillers and definite NPs. The third experiment examined the role of the retrieval, comparing reactivated and active fillers. We contend that the information being accessed reflects the extent to which the filler is maintained, where the reader is able to access fine-grained information including category information as well as a representation of both the head and the modifier at the verb.

    Supplementary material

    Supplemental material
  • Lev-Ari, S. (2019). People with larger social networks are better at predicting what someone will say but not how they will say it. Language, Cognition and Neuroscience, 34(1), 101-114. doi:10.1080/23273798.2018.1508733.

    Abstract

    Prediction of upcoming words facilitates language processing. Individual differences in social experience, however, might influence prediction ability by influencing input variability and representativeness. This paper explores how individual differences in social network size influence prediction and how this influence differs across linguistic levels. In Experiment 1, participants predicted likely sentence completions from several plausible endings differing in meaning or only form (e.g. work vs. job). In Experiment 2, participants’ pupil size was measured as they listened to sentences whose ending was the dominant one or deviated from it in either meaning or form. Both experiments show that people with larger social networks are better at predicting upcoming meanings but not the form they would take. The results thus show that people with different social experience process language differently, and shed light on how social dynamics interact with the structure of the linguistic level to influence learning of linguistic patterns.

    Supplementary material

    plcp_a_1508733_sm8698.docx
  • Martin, A. E., & Doumas, L. A. A. (2019). Predicate learning in neural systems: Using oscillations to discover latent structure. Current Opinion in Behavioral Sciences, 29, 77-83. doi:10.1016/j.cobeha.2019.04.008.

    Abstract

    Humans learn to represent complex structures (e.g. natural language, music, mathematics) from experience with their environments. Often such structures are latent, hidden, or not encoded in statistics about sensory representations alone. Accounts of human cognition have long emphasized the importance of structured representations, yet the majority of contemporary neural networks do not learn structure from experience. Here, we describe one way that structured, functionally symbolic representations can be instantiated in an artificial neural network. Then, we describe how such latent structures (viz. predicates) can be learned from experience with unstructured data. Our approach exploits two principles from psychology and neuroscience: comparison of representations, and the naturally occurring dynamic properties of distributed computing across neuronal assemblies (viz. neural oscillations). We discuss how the ability to learn predicates from experience, to represent information compositionally, and to extrapolate knowledge to unseen data is core to understanding and modeling the most complex human behaviors (e.g. relational reasoning, analogy, language processing, game play).
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). How the tracking of habitual rate influences speech perception. Journal of Experimental Psychology: Learning, Memory, and Cognition., 45(1), 128-138. doi:10.1037/xlm0000579.

    Abstract

    Listeners are known to track statistical regularities in speech. Yet, which temporal cues are encoded is unclear. This study tested effects of talker-specific habitual speech rate and talker-independent average speech rate (heard over a longer period of time) on the perception of the temporal Dutch vowel contrast /A/-/a:/. First, Experiment 1 replicated that slow local (surrounding) speech contexts induce fewer long /a:/ responses than faster contexts. Experiment 2 tested effects of long-term habitual speech rate. One high-rate group listened to ambiguous vowels embedded in `neutral' speech from talker A, intermixed with speech from fast talker B. Another low-rate group listened to the same `neutral' speech from talker A, but to talker B being slow. Between-group comparison of the `neutral' trials showed that the high-rate group demonstrated a lower proportion of /a:/ responses, indicating that talker A's habitual speech rate sounded slower when B was faster. In Experiment 3, both talkers produced speech at both rates, removing the different habitual speech rates of talker A and B, while maintaining the average rate differing between groups. This time no global rate effect was observed. Taken together, the present experiments show that a talker's habitual rate is encoded relative to the habitual rate of another talker, carrying implications for episodic and constraint-based models of speech perception.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188. doi:10.1121/1.5116004.

    Abstract

    Speech can be produced at different rates. Listeners take this rate variation into account by normalizing vowel duration for contextual speech rate: An ambiguous Dutch word /m?t/ is perceived as short /mAt/ when embedded in a slow context, but long /ma:t/ in a fast context. Whilst some have argued that this rate normalization involves low-level automatic perceptual processing, there is also evidence that it arises at higher-level cognitive processing stages, such as decision making. Prior research on rate-dependent speech perception has only used explicit recognition tasks to investigate the phenomenon, involving both perceptual processing and decision making. This study tested whether speech rate normalization can be observed without explicit decision making, using a cross-modal repetition priming paradigm. Results show that a fast precursor sentence makes an embedded ambiguous prime (/m?t/) sound (implicitly) more /a:/-like, facilitating lexical access to the long target word "maat" in a (explicit) lexical decision task. This result suggests that rate normalization is automatic, taking place even in the absence of an explicit recognition task. Thus, rate normalization is placed within the realm of everyday spoken conversation, where explicit categorization of ambiguous sounds is rare.
  • Nuthmann, A., De Groot, F., Huettig, F., & Olivers, C. L. N. (2019). Extrafoveal attentional capture by object semantics. PLoS One, 14(5): e0217051. doi:10.1371/journal.pone.0217051.

    Abstract

    There is ongoing debate on whether object meaning can be processed outside foveal vision, making semantics available for attentional guidance. Much of the debate has centred on whether objects that do not fit within an overall scene draw attention, in complex displays that are often difficult to control. Here, we revisited the question by reanalysing data from three experiments that used displays consisting of standalone objects from a carefully controlled stimulus set. Observers searched for a target object, as per auditory instruction. On the critical trials, the displays contained no target but objects that were semantically related to the target, visually related, or unrelated. Analyses using (generalized) linear mixed-effects models showed that, although visually related objects attracted most attention, semantically related objects were also fixated earlier in time than unrelated objects. Moreover, semantic matches affected the very first saccade in the display. The amplitudes of saccades that first entered semantically related objects were larger than 5° on average, confirming that object semantics is available outside foveal vision. Finally, there was no semantic capture of attention for the same objects when observers did not actively look for the target, confirming that it was not stimulus-driven. We discuss the implications for existing models of visual cognition.
  • Ostarek, M., Joosen, D., Ishag, A., De Nijs, M., & Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentence-picture verification task? Cognition, 182, 84-94. doi:10.1016/j.cognition.2018.08.017.

    Abstract

    Many studies have shown that sentences implying an object to have a certain shape produce a robust reaction time advantage for shape-matching pictures in the sentence-picture verification task. Typically, this finding has been interpreted as evidence for perceptual simulation, i.e., that access to implicit shape information involves the activation of modality-specific visual processes. It follows from this proposal that disrupting visual processing during sentence comprehension should interfere with perceptual simulation and obliterate the match effect. Here we directly test this hypothesis. Participants listened to sentences while seeing either visual noise that was previously shown to strongly interfere with basic visual processing or a blank screen. Experiments 1 and 2 replicated the match effect but crucially visual noise did not modulate it. When an interference technique was used that targeted high-level semantic processing (Experiment 3) however the match effect vanished. Visual noise specifically targeting high-level visual processes (Experiment 4) only had a minimal effect on the match effect. We conclude that the shape match effect in the sentence-picture verification paradigm is unlikely to rely on perceptual simulation.

Share this page