Displaying 1 - 10 of 10
-
Gialluisi, A., Dediu, D., Francks, C., & Fisher, S. E. (2013). Persistence and transmission of recessive deafness and sign language: New insights from village sign languages. European Journal of Human Genetics, 21, 894-896. doi:10.1038/ejhg.2012.292.
Abstract
First paragraph: The study of the transmission of sign languages can give novel insights into the transmission of spoken languages1 and, more generally, into gene–culture coevolution. Over the years, several papers related to the persistence of sign language have been
reported.2–6 All of these studies have emphasized the role of assortative (non-random) mating by deafness state (ie, a tendency for deaf individuals to partner together) for increasing the frequency of recessive deafness, and hence for the persistence of sign language in a population. -
Stephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J. and 105 moreStephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J., Michel, M., Lyytikäinen, L.-P., Shaffer, J., Short, S., Sun, J., Teumer, A., Thompson, J., Vogelzangs, N., Vink, J., Wenzlaff, A., Wheeler, W., Yang, B.-Z., Aggen, S., Balmforth, A., Baumesiter, S., Beaty, T., Benjamin, D., Bergen, A., Broms, U., Cesarini, D., Chatterjee, N., Chen, J., Cheng, Y.-C., Cichon, S., Couper, D., Cucca, F., Dick, D., Foround, T., Furberg, H., Giegling, I., Gillespie, N., Gu, F.,.Hall, A., Hällfors, J., Han, S., Hartmann, A., Heikkilä, K., Hickie, I., Hottenga, J., Jousilahti, P., Kaakinen, M., Kähönen, M., Koellinger, P., Kittner, S., Konte, B., Landi, M.-T., Laatikainen, T., Leppert, M., Levy, S., Mathias, R., McNeil, D., Medlund, S., Montgomery, G., Murray, T., Nauck, M., North, K., Paré, P., Pergadia, M., Ruczinski, I., Salomaa, V., Viikari, J., Willemsen, G., Barnes, K., Boerwinkle, E., Boomsma, D., Caporaso, N., Edenberg, H., Francks, C., Gelernter, J., Grabe, H., Hops, H., Jarvelin, M.-R., Johannesson, M., Kendler, K., Lehtimäki, T., Magnusson, P., Marazita, M., Marchini, J., Mitchell, B., Nöthen, M., Penninx, B., Raitakari, O., Rietschel, M., Rujescu, D., Samani, N., Schwartz, A., Shete, S., Spitz, M., Swan, G., Völzke, H., Veijola, J., Wei, Q., Amos, C., Canon, D., Grucza, R., Hatsukami, D., Heath, A., Johnson, E., Kaprio, J., Madden, P., Martin, N., Stevens, V., Weiss, R., Kraft, P., Bierut, L., & Ehringer, M. (2013). Distinct Loci in the CHRNA5/CHRNA3/CHRNB4 Gene Cluster are Associated with Onset of Regular Smoking. Genetic Epidemiology, 37, 846-859. doi:10.1002/gepi.21760.
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotypeAdditional information
http://onlinelibrary.wiley.com/doi/10.1002/gepi.21760/suppinfoFiles private
Request files -
Fisher, S. E., Francks, C., McCracken, J. T., McGough, J. J., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Crawford, L. R., Palmer, C. G. S., Woodward, J. A., Del’Homme, M., Cantwell, D. P., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2002). A genomewide scan for loci involved in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 70(5), 1183-1196. doi:10.1086/340112.
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a common heritable disorder with a childhood onset. Molecular genetic studies of ADHD have previously focused on examining the roles of specific candidate genes, primarily those involved in dopaminergic pathways. We have performed the first systematic genomewide linkage scan for loci influencing ADHD in 126 affected sib pairs, using a ∼10-cM grid of microsatellite markers. Allele-sharing linkage methods enabled us to exclude any loci with a λs of ⩾3 from 96% of the genome and those with a λs of ⩾2.5 from 91%, indicating that there is unlikely to be a major gene involved in ADHD susceptibility in our sample. Under a strict diagnostic scheme we could exclude all screened regions of the X chromosome for a locus-specific λs of ⩾2 in brother-brother pairs, demonstrating that the excess of affected males with ADHD is probably not attributable to a major X-linked effect. Qualitative trait maximum LOD score analyses pointed to a number of chromosomal sites that may contain genetic risk factors of moderate effect. None exceeded genomewide significance thresholds, but LOD scores were >1.5 for regions on 5p12, 10q26, 12q23, and 16p13. Quantitative-trait analysis of ADHD symptom counts implicated a region on 12p13 (maximum LOD 2.6) that also yielded a LOD >1 when qualitative methods were used. A survey of regions containing 36 genes that have been proposed as candidates for ADHD indicated that 29 of these genes, including DRD4 and DAT1, could be excluded for a λs of 2. Only three of the candidates—DRD5, 5HTT, and CALCYON—coincided with sites of positive linkage identified by our screen. Two of the regions highlighted in the present study, 2q24 and 16p13, coincided with the top linkage peaks reported by a recent genome-scan study of autistic sib pairs. -
Fisher, S. E., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Cardon, L. R., Ishikawa-Brush, Y., Richardson, A. J., Talcott, J. B., Gayán, J., Olson, R. K., Pennington, B. F., Smith, S. D., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30(1), 86-91. doi:10.1038/ng792.
