Else Eising

Publications

Displaying 1 - 3 of 3
  • De Vries, B., Eising, E., Broos, L. A. M., Koelewijn, S. C., Todorov, B., Frants, R. R., Boer, J. M., Ferraro, M. D., Thoen, P. A. C., & Van Den Maagdenberg, A. (2014). RNA expression profiling in brains of familial hemiplegic migraine type 1 knock-in mice. Cephalalgia, 34(3), 174-182. doi:10.1177/0333102413502736.

    Abstract

    Background Various CACNA1A missense mutations cause familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of migraine with aura. FHM1 mutation R192Q is associated with pure hemiplegic migraine, whereas the S218L mutation causes hemiplegic migraine, cerebellar ataxia, seizures, and mild head trauma-induced brain edema. Transgenic knock-in (KI) migraine mouse models were generated that carried either the FHM1 R192Q or the S218L mutation and were shown to exhibit increased CaV2.1 channel activity. Here we investigated their cerebellar and caudal cortical transcriptome. Methods Caudal cortical and cerebellar RNA expression profiles from mutant and wild-type mice were studied using microarrays. Respective brain regions were selected based on their relevance to migraine aura and ataxia. Relevant expression changes were further investigated at RNA and protein level by quantitative polymerase chain reaction (qPCR) and/or immunohistochemistry, respectively. Results Expression differences in the cerebellum were most pronounced in S218L mice. Particularly, tyrosine hydroxylase, a marker of delayed cerebellar maturation, appeared strongly upregulated in S218L cerebella. In contrast, only minimal expression differences were observed in the caudal cortex of either mutant mice strain. Conclusion Despite pronounced consequences of migraine gene mutations at the neurobiological level, changes in cortical RNA expression in FHM1 migraine mice compared to wild-type are modest. In contrast, pronounced RNA expression changes are seen in the cerebellum of S218L mice and may explain their cerebellar ataxia phenotype
  • Eising, E., A Datson, N., van den Maagdenberg, A. M., & Ferrari, M. D. (2013). Epigenetic mechanisms in migraine: a promising avenue? BMC Medicine, 11(1): 26. doi:10.1186/1741-7015-11-26.

    Abstract

    Migraine is a disabling common brain disorder typically characterized by attacks of severe headache and associated with autonomic and neurological symptoms. Its etiology is far from resolved. This review will focus on evidence that epigenetic mechanisms play an important role in disease etiology. Epigenetics comprise both DNA methylation and post-translational modifications of the tails of histone proteins, affecting chromatin structure and gene expression. Besides playing a role in establishing cellular and developmental stage-specific regulation of gene expression, epigenetic processes are also important for programming lasting cellular responses to environmental signals. Epigenetic mechanisms may explain how non-genetic endogenous and exogenous factors such as female sex hormones, stress hormones and inflammation trigger may modulate attack frequency. Developing drugs that specifically target epigenetic mechanisms may open up exciting new avenues for the prophylactic treatment of migraine.
  • Eising, E., De Vries, B., Ferrari, M. D., Terwindt, G. M., & Van Den Maagdenberg, A. M. J. M. (2013). Pearls and pitfalls in genetic studies of migraine. Cephalalgia, 33(8), 614-625. doi:10.1177/0333102413484988.

    Abstract

    Purpose of review: Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Summary: Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Conclusions: Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.

Share this page