Clyde Francks

Publications

Displaying 1 - 12 of 12
  • Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.

    Abstract

    Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain.
  • Rivera-Olvera, A., Houwing, D. J., Ellegood, J., Masifi, S., Martina, S., Silberfeld, A., Pourquie, O., Lerch, J. P., Francks, C., Homberg, J. R., Van Heukelum, S., & Grandjean, J. (2025). The universe is asymmetric, the mouse brain too. Molecular Psychiatry, 30, 489-496. doi:10.1038/s41380-024-02687-2.

    Abstract

    Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models in studying the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.

    Additional information

    tables link to preprint on BioRxiv
  • Sha, Z., & Francks, C. (2025). Large-scale genetic mapping for human brain asymmetry. In C. Papagno, & P. Corballis (Eds.), Handbook of Clinical Neurology: Cerebral Asymmetries (pp. 241-254). Amsterdam: Elsevier.

    Abstract

    Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last five years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules, or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain’s left-right axis. Several of the implicated genes have also been associated with psychiatric or neurological disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders.
  • Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.

    Abstract

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
    life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
    adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
    also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
    We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
    background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
    volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
    involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
    volume and provide genetic support for theories on brain reserve and brain overgrowth.
  • Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.

    Abstract

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations.
  • Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.

    Abstract

    Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.
  • Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.

    Abstract

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders

    Additional information

    Franke_etal_2016_supp1.pdf
  • Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.

    Abstract

    Background

    Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
    Methods

    In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
    Results

    No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
    Conclusions

    These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.
  • Kavaklioglu, T., Ajmal, M., Hameed, A., & Francks, C. (2016). Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia, 93, part B, 342-349. doi:10.1016/j.neuropsychologia.2015.11.010.

    Abstract

    Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level.
  • Fisher, S. E., & Francks, C. (2006). Genes, cognition and dyslexia: Learning to read the genome. Trends in Cognitive Sciences, 10, 250-257. doi:10.1016/j.tics.2006.04.003.

    Abstract

    Studies of dyslexia provide vital insights into the cognitive architecture underpinning both disordered and normal reading. It is well established that inherited factors contribute to dyslexia susceptibility, but only very recently has evidence emerged to implicate specific candidate genes. In this article, we provide an accessible overview of four prominent examples--DYX1C1, KIAA0319, DCDC2 and ROBO1--and discuss their relevance for cognition. In each case correlations have been found between genetic variation and reading impairments, but precise risk variants remain elusive. Although none of these genes is specific to reading-related neuronal circuits, or even to the human brain, they have intriguing roles in neuronal migration or connectivity. Dissection of cognitive mechanisms that subserve reading will ultimately depend on an integrated approach, uniting data from genetic investigations, behavioural studies and neuroimaging.
  • Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., Van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J., & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13 [Letter to the editor]. Molecular Psychiatry, 11, 5-8. doi:10.1038/sj.mp.4001760.
  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., Keating, B. J., Taylor, J. M., Hacking, D. F., Scerri, T., Francks, C., Richardson, A. J., Wade-Martins, R., Stein, J. F., Knight, J. C., Copp, A. J., LoTurco, J., & Monaco, A. P. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659-1666. doi:10.1093/hmg/ddl089.

    Abstract

    Dyslexia is one of the most prevalent childhood cognitive disorders, affecting approximately 5% of school-age children. We have recently identified a risk haplotype associated with dyslexia on chromosome 6p22.2 which spans the TTRAP gene and portions of THEM2 and KIAA0319. Here we show that in the presence of the risk haplotype, the expression of the KIAA0319 gene is reduced but the expression of the other two genes remains unaffected. Using in situ hybridization, we detect a very distinct expression pattern of the KIAA0319 gene in the developing cerebral neocortex of mouse and human fetuses. Moreover, interference with rat Kiaa0319 expression in utero leads to impaired neuronal migration in the developing cerebral neocortex. These data suggest a direct link between a specific genetic background and a biological mechanism leading to the development of dyslexia: the risk haplotype on chromosome 6p22.2 down-regulates the KIAA0319 gene which is required for neuronal migration during the formation of the cerebral neocortex.

Share this page