Displaying 1 - 3 of 3
-
Fisher, S. E., & Francks, C. (2006). Genes, cognition and dyslexia: Learning to read the genome. Trends in Cognitive Sciences, 10, 250-257. doi:10.1016/j.tics.2006.04.003.
Abstract
Studies of dyslexia provide vital insights into the cognitive architecture underpinning both disordered and normal reading. It is well established that inherited factors contribute to dyslexia susceptibility, but only very recently has evidence emerged to implicate specific candidate genes. In this article, we provide an accessible overview of four prominent examples--DYX1C1, KIAA0319, DCDC2 and ROBO1--and discuss their relevance for cognition. In each case correlations have been found between genetic variation and reading impairments, but precise risk variants remain elusive. Although none of these genes is specific to reading-related neuronal circuits, or even to the human brain, they have intriguing roles in neuronal migration or connectivity. Dissection of cognitive mechanisms that subserve reading will ultimately depend on an integrated approach, uniting data from genetic investigations, behavioural studies and neuroimaging. -
Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., Van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J., & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13 [Letter to the editor]. Molecular Psychiatry, 11, 5-8. doi:10.1038/sj.mp.4001760.
-
Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C., Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., LoTurco, J., & Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659-1666. doi:10.1093/hmg/ddl089.
Abstract
Dyslexia is one of the most prevalent childhood cognitive disorders, affecting approximately 5% of school-age children. We have recently identified a risk haplotype associated with dyslexia on chromosome 6p22.2 which spans the TTRAP gene and portions of THEM2 and KIAA0319. Here we show that in the presence of the risk haplotype, the expression of the KIAA0319 gene is reduced but the expression of the other two genes remains unaffected. Using in situ hybridization, we detect a very distinct expression pattern of the KIAA0319 gene in the developing cerebral neocortex of mouse and human fetuses. Moreover, interference with rat Kiaa0319 expression in utero leads to impaired neuronal migration in the developing cerebral neocortex. These data suggest a direct link between a specific genetic background and a biological mechanism leading to the development of dyslexia: the risk haplotype on chromosome 6p22.2 down-regulates the KIAA0319 gene which is required for neuronal migration during the formation of the cerebral neocortex.
Share this page