Displaying 1 - 16 of 16
-
Carrion Castillo, A., Van der Haegen, L., Tzourio-Mazoyer, N., Kavaklioglu, T., Badillo, S., Chavent, M., Saracco, J., Brysbaert, M., Fisher, S. E., Mazoyer, B., & Francks, C. (2019). Genome sequencing for rightward hemispheric language dominance. Genes, Brain and Behavior, 18(5): e12572. doi:10.1111/gbb.12572.
Abstract
Most people have left‐hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic‐developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole‐genome‐sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left‐right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population‐genetic data sets, as well as 34 subjects (14 left‐handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un‐mutated in controls. A hypothesis derived from invertebrate mechanisms of left‐right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.Additional information
gbb12572-sup-0001-AppendixS1.docx -
Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 1065-1078. doi:10.1038/s41380-018-0020-x.
Abstract
Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.Additional information
Eising_etal_2018sup.pdf -
Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of Life Reviews, 30, 22-24. doi:10.1016/j.plrev.2019.07.004.
-
Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press. -
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.Additional information
https://www.nature.com/articles/s41398-019-0402-0#Sec17 -
De Kovel, C. G. F., Carrion Castillo, A., & Francks, C. (2019). A large-scale population study of early life factors influencing left-handedness. Scientific Reports, 9: 584. doi:10.1038/s41598-018-37423-8.
Abstract
Hand preference is a conspicuous variation in human behaviour, with a worldwide proportion of around 90% of people preferring to use the right hand for many tasks, and 10% the left hand. We used the large cohort of the UK biobank (~500,000 participants) to study possible relations between early life factors and adult hand preference. The probability of being left-handed was affected by the year and location of birth, likely due to cultural effects. In addition, hand preference was affected by birthweight, being part of a multiple birth, season of birth, breastfeeding, and sex, with each effect remaining significant after accounting for all others. Analysis of genome-wide genotype data showed that left-handedness was very weakly heritable, but shared no genetic basis with birthweight. Although on average left-handers and right-handers differed for a number of early life factors, all together these factors had only a minimal predictive value for individual hand preference.Additional information
Supplementary information -
De Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C. and 58 moreDe Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C., Godlewska, B., Gotlib, I. H., Goya-Maldonado, R., Grabe, H. J., Groenewold, N. A., Grotegerd, D., Gruber, O., Harris, M. A., Harrison, B. J., Hatton, S. N., Hickie, I. B., Ho, T. C., Jahanshad, N., Kircher, T., Krämer, B., Krug, A., Lagopoulos, J., Leehr, E. J., Li, M., MacMaster, F. P., MacQueen, G., McIntosh, A. M., McLellan, Q., Medland, S. E., Mueller, B. A., Nenadic, I., Osipov, E., Papmeyer, M., Portella, M. J., Reneman, L., Rosa, P. G., Sacchet, M. D., Schnell, K., Schrantee, A., Sim, K., Simulionyte, E., Sindermann, L., Singh, A., Stein, D. J., Ubani, B. N., der Wee, N. J. V., der Werff, S. J. V., Veer, I. M., Vives-Gilabert, Y., Völzke, H., Walter, H., Walter, M., Schreiner, M. W., Whalley, H., Winter, N., Wittfeld, K., Yang, T. T., Yüksel, D., Zaremba, D., Thompson, P. M., Veltman, D. J., Schmaal, L., & Francks, C. (2019). No alterations of brain structural asymmetry in major depressive disorder: An ENIGMA consortium analysis. American Journal of Psychiatry, 176(12), 1039-1049. doi:10.1176/appi.ajp.2019.18101144.
Abstract
Objective:
Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects.
Methods:
The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T1-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen’s d=0.1.
Results:
The largest effect size (Cohen’s d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset.
Conclusions:
Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases. -
De Kovel, C. G. F., & Francks, C. (2019). The molecular genetics of hand preference revisited. Scientific Reports, 9: 5986. doi:10.1038/s41598-019-42515-0.
Abstract
Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene MAP2 in handedness. -
Postema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X. and 38 morePostema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X., Fitzgerald, J., Floris, D. L., Freitag, C. M., Gallagher, L., Glahn, D. C., Gori, I., Haar, S., Hoekstra, L., Jahanshad, N., Jalbrzikowski, M., Janssen, J., King, J. A., Kong, X., Lazaro, L., Lerch, J. P., Luna, B., Martinho, M. M., McGrath, J., Medland, S. E., Muratori, F., Murphy, C. M., Murphy, D. G. M., O'Hearn, K., Oranje, B., Parellada, M., Puig, O., Retico, A., Rosa, P., Rubia, K., Shook, D., Taylor, M., Tosetti, M., Wallace, G. L., Zhou, F., Thompson, P., Fisher, S. E., Buitelaar, J. K., & Francks, C. (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 10: 4958. doi:10.1038/s41467-019-13005-8.
