Displaying 1 - 6 of 6
-
Sønderby, I. E., Van der Meer, D., Moreau, C., Kaufmann, T., Walters, G. B., Ellegaard, M., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Bøen, R., Cahn, W. and 125 moreSønderby, I. E., Van der Meer, D., Moreau, C., Kaufmann, T., Walters, G. B., Ellegaard, M., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Bøen, R., Cahn, W., Calhoun, V. D., Caspers, S., Ching, C. R. K., Cichon, S., Ciufolini, S., Crespo-Facorro, B., Curran, J. E., Dale, A. M., Dalvie, S., Dazzan, P., De Geus, E. J. C., De Zubicaray, G. I., De Zwarte, S. M. C., Desrivieres, S., Doherty, J. L., Donohoe, G., Draganski, B., Ehrlich, S., Eising, E., Espeseth, T., Fejgin, K., Fisher, S. E., Fladby, T., Frei, O., Frouin, V., Fukunaga, M., Gareau, T., Ge, T., Glahn, D. C., Grabe, H. J., Groenewold, N. A., Gústafsson, Ó., Haavik, J., Haberg, A. K., Hall, J., Hashimoto, R., Hehir-Kwa, J. Y., Hibar, D. P., Hillegers, M. H. J., Hoffmann, P., Holleran, L., Holmes, A. J., Homuth, G., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Jahanshad, N., Jockwitz, C., Johansson, S., Jönsson, E. G., Jørgensen, N. R., Kikuchi, M., Knowles, E. E. M., Kumar, K., Le Hellard, S., Leu, C., Linden, D. E., Liu, J., Lundervold, A., Lundervold, A. J., Maillard, A. M., Martin, N. G., Martin-Brevet, S., Mather, K. A., Mathias, S. R., McMahon, K. L., McRae, A. F., Medland, S. E., Meyer-Lindenberg, A., Moberget, T., Modenato, C., Monereo Sánchez, J., Morris, D. W., Mühleisen, T. W., Murray, R. M., Nielsen, J., Nordvik, J. E., Nyberg, L., Olde Loohuis, L. M., Ophoff, R. A., Owen, M. J., Paus, T., Pausova, Z., Peralta, J. M., Pike, B., Prieto, C., Quinlan, E. B., Reinbold, C. S., Reis Marques, T., Rucker, J. J. H., Sachdev, P. S., Sando, S. B., Schofield, P. R., Schork, A. J., Schumann, G., Shin, J., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Steen, V. M., Stein, D. J., Strike, L. T., Suzuki, I. K., Tamnes, C. K., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Uhlmann, A., Úlfarsson, M. Ö., Van 't Ent, D., Van den Bree, M. B. M., Vanderhaeghen, P., Vassos, E., Wen, W., Wittfeld, K., Wright, M. J., Agartz, I., Djurovic, S., Westlye, L. T., Stefánsson, H., Stefánsson, K., Jacquemont, S., Thompson, P. M., Andreassen, O. A., & the ENIGMA-CNV working group (2021). 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 11: 182. doi:10.1038/s41398-021-01213-0.
Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function. -
Henson, R. N., Suri, S., Knights, E., Rowe, J. B., Kievit, R. A., Lyall, D. M., Chan, D., Eising, E., & Fisher, S. E. (2020). Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. Brain and Neuroscience Advances, 4: 2398212820961704. doi:10.1177/2398212820961704.
Abstract
Polymorphisms in the apolipoprotein E (APOE) gene have been associated with individual differences in cognition, brain structure and brain function. For example, the ε4 allele has been associated with cognitive and brain impairment in old age and increased risk of dementia, while the ε2 allele has been claimed to be neuroprotective. According to the ‘antagonistic pleiotropy’ hypothesis, these polymorphisms have different effects across the lifespan, with ε4, for example, postulated to confer benefits on cognitive and brain functions earlier in life. In this stage 2 of the Registered Report – https://osf.io/bufc4, we report the results from the cognitive and brain measures in the Cambridge Centre for Ageing and Neuroscience cohort (www.cam-can.org). We investigated the antagonistic pleiotropy hypothesis by testing for allele-by-age interactions in approximately 600 people across the adult lifespan (18–88 years), on six outcome variables related to cognition, brain structure and brain function (namely, fluid intelligence, verbal memory, hippocampal grey-matter volume, mean diffusion within white matter and resting-state connectivity measured by both functional magnetic resonance imaging and magnetoencephalography). We found no evidence to support the antagonistic pleiotropy hypothesis. Indeed, Bayes factors supported the null hypothesis in all cases, except for the (linear) interaction between age and possession of the ε4 allele on fluid intelligence, for which the evidence for faster decline in older ages was ambiguous. Overall, these pre-registered analyses question the antagonistic pleiotropy of APOE polymorphisms, at least in healthy adults.Additional information
supplementary material -
Thompson, P. A., Bishop, D. V. M., Eising, E., Fisher, S. E., & Newbury, D. F. (2020). Generalized Structured Component Analysis in candidate gene association studies: Applications and limitations [version 2; peer review: 3 approved]. Wellcome Open Research, 4: 142. doi:10.12688/wellcomeopenres.15396.2.
Abstract
Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing.
Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9.
Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects.
Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis.Additional information
data via OSF -
Van der Meer, D., Sønderby, I. E., Kaufmann, T., Walters, G. B., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Cahn, W., Calhoun, V. D., Caspers, S., Cavalleri, G. L. and 112 moreVan der Meer, D., Sønderby, I. E., Kaufmann, T., Walters, G. B., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Cahn, W., Calhoun, V. D., Caspers, S., Cavalleri, G. L., Ching, C. R. K., Cichon, S., Ciufolini, S., Corvin, A., Crespo-Facorro, B., Curran, J. E., Dalvie, S., Dazzan, P., De Geus, E. J. C., De Zubicaray, G. I., De Zwarte, S. M. C., Delanty, N., Den Braber, A., Desrivieres, S., Di Forti, M., Doherty, J. L., Donohoe, G., Ehrlich, S., Eising, E., Espeseth, T., Fisher, S. E., Fladby, T., Frei, O., Frouin, V., Fukunaga, M., Gareau, T., Glahn, D. C., Grabe, H. J., Groenewold, N. A., Gústafsson, Ó., Haavik, J., Haberg, A. K., Hashimoto, R., Hehir-Kwa, J. Y., Hibar, D. P., Hillegers, M. H. J., Hoffmann, P., Holleran, L., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Jacquemont, S., Jahanshad, N., Jockwitz, C., Johansson, S., Jönsson, E. G., Kikuchi, M., Knowles, E. E. M., Kwok, J. B., Le Hellard, S., Linden, D. E. J., Liu, J., Lundervold, A., Lundervold, A. J., Martin, N. G., Mather, K. A., Mathias, S. R., McMahon, K. L., McRae, A. F., Medland, S. E., Moberget, T., Moreau, C., Morris, D. W., Mühleisen, T. W., Murray, R. M., Nordvik, J. E., Nyberg, L., Olde Loohuis, L. M., Ophoff, R. A., Owen, M. J., Paus, T., Pausova, Z., Peralta, J. M., Pike, B., Prieto, C., Quinlan, E. B., Reinbold, C. S., Reis Marques, T., Rucker, J. J. H., Sachdev, P. S., Sando, S. B., Schofield, P. R., Schork, A. J., Schumann, G., Shin, J., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Steen, V. M., Stein, D. J., Strike, L. T., Tamnes, C. K., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Uhlmann, A., Úlfarsson, M. Ö., Van 't Ent, D., Van den Bree, M. B. M., Vassos, E., Wen, W., Wittfeld, K., Wright, M. J., Zayats, T., Dale, A. M., Djurovic, S., Agartz, I., Westlye, L. T., Stefánsson, H., Stefánsson, K., Thompson, P. M., & Andreassen, O. A. (2020). Association of copy number variation of the 15q11.2 BP1-BP2 region with cortical and subcortical morphology and cognition. JAMA Psychiatry, 77(4), 420-430. doi:10.1001/jamapsychiatry.2019.3779.
Abstract
Importance Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.
Objective To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.
Design, Setting, and Participants In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.
Main Outcomes and Measures The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.
Results Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = −0.41; SE, 0.08; P = 4.9 × 10−8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10−7), and a smaller nucleus accumbens (Cohen d = −0.27; SE, 0.07; P = 7.3 × 10−5). There was also a significant negative dose response on cortical thickness (β = −0.24; SE, 0.05; P = 6.8 × 10−7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.
Conclusions and Relevance These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders. -
Eising, E., Shyti, R., 'T hoen, P. A. C., Vijfhuizen, L. S., Huisman, S. M. H., Broos, L. A. M., Mahfourz, A., Reinders, M. J. T., Ferrrari, M. D., Tolner, E. A., De Vries, B., & Van den Maagdenberg, A. M. J. M. (2017). Cortical spreading depression causes unique dysregulation of inflammatory pathways in a transgenic mouse model of migraine. Molecular Biology, 54(4), 2986-2996. doi:10.1007/s12035-015-9681-5.
Abstract
Familial hemiplegic migraine type 1 (FHM1) is a
rare monogenic subtype of migraine with aura caused by mutations
in CACNA1A that encodes the α1A subunit of voltagegated
CaV2.1 calcium channels. Transgenic knock-in mice
that carry the human FHM1 R192Q missense mutation
(‘FHM1 R192Q mice’) exhibit an increased susceptibility to
cortical spreading depression (CSD), the mechanism underlying
migraine aura. Here, we analysed gene expression profiles
from isolated cortical tissue of FHM1 R192Q mice 24 h after
experimentally induced CSD in order to identify molecular
pathways affected by CSD. Gene expression profiles were
generated using deep serial analysis of gene expression sequencing.
Our data reveal a signature of inflammatory signalling
upon CSD in the cortex of both mutant and wild-type
mice. However, only in the brains of FHM1 R192Q mice
specific genes are up-regulated in response to CSD that are
implicated in interferon-related inflammatory signalling. Our
findings show that CSD modulates inflammatory processes in
both wild-type and mutant brains, but that an additional
unique inflammatory signature becomes expressed after
CSD in a relevant mouse model of migraine. -
Eising, E., Pelzer, N., Vijfhuizen, L. S., De Vries, B., Ferrari, M. D., 'T Hoen, P. A. C., Terwindt, G. M., & Van den Maagdenberg, A. M. J. M. (2017). Identifying a gene expression signature of cluster headache in blood. Scientific Reports, 7: 40218. doi:10.1038/srep40218.
Abstract
Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headacheAdditional information
Eising_etal_2017sup.pdf
Share this page