Abstract
Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P< or =0.0004 for single word-reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait. -
Francks, C., Fisher, S. E., MacPhie, I. L., Richardson, A. J., Marlow, A. J., Stein, J. F., & Monaco, A. P. (2002). A genomewide linkage screen for relative hand skill in sibling pairs. American Journal of Human Genetics, 70(3), 800-805. doi:10.1086/339249.
Abstract
Genomewide quantitative-trait locus (QTL) linkage analysis was performed using a continuous measure of relative hand skill (PegQ) in a sample of 195 reading-disabled sibling pairs from the United Kingdom. This was the first genomewide screen for any measure related to handedness. The mean PegQ in the sample was equivalent to that of normative data, and PegQ was not correlated with tests of reading ability (correlations between −0.13 and 0.05). Relative hand skill could therefore be considered normal within the sample. A QTL on chromosome 2p11.2-12 yielded strong evidence for linkage to PegQ (empirical P=.00007), and another suggestive QTL on 17p11-q23 was also identified (empirical P=.002). The 2p11.2-12 locus was further analyzed in an independent sample of 143 reading-disabled sibling pairs, and this analysis yielded an empirical P=.13. Relative hand skill therefore is probably a complex multifactorial phenotype with a heterogeneous background, but nevertheless is amenable to QTL-based gene-mapping approaches.
-
Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., DeFries, J. C., & Monaco, A. P. (2002). Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: Quantitative association analysis and positional candidate genes SEMA4F and OTX1. Psychiatric Genetics, 12(1), 35-41.
Abstract
A locus on chromosome 2p12-16 has been implicated in dyslexia susceptibility by two independent linkage studies, including our own study of 119 nuclear twin-based families, each with at least one reading-disabled child. Nonetheless, no variant of any gene has been reported to show association with dyslexia, and no consistent clinical evidence exists to identify candidate genes with any strong a priori logic. We used 21 microsatellite markers spanning 2p12-16 to refine our 1-LOD unit linkage support interval to 12cM between D2S337 and D2S286. Then, in quantitative association analysis, two microsatellites yielded P values<0.05 across a range of reading-related measures (D2S2378 and D2S2114). The exon/intron borders of two positional candidate genes within the region were characterized, and the exons were screened for polymorphisms. The genes were Semaphorin4F (SEMA4F), which encodes a protein involved in axonal growth cone guidance, and OTX1, encoding a homeodomain transcription factor involved in forebrain development. Two non-synonymous single nucleotide polymorphisms were found in SEMA4F, each with a heterozygosity of 0.03. One intronic single nucleotide polymorphism between exons 12 and 13 of SEMA4F was tested for quantitative association, but no significant association was found. Only one single nucleotide polymorphism was found in OTX1, which was exonic but silent. Our data therefore suggest that linkage with reading disability at 2p12-16 is not caused by coding variants of SEMA4F or OTX1. Our study outlines the approach necessary for the identification of genetic variants causing dyslexia susceptibility in an epidemiological population of dyslexics. -
Francks, C., MacPhie, I. L., & Monaco, A. P. (2002). The genetic basis of dyslexia. The Lancet Neurology, 1(8), 483-490. doi:10.1016/S1474-4422(02)00221-1.
Abstract
Dyslexia, a disorder of reading and spelling, is a heterogeneous neurological syndrome with a complex genetic and environmental aetiology. People with dyslexia differ in their individual profiles across a range of cognitive, physiological, and behavioural measures related to reading disability. Some or all of the subtypes of dyslexia might have partly or wholly distinct genetic causes. An understanding of the role of genetics in dyslexia could help to diagnose and treat susceptible children more effectively and rapidly than is currently possible and in ways that account for their individual disabilities. This knowledge will also give new insights into the neurobiology of reading and language cognition. Genetic linkage analysis has identified regions of the genome that might harbour inherited variants that cause reading disability. In particular, loci on chromosomes 6 and 18 have shown strong and replicable effects on reading abilities. These genomic regions contain tens or hundreds of candidate genes, and studies aimed at the identification of the specific causal genetic variants are underway. -
Marlow, A. J., Fisher, S. E., Richardson, A. J., Francks, C., Talcott, J. B., Monaco, A. P., Stein, J. F., & Cardon, L. R. (2002). Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behavior Genetics, 31(2), 219-230. doi:10.1023/A:1010209629021.