Additional information
Supplementary Information -
Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V. and 271 moreSatizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V., Li, S., Hu, Y., Koh, J. Y., Eicher, J. D., Desrivières, S., Arias-Vasquez, A., Chauhan, G., Athanasiu, L., Renteria, M. E., Kim, S., Höhn, D., Armstrong, N. J., Chen, Q., Holmes, A. J., Den Braber, A., Kloszewska, I., Andersson, M., Espeseth, T., Grimm, O., Abramovic, L., Alhusaini, S., Milaneschi, Y., Papmeyer, M., Axelsson, T., Ehrlich, S., Roiz-Santiañez, R., Kraemer, B., Håberg, A. K., Jones, H. J., Pike, G. B., Stein, D. J., Stevens, A., Bralten, J., Vernooij, M. W., Harris, T. B., Filippi, I., Witte, A. V., Guadalupe, T., Wittfeld, K., Mosley, T. H., Becker, J. T., Doan, N. T., Hagenaars, S. P., Saba, Y., Cuellar-Partida, G., Amin, N., Hilal, S., Nho, K., Karbalai, N., Arfanakis, K., Becker, D. M., Ames, D., Goldman, A. L., Lee, P. H., Boomsma, D. I., Lovestone, S., Giddaluru, S., Le Hellard, S., Mattheisen, M., Bohlken, M. M., Kasperaviciute, D., Schmaal, L., Lawrie, S. M., Agartz, I., Walton, E., Tordesillas-Gutierrez, D., Davies, G. E., Shin, J., Ipser, J. C., Vinke, L. N., Hoogman, M., Jia, T., Burkhardt, R., Klein, M., Crivello, F., Janowitz, D., Carmichael, O., Haukvik, U. K., Aribisala, B. S., Schmidt, H., Strike, L. T., Cheng, C.-Y., Risacher, S. L., Pütz, B., Fleischman, D. A., Assareh, A. A., Mattay, V. S., Buckner, R. L., Mecocci, P., Dale, A. M., Cichon, S., Boks, M. P., Matarin, M., Penninx, B. W. J. H., Calhoun, V. D., Chakravarty, M. M., Marquand, A., Macare, C., Masouleh, S. K., Oosterlaan, J., Amouyel, P., Hegenscheid, K., Rotter, J. I., Schork, A. J., Liewald, D. C. M., De Zubicaray, G. I., Wong, T. Y., Shen, L., Sämann, P. G., Brodaty, H., Roffman, J. L., De Geus, E. J. C., Tsolaki, M., Erk, S., Van Eijk, K. R., Cavalleri, G. L., Van der Wee, N. J. A., McIntosh, A. M., Gollub, R. L., Bulayeva, K. B., Bernard, M., Richards, J. S., Himali, J. J., Loeffler, M., Rommelse, N., Hoffmann, W., Westlye, L. T., Valdés Hernández, M. C., Hansell, N. K., Van Erp, T. G. M., Wolf, C., Kwok, J. B. J., Vellas, B., Heinz, A., Olde Loohuis, L. M., Delanty, N., Ho, B.-C., Ching, C. R. K., Shumskaya, E., Singh, B., Hofman, A., Van der Meer, D., Homuth, G., Psaty, B. M., Bastin, M., Montgomery, G. W., Foroud, T. M., Reppermund, S., Hottenga, J.-J., Simmons, A., Meyer-Lindenberg, A., Cahn, W., Whelan, C. D., Van Donkelaar, M. M. J., Yang, Q., Hosten, N., Green, R. C., Thalamuthu, A., Mohnke, S., Hulshoff Pol, H. E., Lin, H., Jack Jr., C. R., Schofield, P. R., Mühleisen, T. W., Maillard, P., Potkin, S. G., Wen, W., Fletcher, E., Toga, A. W., Gruber, O., Huentelman, M., Smith, G. D., Launer, L. J., Nyberg, L., Jönsson, E. G., Crespo-Facorro, B., Koen, N., Greve, D., Uitterlinden, A. G., Weinberger, D. R., Steen, V. M., Fedko, I. O., Groenewold, N. A., Niessen, W. J., Toro, R., Tzourio, C., Longstreth Jr., W. T., Ikram, M. K., Smoller, J. W., Van Tol, M.-J., Sussmann, J. E., Paus, T., Lemaître, H., Schroeter, M. L., Mazoyer, B., Andreassen, O. A., Holsboer, F., Depondt, C., Veltman, D. J., Turner, J. A., Pausova, Z., Schumann, G., Van Rooij, D., Djurovic, S., Deary, I. J., McMahon, K. L., Müller-Myhsok, B., Brouwer, R. M., Soininen, H., Pandolfo, M., Wassink, T. H., Cheung, J. W., Wolfers, T., Martinot, J.-L., Zwiers, M. P., Nauck, M., Melle, I., Martin, N. G., Kanai, R., Westman, E., Kahn, R. S., Sisodiya, S. M., White, T., Saremi, A., Van Bokhoven, H., Brunner, H. G., Völzke, H., Wright, M. J., Van 't Ent, D., Nöthen, M. M., Ophoff, R. A., Buitelaar, J. K., Fernández, G., Sachdev, P. S., Rietschel, M., Van Haren, N. E. M., Fisher, S. E., Beiser, A. S., Francks, C., Saykin, A. J., Mather, K. A., Romanczuk-Seiferth, N., Hartman, C. A., DeStefano, A. L., Heslenfeld, D. J., Weiner, M. W., Walter, H., Hoekstra, P. J., Nyquist, P. A., Franke, B., Bennett, D. A., Grabe, H. J., Johnson, A. D., Chen, C., Van Duijn, C. M., Lopez, O. L., Fornage, M., Wardlaw, J. A., Schmidt, R., DeCarli, C., De Jager, P. L., Villringer, A., Debette, S., Gudnason, V., Medland, S. E., Shulman, J. M., Thompson, P. M., Seshadri, S., & Ikram, M. A. (2019). Genetic architecture of subcortical brain structures in 38,854 individuals worldwide. Nature Genetics, 51, 1624-1636. doi:10.1038/s41588-019-0511-y.
