Clyde Francks

Publications

Displaying 1 - 5 of 5
  • Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.

    Abstract

    Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain.
  • Rivera-Olvera, A., Houwing, D. J., Ellegood, J., Masifi, S., Martina, S., Silberfeld, A., Pourquie, O., Lerch, J. P., Francks, C., Homberg, J. R., Van Heukelum, S., & Grandjean, J. (2025). The universe is asymmetric, the mouse brain too. Molecular Psychiatry, 30, 489-496. doi:10.1038/s41380-024-02687-2.

    Abstract

    Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models in studying the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.

    Additional information

    tables link to preprint on BioRxiv
  • Sha, Z., & Francks, C. (2025). Large-scale genetic mapping for human brain asymmetry. In C. Papagno, & P. Corballis (Eds.), Handbook of Clinical Neurology: Cerebral Asymmetries (pp. 241-254). Amsterdam: Elsevier.

    Abstract

    Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last five years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules, or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain’s left-right axis. Several of the implicated genes have also been associated with psychiatric or neurological disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders.
  • Francks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B. and 22 moreFrancks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B., Nanba, E., Richardson, A. J., Riley, B. P., Martin, N. G., Strittmatter, S. M., Möller, H.-J., Rujescu, D., St Clair, D., Muglia, P., Roos, J. L., Fisher, S. E., Wade-Martins, R., Rouleau, G. A., Stein, J. F., Karayiorgou, M., Geschwind, D. H., Ragoussis, J., Kendler, K. S., Airaksinen, M. S., Oshimura, M., DeLisi, L. E., & Monaco, A. P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129-1139. doi:10.1038/sj.mp.4002053.

    Abstract

    Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.
  • Gayán, J., Willcutt, E. G., Fisher, S. E., Francks, C., Cardon, L. R., Olson, R. K., Pennington, B. F., Smith, S., Monaco, A. P., & DeFries, J. C. (2005). Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. Journal of Child Psychology and Psychiatry, 46(10), 1045-1056. doi:10.1111/j.1469-7610.2005.01447.x.

    Abstract

    BACKGROUND: There is a growing interest in the study of the genetic origins of comorbidity, a direct consequence of the recent findings of genetic loci that are seemingly linked to more than one disorder. There are several potential causes for these shared regions of linkage, but one possibility is that these loci may harbor genes with manifold effects. The established genetic correlation between reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD) suggests that their comorbidity is due at least in part to genes that have an impact on several phenotypes, a phenomenon known as pleiotropy. METHODS: We employ a bivariate linkage test for selected samples that could help identify these pleiotropic loci. This linkage method was employed to carry out the first bivariate genome-wide analysis for RD and ADHD, in a selected sample of 182 sibling pairs. RESULTS: We found evidence for a novel locus at chromosome 14q32 (multipoint LOD=2.5; singlepoint LOD=3.9) with a pleiotropic effect on RD and ADHD. Another locus at 13q32, which had been implicated in previous univariate scans of RD and ADHD, seems to have a pleiotropic effect on both disorders. 20q11 is also suggested as a pleiotropic locus. Other loci previously implicated in RD or ADHD did not exhibit bivariate linkage. CONCLUSIONS: Some loci are suggested as having pleiotropic effects on RD and ADHD, while others might have unique effects. These results highlight the utility of this bivariate linkage method to study pleiotropy.

Share this page