Displaying 1 - 8 of 8
-
Artigas, M. S., Loth, D. W., Wain, L. V., Gharib, S. A., Obeidat, M., Tang, W., Zhai, G., Zhao, J. H., Smith, A. V., Huffman, J. E., Albrecht, E., Jackson, C. M., Evans, D. M., Cadby, G., Fornage, M., Manichaikul, A., Lopez, L. M., Johnson, T., Aldrich, M. C., Aspelund, T. and 149 moreArtigas, M. S., Loth, D. W., Wain, L. V., Gharib, S. A., Obeidat, M., Tang, W., Zhai, G., Zhao, J. H., Smith, A. V., Huffman, J. E., Albrecht, E., Jackson, C. M., Evans, D. M., Cadby, G., Fornage, M., Manichaikul, A., Lopez, L. M., Johnson, T., Aldrich, M. C., Aspelund, T., Barroso, I., Campbell, H., Cassano, P. A., Couper, D. J., Eiriksdottir, G., Franceschini, N., Garcia, M., Gieger, C., Gislason, G. K., Grkovic, I., Hammond, C. J., Hancock, D. B., Harris, T. B., Ramasamy, A., Heckbert, S. R., Heliövaara, M., Homuth, G., Hysi, P. G., James, A. L., Jankovic, S., Joubert, B. R., Karrasch, S., Klopp, N., Koch, B., Kritchevsky, S. B., Launer, L. J., Liu, Y., Loehr, L. R., Lohman, K., Loos, R. J., Lumley, T., Al Balushi, K. A., Ang, W. Q., Barr, R. G., Beilby, J., Blakey, J. D., Boban, M., Boraska, V., Brisman, J., Britton, J. R., Brusselle, G., Cooper, C., Curjuric, I., Dahgam, S., Deary, I. J., Ebrahim, S., Eijgelsheim, M., Francks, C., Gaysina, D., Granell, R., Gu, X., Hankinson, J. L., Hardy, R., Harris, S. E., Henderson, J., Henry, A., Hingorani, A. D., Hofman, A., Holt, P. G., Hui, J., Hunter, M. L., Imboden, M., Jameson, K. A., Kerr, S. M., Kolcic, I., Kronenberg, F., Liu, J. Z., Marchini, J., McKeever, T., Morris, A. D., Olin, A. C., Porteous, D. J., Postma, D. S., Rich, S. S., Ring, S. M., Rivadeneira, F., Rochat, T., Sayer, A. A., Sayers, I., Sly, P. D., Smith, G. D., Sood, A., Starr, J. M., Uitterlinden, A. G., Vonk, J. M., Wannamethee, S. G., Whincup, P. H., Wijmenga, C., Williams, O. D., Wong, A., Mangino, M., Marciante, K. D., McArdle, W. L., Meibohm, B., Morrison, A. C., North, K. E., Omenaas, E., Palmer, L. J., Pietiläinen, K. H., Pin, I., Pola Sbreve Ek, O., Pouta, A., Psaty, B. M., Hartikainen, A. L., Rantanen, T., Ripatti, S., Rotter, J. I., Rudan, I., Rudnicka, A. R., Schulz, H., Shin, S. Y., Spector, T. D., Surakka, I., Vitart, V., Völzke, H., Wareham, N. J., Warrington, N. M., Wichmann, H. E., Wild, S. H., Wilk, J. B., Wjst, M., Wright, A. F., Zgaga, L., Zemunik, T., Pennell, C. E., Nyberg, F., Kuh, D., Holloway, J. W., Boezen, H. M., Lawlor, D. A., Morris, R. W., Probst-Hensch, N., The International Lung Cancer Consortium, Giant consortium, Kaprio, J., Wilson, J. F., Hayward, C., Kähönen, M., Heinrich, J., Musk, A. W., Jarvis, D. L., Gläser, S., Järvelin, M. R., Ch Stricker, B. H., Elliott, P., O'Connor, G. T., Strachan, D. P., London, S. J., Hall, I. P., Gudnason, V., & Tobin, M. D. (2011). Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nature Genetics, 43, 1082-1090. doi:10.1038/ng.941.
Abstract
Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.Additional information
Artigas_et_al_Supplementary_Information.pdf -
Dow, D. J., Huxley-Jones, J., Hall, J. M., Francks, C., Maycox, P. R., Kew, J. N., Gloger, I. S., Mehta, N. A., Kelly, F. M., Muglia, P., Breen, G., Jugurnauth, S., Pederoso, I., St.Clair, D., Rujescu, D., & Barnes, M. R. (2011). ADAMTSL3 as a candidate gene for schizophrenia: Gene sequencing and ultra-high density association analysis by imputation. Schizophrenia Research, 127(1-3), 28-34. doi:10.1016/j.schres.2010.12.009.
Abstract
We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used complementary approaches to further evaluate the association. We imputed genotypes and performed high density association analysis using data from the HapMap and 1000 genomes projects. To review all variants that could potentially cause the association, and to identify additional possible pathogenic rare variants, we sequenced ADAMTSL3 in 92 schizophrenics. A total of 71 ADAMTSL3 variants were identified by sequencing, many were also seen in the 1000 genomes data, but 26 were novel. None of the variants identified by re-sequencing was in strong linkage disequilibrium (LD) with the associated markers. Imputation analysis refined association between ADAMTSL3 and schizophrenia, and highlighted additional common variants with similar levels of association. We evaluated the functional consequences of all variants identified by sequencing, or showing direct or imputed association. The strongest evidence for function remained with the originally associated variant, rs950169, suggesting that this variant may be causal of the association. Rare variants were also identified with possible functional impact. Our study confirms ADAMTSL3 as a candidate for further investigation in schizophrenia, using the variants identified here. The utility of imputation analysis is demonstrated, and we recommend wider use of this method to re-evaluate the existing canon of suggestive schizophrenia associations. -
Francks, C. (2011). Leucine-rich repeat genes and the fine-tuning of synapses. Biological Psychiatry, 69, 820-821. doi:10.1016/j.biopsych.2010.12.018.