Abstract
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease. -
Truong, D. T., Adams, A. K., Paniagua, S., Frijters, J. C., Boada, R., Hill, D. E., Lovett, M. W., Mahone, E. M., Willcutt, E. G., Wolf, M., Defries, J. C., Gialluisi, A., Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., Bosson-Heenan, J., & Gruen, J. R. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 56(8), 557-566. doi:10.1136/jmedgenet-2018-105874.
Abstract
Background Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms.
Objective To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach.
Methods We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African–American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted.
Results Genome-wide significant effects were observed at rs1555839 (p=4.03×10−8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer–promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule.
Conclusion This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene–brain–behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.Additional information
Supplementary data -
Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (
Eds. ), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.Abstract
The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring. -
Francks, C. (2009). Understanding the genetics of behavioural and psychiatric traits will only be achieved through a realistic assessment of their complexity. Laterality: Asymmetries of Body, Brain and Cognition, 14(1), 11-16. doi:10.1080/13576500802536439.
Abstract
Francks et al. (2007) performed a recent study in which the first putative genetic effect on human handedness was identified (the imprinted locus LRRTM1 on human chromosome 2). In this issue of Laterality, Tim Crow and colleagues present a critique of that study. The present paper presents a personal response to that critique which argues that Francks et al. (2007) published a substantial body of evidence implicating LRRTM1 in handedness and schizophrenia. Progress will now be achieved by others trying to validate, refute, or extend those findings, rather than by further armchair discussion. -
Need, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperavičiūtė, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S. E., Fisher, E. M. C., St. Jean, P. L., Giegling, I. and 13 moreNeed, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperavičiūtė, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S. E., Fisher, E. M. C., St. Jean, P. L., Giegling, I., Hartmann, A. M., Möller, H.-J., Ruppert, A., Fraser, G., Crombie, C., Middleton, L. T., St. Clair, D., Roses, A. D., Muglia, P., Francks, C., Rujescu, D., Meltzer, H. Y., & Goldstein, D. B. (2009). A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genetics, 5(2), e1000373. doi:10.1371/journal.pgen.1000373.
Abstract
We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens. -
Scott, L. J., Muglia, P., Kong, X. Q., Guan, W., Flickinger, M., Upmanyu, R., Tozzi, F., Li, J. Z., Burmeister, M., Absher, D., Thompson, R. C., Francks, C., Meng, F., Antoniades, A., Southwick, A. M., Schatzberg, A. F., Bunney, W. E., Barchas, J. D., Jones, E. G., Day, R. and 13 moreScott, L. J., Muglia, P., Kong, X. Q., Guan, W., Flickinger, M., Upmanyu, R., Tozzi, F., Li, J. Z., Burmeister, M., Absher, D., Thompson, R. C., Francks, C., Meng, F., Antoniades, A., Southwick, A. M., Schatzberg, A. F., Bunney, W. E., Barchas, J. D., Jones, E. G., Day, R., Matthews, K., McGuffin, P., Strauss, J. S., Kennedy, J. L., Middleton, L., Roses, A. D., Watson, S. J., Vincent, J. B., Myers, R. M., Farmer, A. E., Akil, H., Burns, D. K., & Boehnke, M. (2009). Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7501-7506. doi:10.1073/pnas.0813386106.