Abstract
We describe a family-based sample of individuals with reading disability collected as part of a quantitative trait loci (QTL) mapping study. Eighty-nine nuclear families (135 independent sib-pairs) were identified through a single proband using a traditional discrepancy score of predicted/actual reading ability and a known family history. Eight correlated psychometric measures were administered to each sibling, including single word reading, spelling, similarities, matrices, spoonerisms, nonword and irregular word reading, and a pseudohomophone test. Summary statistics for each measure showed a reduced mean for the probands compared to the co-sibs, which in turn was lower than that of the population. This partial co-sib regression back to the mean indicates that the measures are influenced by familial factors and therefore, may be suitable for a mapping study. The variance of each of the measures remained largely unaffected, which is reassuring for the application of a QTL approach. Multivariate genetic analysis carried out to explore the relationship between the measures identified a common factor between the reading measures that accounted for 54% of the variance. Finally the familiality estimates (range 0.32–0.73) obtained for the reading measures including the common factor (0.68) supported their heritability. These findings demonstrate the viability of this sample for QTL mapping, and will assist in the interpretation of any subsequent linkage findings in an ongoing genome scan. -
Smalley, S. L., Kustanovich, V., Minassian, S. L., Stone, J. L., Ogdie, M. N., McGough, J. J., McCracken, J. T., MacPhie, I. L., Francks, C., Fisher, S. E., Cantor, R. M., Monaco, A. P., & Nelson, S. F. (2002). Genetic linkage of Attention-Deficit/Hyperactivity Disorder on chromosome 16p13, in a region implicated in autism. American Journal of Human Genetics, 71(4), 959-963. doi:10.1086/342732.
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed behavioral disorder in childhood and likely represents an extreme of normal behavior. ADHD significantly impacts learning in school-age children and leads to impaired functioning throughout the life span. There is strong evidence for a genetic etiology of the disorder, although putative alleles, principally in dopamine-related pathways suggested by candidate-gene studies, have very small effect sizes. We use affected-sib-pair analysis in 203 families to localize the first major susceptibility locus for ADHD to a 12-cM region on chromosome 16p13 (maximum LOD score 4.2; P=.000005), building upon an earlier genomewide scan of this disorder. The region overlaps that highlighted in three genome scans for autism, a disorder in which inattention and hyperactivity are common, and physically maps to a 7-Mb region on 16p13. These findings suggest that variations in a gene on 16p13 may contribute to common deficits found in both ADHD and autism.
-
Bailey, A., Hervas, A., Matthews, N., Palferman, S., Wallace, S., Aubin, A., Michelotti, J., Wainhouse, C., Papanikolaou, K., Rutter, M., Maestrini, E., Marlow, A., Weeks, D. E., Lamb, J., Francks, C., Kearsley, G., Scudder, P., Monaco, A. P., Baird, G., Cox, A. and 46 moreBailey, A., Hervas, A., Matthews, N., Palferman, S., Wallace, S., Aubin, A., Michelotti, J., Wainhouse, C., Papanikolaou, K., Rutter, M., Maestrini, E., Marlow, A., Weeks, D. E., Lamb, J., Francks, C., Kearsley, G., Scudder, P., Monaco, A. P., Baird, G., Cox, A., Cockerill, H., Nuffield, F., Le Couteur, A., Berney, T., Cooper, H., Kelly, T., Green, J., Whittaker, J., Gilchrist, A., Bolton, P., Schönewald, A., Daker, M., Ogilvie, C., Docherty, Z., Deans, Z., Bolton, B., Packer, R., Poustka, F., Rühl, D., Schmötzer, G., Bölte, S., Klauck, S. M., Spieler, A., Poustka., A., Van Engeland, H., Kemner, C., De Jonge, M., Den Hartog, I., Lord, C., Cook, E., Leventhal, B., Volkmar, F., Pauls, D., Klin, A., Smalley, S., Fombonne, E., Rogé, B., Tauber, M., Arti-Vartayan, E., Fremolle-Kruck., J., Pederson, L., Haracopos, D., Brondum-Nielsen, K., & Cotterill, R. (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Human Molecular Genetics, 7(3), 571-578. doi:10.1093/hmg/7.3.571.
Abstract
Autism is characterized by impairments in reciprocal social interaction and communication, and restricted and sterotyped patterns of interests and activities. Developmental difficulties are apparent before 3 years of age and there is evidence for strong genetic influences most likely involving more than one susceptibility gene. A two-stage genome search for susceptibility loci in autism was performed on 87 affected sib pairs plus 12 non-sib affected relative-pairs, from a total of 99 families identified by an international consortium. Regions on six chromosomes (4, 7, 10, 16, 19 and 22) were identified which generated a multipoint maximum lod score (MLS) > 1. A region on chromosome 7q was the most significant with an MLS of 3.55 near markers D7S530 and D7S684 in the subset of 56 UK affected sib-pair families, and an MLS of 2.53 in all 87 affected sib-pair families. An area on chromosome 16p near the telomere was the next most significant, with an MLS of 1.97 in the UK families, and 1.51 in all families. These results are an important step towards identifying genes predisposing to autism; establishing their general applicability requires further study.
Share this page