-
Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P. H., Buizer-Voskamp, J. E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P. I., Steinberg, S., Hansen, T., Jakobsen, K. D., Rasmussen, H. B., Giegling, I., Möller, H.-J., Hartmann, A. and 28 moreIngason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P. H., Buizer-Voskamp, J. E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P. I., Steinberg, S., Hansen, T., Jakobsen, K. D., Rasmussen, H. B., Giegling, I., Möller, H.-J., Hartmann, A., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Bramon, E., Kiemeney, L. A., Franke, B., Murray, R., Vassos, E., Toulopoulou, T., Mühleisen, T. W., Tosato, S., Ruggeri, M., Djurovic, S., Andreassen, O. A., Zhang, Z., Werge, T., Ophoff, R. A., Rietschel, M., Nöthen, M. M., Petursson, H., Stefansson, H., Peltonen, L., Collier, D., Stefansson, K., & St Clair, D. M. (2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 16, 17-25. doi:10.1038/mp.2009.101.
Abstract
Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 35 079 controls from 8 European populations for duplications and deletions at the 16p13.1 locus, using microarray data. We found a threefold excess of duplications and deletions in schizophrenia cases compared with controls, with duplications present in 0.30% of cases versus 0.09% of controls (P=0.007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P=0.00010) association with schizophrenia. The age of onset in duplication and deletion carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia.Additional information
http://www.nature.com/mp/journal/vaop/ncurrent/suppinfo/mp2009101s1.html?url=/m… -
Fisher, S. E., & Francks, C. (2006). Genes, cognition and dyslexia: Learning to read the genome. Trends in Cognitive Sciences, 10, 250-257. doi:10.1016/j.tics.2006.04.003.
Abstract
Studies of dyslexia provide vital insights into the cognitive architecture underpinning both disordered and normal reading. It is well established that inherited factors contribute to dyslexia susceptibility, but only very recently has evidence emerged to implicate specific candidate genes. In this article, we provide an accessible overview of four prominent examples--DYX1C1, KIAA0319, DCDC2 and ROBO1--and discuss their relevance for cognition. In each case correlations have been found between genetic variation and reading impairments, but precise risk variants remain elusive. Although none of these genes is specific to reading-related neuronal circuits, or even to the human brain, they have intriguing roles in neuronal migration or connectivity. Dissection of cognitive mechanisms that subserve reading will ultimately depend on an integrated approach, uniting data from genetic investigations, behavioural studies and neuroimaging. -
Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., Van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J., & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13 [Letter to the editor]. Molecular Psychiatry, 11, 5-8. doi:10.1038/sj.mp.4001760.
-
Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C., Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., LoTurco, J., & Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659-1666. doi:10.1093/hmg/ddl089.
Abstract
Dyslexia is one of the most prevalent childhood cognitive disorders, affecting approximately 5% of school-age children. We have recently identified a risk haplotype associated with dyslexia on chromosome 6p22.2 which spans the TTRAP gene and portions of THEM2 and KIAA0319. Here we show that in the presence of the risk haplotype, the expression of the KIAA0319 gene is reduced but the expression of the other two genes remains unaffected. Using in situ hybridization, we detect a very distinct expression pattern of the KIAA0319 gene in the developing cerebral neocortex of mouse and human fetuses. Moreover, interference with rat Kiaa0319 expression in utero leads to impaired neuronal migration in the developing cerebral neocortex. These data suggest a direct link between a specific genetic background and a biological mechanism leading to the development of dyslexia: the risk haplotype on chromosome 6p22.2 down-regulates the KIAA0319 gene which is required for neuronal migration during the formation of the cerebral neocortex. -
Francks, C., Fisher, S. E., J.Marlow, A., J.Richardson, A., Stein, J. F., & Monaco, A. (2000). A sibling-pair based approach for mapping genetic loci that influence quantitative measures of reading disability. Prostaglandins, Leukotrienes and Essential Fatty Acids, 63(1-2), 27-31. doi:10.1054/plef.2000.0187.
Abstract
Family and twin studies consistently demonstrate a significant role for genetic factors in the aetiology of the reading disorder dyslexia. However, dyslexia is complex at both the genetic and phenotypic levels, and currently the nature of the core deficit or deficits remains uncertain. Traditional approaches for mapping disease genes, originally developed for single-gene disorders, have limited success when there is not a simple relationship between genotype and phenotype. Recent advances in high-throughput genotyping technology and quantitative statistical methods have made a new approach to identifying genes involved in complex disorders possible. The method involves assessing the genetic similarity of many sibling pairs along the lengths of all their chromosomes and attempting to correlate this similarity with that of their phenotypic scores. We are adopting this approach in an ongoing genome-wide search for genes involved in dyslexia susceptibility, and have already successfully applied the method by replicating results from previous studies suggesting that a quantitative trait locus at 6p21.3 influences reading disability.
Share this page