Abstract
Bipolar disorder (BP) is a disabling and often life-threatening disorder that affects approximately 1% of the population worldwide. To identify genetic variants that increase the risk of BP, we genotyped on the Illumina HumanHap550 Beadchip 2,076 bipolar cases and 1,676 controls of European ancestry from the National Institute of Mental Health Human Genetics Initiative Repository, and the Prechter Repository and samples collected in London, Toronto, and Dundee. We imputed SNP genotypes and tested for SNP-BP association in each sample and then performed meta-analysis across samples. The strongest association P value for this 2-study meta-analysis was 2.4 x 10(-6). We next imputed SNP genotypes and tested for SNP-BP association based on the publicly available Affymetrix 500K genotype data from the Wellcome Trust Case Control Consortium for 1,868 BP cases and a reference set of 12,831 individuals. A 3-study meta-analysis of 3,683 nonoverlapping cases and 14,507 extended controls on >2.3 M genotyped and imputed SNPs resulted in 3 chromosomal regions with association P approximately 10(-7): 1p31.1 (no known genes), 3p21 (>25 known genes), and 5q15 (MCTP1). The most strongly associated nonsynonymous SNP rs1042779 (OR = 1.19, P = 1.8 x 10(-7)) is in the ITIH1 gene on chromosome 3, with other strongly associated nonsynonymous SNPs in GNL3, NEK4, and ITIH3. Thus, these chromosomal regions harbor genes implicated in cell cycle, neurogenesis, neuroplasticity, and neurosignaling. In addition, we replicated the reported ANK3 association results for SNP rs10994336 in the nonoverlapping GSK sample (OR = 1.37, P = 0.042). Although these results are promising, analysis of additional samples will be required to confirm that variant(s) in these regions influence BP risk.Additional information
Supp_Inform_Scott_et_al.pdf -
Bailey, A., Hervas, A., Matthews, N., Palferman, S., Wallace, S., Aubin, A., Michelotti, J., Wainhouse, C., Papanikolaou, K., Rutter, M., Maestrini, E., Marlow, A., Weeks, D. E., Lamb, J., Francks, C., Kearsley, G., Scudder, P., Monaco, A. P., Baird, G., Cox, A. and 46 moreBailey, A., Hervas, A., Matthews, N., Palferman, S., Wallace, S., Aubin, A., Michelotti, J., Wainhouse, C., Papanikolaou, K., Rutter, M., Maestrini, E., Marlow, A., Weeks, D. E., Lamb, J., Francks, C., Kearsley, G., Scudder, P., Monaco, A. P., Baird, G., Cox, A., Cockerill, H., Nuffield, F., Le Couteur, A., Berney, T., Cooper, H., Kelly, T., Green, J., Whittaker, J., Gilchrist, A., Bolton, P., Schönewald, A., Daker, M., Ogilvie, C., Docherty, Z., Deans, Z., Bolton, B., Packer, R., Poustka, F., Rühl, D., Schmötzer, G., Bölte, S., Klauck, S. M., Spieler, A., Poustka., A., Van Engeland, H., Kemner, C., De Jonge, M., Den Hartog, I., Lord, C., Cook, E., Leventhal, B., Volkmar, F., Pauls, D., Klin, A., Smalley, S., Fombonne, E., Rogé, B., Tauber, M., Arti-Vartayan, E., Fremolle-Kruck., J., Pederson, L., Haracopos, D., Brondum-Nielsen, K., & Cotterill, R. (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Human Molecular Genetics, 7(3), 571-578. doi:10.1093/hmg/7.3.571.
Abstract
Autism is characterized by impairments in reciprocal social interaction and communication, and restricted and sterotyped patterns of interests and activities. Developmental difficulties are apparent before 3 years of age and there is evidence for strong genetic influences most likely involving more than one susceptibility gene. A two-stage genome search for susceptibility loci in autism was performed on 87 affected sib pairs plus 12 non-sib affected relative-pairs, from a total of 99 families identified by an international consortium. Regions on six chromosomes (4, 7, 10, 16, 19 and 22) were identified which generated a multipoint maximum lod score (MLS) > 1. A region on chromosome 7q was the most significant with an MLS of 3.55 near markers D7S530 and D7S684 in the subset of 56 UK affected sib-pair families, and an MLS of 2.53 in all 87 affected sib-pair families. An area on chromosome 16p near the telomere was the next most significant, with an MLS of 1.97 in the UK families, and 1.51 in all families. These results are an important step towards identifying genes predisposing to autism; establishing their general applicability requires further study.
Share this page